On Soft b-open sets In Soft Tritopological Space

BharathiS¹,DeviT², DivyaA³

¹Department of Mathematics,Bharathiar University PG Extension and ResearchCenter,Perundurai,Erode,Tamilnadu,India.

²Department of Mathematics, Builders Engineering College,Kangayam,Tiruppur, Tamilnadu,India.

³Department of Mathematics, PSGR Krishnamal College for Women, Peelamadu, Coimbatore, Tamilnadu. India.

Abstract: In this paper the soft bitopological space has been extended to Soft Tritopological Space and $(1,2,3)^*$ soft b open sets and $(1,2,3)^*$ soft b closed sets in soft Tritopological Space has been defined . Some properties on $(1,2,3)^*$ soft b open sets has been proved. Also the relation between $(1,2,3)^*$ soft regular open, $(1,2,3)^*$ soft preopen, $(1,2,3)^*$ soft semi open, $(1,2,3)^*$ soft β open in soft tritopological space has been discussed.

Keywords: $(1,2,3)^*$ soft b open set, $(1,2,3)^*$ soft b closed set, $(1,2,3)^*$ soft regular open, $(1,2,3)^*$ soft pre open, $(1,2,3)^*$ soft semi open, $(1,2,3)^*$ soft α open, $(1,2,3)^*$ soft β open.

Date of Submission: 14-06-2019

Date of acceptance: 29-06-2019

I. Introduction

In the year 1999,Moldtsov D[7]proposed the theory of soft sets with new dimension to explain the practical difficulties in engineering physics,computerscience,economics,social science and medical science.Muhammad ShabirandMunazzaNaz[6] setforth soft topological spaces which are defined over an initial universe with a fixed set of criteria.Hazra H,Majumdar P,Samanta S K[4] described the topic topology on soft subsets and soft topology. Basavaraj,Ittanagi M[3] explained soft bitopological spaces in subtle manner.RevathiN, BageerathiK [8]initiated soft b open sets and soft b closed sets in soft bitopologicalspace.Barathi B,Sathiya S,Ramesh Kumar T[2] introduced a new class of soft sgb closed sets in soft bitopological spaces.AsmhanFlienHassan[1] introduced soft Tritopological spaces.Indhu S,MathiSujitha T,Ramesh Kumar T [5] given Soft Gsr-Closed Sets In soft Bitopological space and some of its characteristics are investigated.

II. Preliminaries

Definition 2.1 [5]

A pair (F,A) is called a soft set over X, Where F is a mapping given by $F:A \to P(X)$. In other words ,a soft set over X is a parameterized family of subset of the universe X. For $e \in A$, F(e) may be considered as the set e-approximate elements of the soft set (F,A).

Definition 2.2[5]

For two soft sets (F,A) and (G,B) over a common universe X, we say that (F,A) is a soft subset of (G,B) if i) $A \subseteq B$

ii) \forall e \in A,F(e) \subseteq G(e).

we write $(F,A) \subseteq (G,B)$.(F,A) is said to be a soft super set of (G,B).if (G,B) is a soft subset of (F,A) and is denoted by $(F,A) \supseteq (G,B)$.

Definition 2.3[5]

For two soft sets (F,A) and (G,B) over a common universe X, union of two soft sets of (F,A) and (G,B) is the soft (H,C), where $C=A\cup B$ and $\forall e\in C$

$$H(e) = \begin{cases} F(e) & \text{if } e \in A - B \\ G(e) & \text{if } e \in B - A \\ F(e) \cup G(e) & \text{if } e \in A \cap B \end{cases}$$

We write $(F,A) \cup (G,B)=(H,C)$

Definition 2.4[5]

The intersection (H,C) of two soft sets (F,A) and (G,B) over a common universe X denoted by (F,A) \cap (G,B) is defined as C=A \cap B and H(e)=F(e) \cap G(e) \forall e \in C

Definition 2.5 [5]

Let $\overline{X} \in S(X)$ power set of \overline{X} is defined by $P(\overline{X}) = {\overline{X}_i \subseteq \overline{X}, i \in I}$ and its cardinality is defined by $|P(\overline{X})| = 2^{\sum x \in E|F(x)|}$, where |F(X)| is cardinality of F(x).

Example 2.6

```
Let X = \{l, m\}, E = \{e_1, e_2\} and \overline{X} = \{(e_1, \{l, m\}), (e_2, \{l, m\})\}. Then A_1 = \{(e_1, \{l\}), (e_2, \{l\})\} \qquad A_9 = \{(e_1, \{X\}), (e_2, \{l\})\} \qquad A_2 = \{(e_1, \{l\}), (e_2, \{m\})\} \qquad A_{10} = \{(e_1, \{X\}), (e_2, \{m\})\} \qquad A_3 = \{(e_1, \{l\}), (e_2, \{X\})\} \qquad A_{11} = \{(e_1, \{X\}), (e_2, \{X\})\} \qquad A_4 = \{(e_1, \{l\}), (e_2, \{\emptyset\})\} \qquad A_{12} = \{(e_1, \{X\}), (e_2, \{\emptyset\})\} \qquad A_5 = \{(e_1, \{m\}), (e_2, \{l\})\} \qquad A_{13} = \{(e_1, \{\emptyset\}), (e_2, \{l\})\} \qquad A_6 = \{(e_1, \{m\}), (e_2, \{m\})\} \qquad A_{14} = \{(e_1, \{\emptyset\}), (e_2, \{m\})\} \qquad A_7 = \{(e_1, \{m\}), (e_2, \{X\})\} A_{15} = \{(e_1, \{\emptyset\}), (e_2, \{X\})\} \qquad A_8 = \{(e_1, \{m\}), (e_2, \{\emptyset\})\} \qquad A_{16} = \{(e_1, \{\emptyset\}), (e_2, \{\emptyset\})\} \qquad A_{16} are all soft subsets of \overline{X}. So |P(\overline{X})| = 2^4 = 16
```

Definition 2.7 [5]

Let τ be the collection of soft sets over X, then τ is called a soft topology on X if τ satisfies the following axioms

- i) \emptyset , $\bar{X}_{\text{belongs to}} \tau$
- ii) The union of any number of soft sets in τ belongs to τ
- iii)The intersection of any two soft sets in τ belongs to τ

The triplet $(X \tau E)$ is called a soft topological space over X.

Example 2.8

Let us consider the soft subsets of X that are given in example 2.6 then

$$\tau_1 = \{\varphi, \overline{X}, A_1, A_{13}\}, \tau_2 = \{\varphi, \overline{X}\}_{\text{are soft topologies on X}}.$$

Definition 2.9 [5]

Aset X together with two different soft topologies is called soft bitopologicalspace.

It is denoted by (X, τ_1, τ_2) .

Example 2.10

Let us consider the soft subsets of X that are given in example 2.6 then

$$\tau_1 = \{\varphi, \overline{X}, A_5, A_{13}\}, \tau_2 = \{\varphi, \overline{X}, A_1, A_4, A_9\}$$

$$\tau_{1,2} = \{\varphi, \overline{X}, A_1, A_4, A_5, A_9, A_{13}\}$$
 are called soft open set

$$\tau_{1,2} = \{ \varphi, \overline{X}, A_2, A_6, A_{7,A_{10}}, A_{14} \}_{\text{are called soft closed set}}$$

Definition 2.11

A set X together with three different soft topologies is called soft tritopological space.

It is denoted by $(X, \tau_1, \tau_2, \tau_3)$

Example 2.12

Let $X = \{l, m\}, E = \{e_1, e_2\}_{and consider the soft sets over X in Example 2.6 where$

$$\tau_1 = \{\varphi, \overline{X}, A_5, A_{13}\}, \tau_2 = \{\varphi, \overline{X}, A_1, A_4, A_9\}, \tau_3 = \{\varphi, \overline{X}, A_1, A_{13}\}$$

The soft open sets are $\tau_{1,2,3} = \{ \varphi, \overline{X}, A_1, A_4, A_5, A_9, A_{13} \}$

The soft closed sets are $\tau_{1,2,3} = \{ \varphi, \overline{X}, A_2, A_6, A_7, A_{10}, A_{14} \}$

Definition 2.13

A soft set (A,E) in a soft tritopological space \bar{X} is called

- i) $(1,2,3)^*$ soft regular open set if $(A,E) = \tau_{1,2,3} int(\tau_{1,2,3} cl(A,E))$ and $(1,2,3)^*$ soft regular closed set if $(A,E) = \tau_{1,2,3} cl(\tau_{1,2,3} int(A,E))$
- ii) $(1,2,3)^*$ soft α open set if $(A,E) \subseteq \tau_{1,2,3} int(\tau_{1,2,3} cl(\tau_{1,2,3} int(A,E)))$ and $(1,2,3)^*$ soft α closed set if $\tau_{1,2,3} cl(\tau_{1,2,3} int(\tau_{1,2,3} cl(A,E))) \subseteq (A,E)$
- iii) $(1,2,3)^*$ soft preopen if $(A, E) \subseteq \tau_{1,2,3} int(\tau_{1,2,3} cl(A, E))$ and $(1,2,3)^*$ softpre closed if $\tau_{1,2,3} cl(\tau_{1,2,3} int((A, E))) \subseteq (A, E)$
- iv) $(1,2,3)^*$ soft semi open if $(A,E) \subseteq \tau_{1,2,3} cl(\tau_{1,2,3} int(A,E))$ and $(1,2,3)^*$ soft semi closed if $\tau_{1,2,3} int(\tau_{1,2,3} cl((A,E)) \subseteq (A,E)$
- v) $(1,2,3)^* \operatorname{soft} \beta$ open if $(A, E) \subseteq \tau_{1,2,3} cl(\tau_{1,2,3} int(\tau_{1,2,3} cl(A, E)))$ and $(1,2,3)^* \operatorname{soft} \beta$ closed if $\tau_{1,2,3} int(\tau_{1,2,3} cl(\tau_{1,2,3} int(A, E))) \subseteq (A, E)$

Lemma 2.14

In $(X, \tau_1, \tau_2, \tau_3)$ be a soft tritopological space .we have the following results.

- i)Every $(1,2,3)^*$ soft regular open set is $(1,2,3)^*$ soft open
- ii) Every $(1,2,3)^*$ soft open set is $(1,2,3)^*$ soft α open
- iii)Every $(1,2,3)^*$ soft α open set is $(1,2,3)^*$ soft semi open
- iv)Every $(1,2,3)^*$ soft preopen set is $(1,2,3)^*$ soft β open
- v)Every $(1,2,3)^*$ soft semi open set is $(1,2,3)^*$ soft β open Proof:

Let $(X, \tau_1, \tau_2, \tau_3)$ be a soft tritopological space and $(A, E) \in \overline{X}$. Suppose (A, E) be a $(1,2,3)^*$ soft regular open set. Then $(A, E) = \tau_{1,2,3} - int(\tau_{1,2,3} - cl(A, E))$ since $\tau_{1,2,3} - cl(A, E)$ is a closed set in soft tritopological space and interior of any set is open. Hence the lemma (i) is proved

Let (A,E) be a $(1,2,3)^*$ soft open set .This implies $(A,E) = \tau_{1,2,3} - int(\tau_{1,2,3} - cl(A,E))$ since $(A,E) \subseteq \tau_{1,2,3} - cl(A,E) = \tau_{1,2,3} - cl(\tau_{1,2,3} - int(\tau_{1,2,3} - cl(A,E)))$. Hence the lemma (ii) is proved.

Let (A,E) be a $(1,2,3)^*$ soft α open set .This implies $(A,E) \subseteq \tau_{1,2,3} - int(\tau_{1,2,3} - cl(\tau_{1,2,3} - int(A,E))) \subseteq \tau_{1,2,3} - cl(\tau_{1,2,3} - int(A,E))$.Hence the lemma (iii) is proved.

Let (A,E) be a $(1,2,3)^*$ soft pre open set .This implies $(A,E) \subseteq \tau_{1,2,3} - int(\tau_{1,2,3} - cl(A,E)) \subseteq \tau_{1,2,3} - cl(A,E)$. Hence the lemma (iv) is proved

Let (A,E) be a $(1,2,3)^*$ soft semi open set .This implies $(A,E) \subseteq \tau_{1,2,3} - cl(\tau_{1,2,3} - int(A,E)) \subseteq \tau_{1,2,3} - cl(\tau_{1,2,3} - int(\tau_{1,2,3} - int(T_{1,2,3} - int($

Remark 2.15

The converse of the above is need not be true as seen in the following examples.

Example 2.16

Let $X = \{l, m\}$, $E = \{e_1, e_2\}_{and consider}$ the soft sets over X in Example 2.6 where

$$\tau_{1} = \{\varphi, \overline{X}, A_{5}, A_{13}\} \;, \; \tau_{2} = \{\varphi, \overline{X}, A_{1}, A_{4}, A_{9}\} \;, \\ \tau_{3} = \{\varphi, \overline{X}, A_{1}, A_{13}\} \;$$

The soft open sets are $\tau_{1,2,3} = \{ \varphi, \overline{X}, A_1, A_4, A_5, A_9, A_{13} \}$

The soft closed sets are $\tau_{1,2,3} = \{ \varphi, \overline{X}, A_2, A_6, A_7, A_{10}, A_{14} \}$

- i) A_1 is a $(1,2,3)^*$ soft open but not $(1,2,3)^*$ soft regular open
- ii) A_3 is a $(1,2,3)^*$ soft α open but not $(1,2,3)^*$ soft open
- iii) A_{15} is a $(1,2,3)^*$ soft semi open but not $(1,2,3)^*$ soft α open
- iv) A_{15} is a $(1,2,3)^*$ soft β open set but not $(1,2,3)^*$ soft pre open

Example 2.17

Let us consider the soft subsets of Xthat are given in Example 2.6.Let(X, τ_1 , τ_2 , τ_3) be a soft tritopological space, where

$$\tau_1 = \left\{ \varphi, \overline{X}, A_4 \right\}, \, \tau_2 = \left\{ \varphi, \overline{X}, A_8 \right\}, \tau_3 = \left\{ \varphi, \overline{X}, A_{12} \right\}$$

The soft open sets are $\tau_{1,2,3} = \{\varphi, \overline{X}, A_4, A_8, A_{12}\}$

The soft closed sets are $\tau_{1,2,3} = {\varphi, \overline{X}, A_3, A_7, A_{15}}$

v) The soft set A_{13} is $(1,2,3)^*$ soft β open set but not $(1,2,3)^*$ soft semi open set

III. (1,2,3)*Soft b -Open Sets

In this section we introduce (1,2,3)*soft b-open sets in soft tritopological spaces and study some of their properties.

Definition 3.1

Let $(X, \tau_1, \tau_2, \tau_3)$ be a soft tritopological space and $(A, E) \subseteq \overline{X}$. Then (A, E) is called $(1,2,3)^*$ soft b open set if $(A, E) \subseteq \tau_{1,2,3} - int(\tau_{1,2,3} - cl(A, E)) \cup \tau_{1,2,3} - cl(\tau_{1,2,3} - int(A, E))$

Example 3.2

In example 2.12 the $(1,2,3)^*$ soft b-open sets are $\{\varphi, \overline{X}, A_1, A_2, A_3, A_4, A_5, A_7, A_9, A_{13}, A_{15}\}$

Theorem 3.3

Let $(X, \tau_1, \tau_2, \tau_3)$ be a soft tritopological space. Then

- i) Every (1,2,3)* soft preopen open set is (1,2,3)* soft b-open set
- ii)Every $(1,2,3)^*$ soft b open open set is $(1,2,3)^*$ soft β -open set
- iii)Every $(1,2,3)^*$ soft semi openopen set is $(1,2,3)^*$ soft b-open set Proof

Let $(X, \tau_1, \tau_2, \tau_3)$ be a soft tritopological space and $(A, E) \subseteq \overline{X}$. Let (A, E) be a $(1,2,3)^*$ soft preopen set. Then $(A, E) \subseteq \tau_{1,2,3} - int(\tau_{1,2,3} - cl(A, E))$

$$\subseteq \tau_{1,2,3} - int(\tau_{1,2,3} - cl(A, E)) \cup \tau_{1,2,3} - int(A, E)$$

$$\subseteq \tau_{1,2,3} - int(\tau_{1,2,3} - cl(A, E)) \cup \tau_{1,2,3} - cl(\tau_{1,2,3} - int(A, E))$$

Thus (i) is proved

Let (A,E) be a $(1,2,3)^*$ soft b open set. Then

$$\begin{aligned} (A,E) &\subseteq \tau_{1,2,3} - cl(\tau_{1,2,3} - int(A,E)) \cup \tau_{1,2,3} - int(\tau_{1,2,3} - cl(A,E)) \\ &\subseteq \tau_{1,2,3} - cl(\tau_{1,2,3} - int(\tau_{1,2,3} - cl(A,E))) \cup \tau_{1,2,3} - int(\tau_{1,2,3} - cl(A,E)) \\ &\subseteq \tau_{1,2,3} - cl(\tau_{1,2,3} - int(\tau_{1,2,3} - cl(A,E))) \end{aligned}$$

Thus (ii) is proved.

Let (A,E) be a $(1,2,3)^*$ soft semi open set. This implies

$$(A, E) \subseteq \tau_{1,2,3} - cl(\tau_{1,2,3} - int(A, E))$$

$$\subseteq \tau_{1,2,3} - cl(\tau_{1,2,3} - int(A, E)) \cup \tau_{1,2,3} - int(A, E))$$

$$\subseteq \tau_{1,2,3} - cl(\tau_{1,2,3} - int(A, E))) \cup \tau_{1,2,3} - int(\tau_{1,2,3} - cl(A, E))$$

Thus (iii) is proved

Remark 3.4

The converse of the above lemma is need not be true as seen in the following example.

Example 3.5

Let us consider the soft subsets of X that are given in Example 2.6.Let $(X, \tau_1, \tau_2, \tau_3)$ be a soft tritopological space, where

$$\tau_1 = \{\varphi, \overline{X}, A_4\}, \, \tau_2 = \{\varphi, \overline{X}, A_8\}, \tau_3 = \{\varphi, \overline{X}, A_{12}\}$$

The soft open sets are $\tau_{1,2,3} = \{\varphi, \overline{X}, A_4, A_8, A_{12}\}$

The soft closed sets are $\tau_{1,2,3} = {\varphi, \overline{X}, A_3, A_7, A_{15}}$

i) The soft set A_1 is $(1,2,3)^*$ soft b-open set but not $(1,2,3)^*$ soft pre-open set

ii) The soft set A_{14} is $(1,2,3)^*$ soft β open set but not $(1,2,3)^*$ soft b-open set

iii) The soft set A_{13} is $(1,2,3)^*$ soft b open set but not $(1,2,3)^*$ soft semi open set

Remark 3.6

The above discussions are summarized in the following diagrams

$$(1,2,3)^*$$
 Soft regular open \downarrow $(1,2,3)^*$ Soft open \downarrow $(1,2,3)^*$ Soft α open \downarrow $(1,2,3)^*$ Soft semi open \downarrow $(1,2,3)^*$ Soft b open \downarrow $(1,2,3)^*$ Soft β open

IV. (1,2,3)*Soft b-Closed Sets

In this section we introduce (1,2,3)*soft b-closed sets in soft tritopological spaces and study some of their properties.

Definition 4.1

Let $(X, \tau_1, \tau_2, \tau_3)$ be a soft tritopological space and $(A, E) \subseteq \overline{X}$. Then (A, E) is called $(1,2,3)^*$ soft b closed set if $\tau_{1,2,3} - int(\tau_{1,2,3} - cl(A, E)) \cup \tau_{1,2,3} - cl(\tau_{1,2,3} - int(A, E)) \subseteq (A, E)$

Example 4.2

In example 2.12 the (1,2,3)* soft b-closed sets are $\{\varphi, \overline{X}, A_2, A_4, A_5, A_6, A_7, A_8, A_{10}, A_{12}, A_{14}\}$

Theorem 4.3

Let (A, E) be a $(1,2,3)^*$ soft b closed set in soft tritopological space

i) If (A, E) is a $(1,2,3)^*$ soft regular closed set then (A, E) is a $(1,2,3)^*$ soft semi closed set.

ii) If (A.E) is a $(1,2,3)^*$ soft regular open set then (A,E) is a $(1,2,3)^*$ soft pre closed set.

Proof

Since (A, E) be a $(1,2,3)^*$ soft b closed set, $\tau_{1,2,3} - cl(\tau_{1,2,3} - int(A, E)) \cap \tau_{1,2,3} - int(\tau_{1,2,3} - cl(A, E)) \subseteq (A, E)$ is a $(1,2,3)^*$ soft regular closed set, $(A, E) = \tau_{1,2,3} - cl(\tau_{1,2,3} - int(A, E))$. Therefore $(A, E) \cap \tau_{1,2,3} - int(\tau_{1,2,3} - cl(A, E)) \subseteq (A, E)$. Thus $\tau_{1,2,3} - int(\tau_{1,2,3} - cl(A, E)) \subseteq (A, E)$. Hence (i) is proved.

Since (A, E) be a $(1,2,3)^*$ soft regular open set $,(A, E) = \tau_{1,2,3} - int\left(\tau_{1,2,3} - cl(A, E)\right)$. Therefore, $(A, E) \cap \tau_{1,2,3} - cl\left(\tau_{1,2,3} - int(A, E)\right) \subseteq (A, E)$. This implies, $\tau_{1,2,3} - cl\left(\tau_{1,2,3} - int(A, E)\right) \subseteq (A, E)$. Hence (ii) is proved.

V. Conclusion

This paper deals with the concept of (1,2,3)*soft b open sets and (1,2,3)* soft b closed sets in soft tritopological space. Some properties on (1,2,3)* soft b open and closed sets has been proved. This paper will be supportive to solve various type of open sets on soft tritopological space.

References

- [1]. AsmhanFliehHassan,SoftTritopologicalSpaces,International Journal of Computer Application (0975-8887)Volume 176-No.9.October 2017
- [2]. Barathi B, Sathiya S, Ramesh Kumar T, On Soft SGB-Closed Sets In soft Bitopological spaces, International Journal of Advance Engineering and ResearchDevelopment, Volume4,Issue 12,December-2017
- [3]. Basavaraj, Ittanagi M, Soft Bitopological Spaces, International Journal of Computer Applications (0975-8887) Volume 107(2014)
- [4]. Hazra H, Majumdar P, Samanta S K, Soft Topology, Springer, 2012
- [5]. Indhu S,MathiSujithaT, Ramesh Kumar T,On Soft Gsr-Closed Sets In soft Bitopological space, International Journal of Engineering Development and Research, Volume 6, Issue 1, ISSN:2321-9939
- [6]. Muhammadshabir, MunazzaNaz, On soft topological spaces, Computers and mathematics with Applications 61(2011)1786-1799
- [7]. MoldtsovD,Soft set theory-First results,Computers and Math.Appl.37,19-31(1999)
- [8]. RevathiN,BageerathiK,On soft B-open sets in soft Bitopological space,International Journal of Applied Research 2015;1(11):615-623

BharathiS. " On Soft b-open sets In Soft Tritopological Space." IOSR Journal of Mathematics (IOSR-JM) 15.3 (2019): 59-63.