
IOSR Journal of Mathematics (IOSR-JM)     

e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 15, Issue 4 Ser. II (Jul – Aug 2019), PP 10-19 

www.iosrjournals.org 

 

DOI: 10.9790/5728-1504021019                              www.iosrjournals.org                                                10 | Page 

Mathematical Modeling of the Transmission Dynamics of 

Measles under the Effect of Vaccination. 
 

Mutuguta John Wanjau∗, Rotich Titus 
†
, Chepkwony Isaac

‡
 

*Murang’a University of Technology, Department of Mathematics and Actuarial Science 

†Moi University, Department of Mathematics and Physics 

‡Kenyatta University, Department of Mathematics 

 

Abstract: Measles virus is a member paramyxoviridae within the genus of morbillivirus. Its genome consist 

of approximately 16,000 bases of non-segmented single stranded negative sense RNA. This means that the 

virus is transcribed immediately upon entry into the cell. The virus spreads from person to person through 

the release of the aerosol droplets. In this paper, we investigate the transmission of measles virus using the 

five compartments of susceptible, vaccinated, exposed, infectious and recovered individuals with 

demographic factors. We give the mathematical model describing the transmission of the measles virus. 

The results of the model analysis showed that the model has a unique disease free equilibrium (DFE) 

which is locally asymptotically stable when 𝑅0 <  1 and unstable when 𝑅0 >  1. We further carried out 

numerical simulation of the model to investigate the effect of vaccination on the transmission dynamics of 

the virus. The results showed that there exist a minimum value of the vaccine efficacy below which herd 

immunity cannot be achieved. We further observed that increasing the vaccine efficacy above this critical 

value will lower the herd immunity of the population. 
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Notations and Symbols 

MMR Measles, Mumps andRubella 

R0 Basic reproduction number.  

r Birthrate 

µ perca-pita deathrate 

γ recoveryrate. 

α vaccineefficacy. 

ω Vaccinationrate 

β Transmissionprobability. 

σ rateofprogressionfromexposedtoinfectiousclass. 

d per ca-pita disease mortalityrate 

 

I. Introduction 
In this paper we consider the transmission dynamics of Measles. Measles is a communicable disease 

which spreads through person - to - person transmission mode. It is a highly contagious disease with an attack 

rate of over 90% among the susceptible individuals. Measles is a severe illness with high attack rate especially 

in malnourished children and mainly those with vitamin A deficiency or those whose immune system have been 

weakened by other infections such as HIV/AIDS. It produces a red rash and may lead to serious complications 

such as pneumonia, diarrhoea and encephalitis. Children infected with measles virus do not normally die from 

the disease itself but may die from complications such as diarrhoea and pneumonia which are more common to 

children under the age of five years. Some children recovering from the disease suffer deafness, encephalitis, 

impaired vision or even blindness in some cases. It is a viral respiratory infectious disease which attacks the 

immune system and is transmitted through the respiratory droplets or contact with throat or nasal secretions of 

an infectious individual. Measles is an immunizing disease thus individuals recovering from the disease acquires 

lifelong immunity from further attacks. It poses a great challenge to human population and its prevention or 

control is an important milestone to the human population. The efficient intervention of the disease depends on 

the understanding of its transmission and persistence. Measles dynamics has a long history of data analysis and 

modeling. Considering only the local dynamics, the extinction of the virus results when the local chain of 
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transmission is broken. In many instances this will happen in small host populations when the epidemic tends to 

diminish the susceptible individuals in the population which in turn reduces the force of infection leading to 

breakdown in the transmission chain. 
In their work titled A Stochastic Modeling of Recurrent Measles Epidemics, Kassem and Ndam [6] 

developed a simple stochastic Mathematical model for the dynamics of Measles with multidimensional diffusion 

process. When developing their model, they considered and partitioned the population into susceptible, exposed, 

infected and removed classes and assumed among other things that stochastic effects arise in the process of 

infection of susceptible individuals. The results of their simulation seemed to agree with the historical pattern of 

measles in Nigeria. [1] developed a model that divided the total population (N) into four classes of Susceptible, 

Exposed, infected and Recovered individuals they further incorporated testing and measles therapy into the 

dynamics at the exposed period to investigate the control of measles epidemiology at latent period. They 

assumed that the individuals recovering from exposed class as a result of measles therapy and those that 

recovered naturally from the infectious class became permanently immune. They developed a mathematical 

model of non-linear first order ordinary differential equation. The result of their stability analysis showed that 

the system was asymptotically stable. [2] developed a mathematical Model for the dynamics of measles by 

incorporating vaccination of susceptible individuals. When developing their model they considered a population 

with variable size and that vaccination conferred lifelong immunity to the vaccinated individuals and therefore 

the vaccinated individuals moved to the recovered class. Their model consisted of a set of Ordinary Differential 

Equations and Partial Differential Equations and they carried out numerical and qualitative analyses of the 

model by varying the values of the state variables. The results of their study showed that the model had the 

disease-free equilibrium (D.F.E.) which was locally asymptotically stable for R0 < 1 and unstable for R0 > 1. [5] 

adopted compartmental modeling approach by partitioning the population into Susceptible, Vaccinated, 

Exposed, Infected and Recovered sub-populations. The result of the model analysis showed that the model had a 

unique disease free equilibrium which was found to be locally asymptotically stable whenever the basic 

reproduction number is less than one and unstable otherwise. The authors further carried out numerical 

experiment using the data of [1], the results of the numerical experiments revealed that eradicating measles 

would be more efficient if susceptible individuals were vaccinated and followed by drug therapy to screened 

infected individuals in the exposed class.  
From available literature most authors assumed that vaccinated individuals acquire permanent 

immunity. However vaccines are not 100% efficient and some vaccinated individuals may still contract the 

disease. In this paper, we study the effect of vaccination of susceptible individuals by incorporating loss of 

immunity of vaccinated individuals due to drop in efficacy of vaccine. 
 

 

II. ModelFormulation 
We formulate a deterministic compartmental model to describe the transmission dynamics of the 

disease. We divide the population into five compartments of susceptible individuals (S), vaccinated individuals 

(V), exposed individuals (E), infectious individuals (I) and recovered individuals (R). The flow chart for the 

model is given below 

 

 
Figure 1: Measles model with vaccination 

 

The class S of susceptible is increased by birth or immigration at a rate r and decreased by infection 

following contact with infected individuals at a rate β, natural death at a rate µ and vaccination at a rate ω. The 

class E of exposed individuals is generated through contact of susceptible individuals with infected individuals 

at rate β it is decreased by progression into infected class at a rate σ and natural death at a rate µ. The class I of 

infected individuals is generated through progression of exposed individuals at a rate σ and diminished by 

https://docs.google.com/document/d/1AdAfg0O71KiBdJWO8qEzi8m1oRZ6x_GHuIfN13YIy6w/edit#heading=h.2s8eyo1
https://docs.google.com/document/d/1AdAfg0O71KiBdJWO8qEzi8m1oRZ6x_GHuIfN13YIy6w/edit#heading=h.2s8eyo1
https://docs.google.com/document/d/1AdAfg0O71KiBdJWO8qEzi8m1oRZ6x_GHuIfN13YIy6w/edit#heading=h.2et92p0
https://docs.google.com/document/d/1AdAfg0O71KiBdJWO8qEzi8m1oRZ6x_GHuIfN13YIy6w/edit#heading=h.tyjcwt
https://docs.google.com/document/d/1AdAfg0O71KiBdJWO8qEzi8m1oRZ6x_GHuIfN13YIy6w/edit#heading=h.4d34og8
https://docs.google.com/document/d/1AdAfg0O71KiBdJWO8qEzi8m1oRZ6x_GHuIfN13YIy6w/edit#heading=h.2et92p0
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natural death at a rate µ, disease mortality at a rate d and recovery from infection at a rate γ. The model assumes 

that recovered individuals become permanently immune to the disease. This generates a class R of individuals 

who have complete protection against the disease. The class R of recovered individuals is diminished by natural 

death at a rate µ. The class V of vaccinated individuals is generated through vaccination of susceptible 

individuals at a rate ω, it is diminished by natural mortality at a rate µ and loss of immunity due to waning of the 

vaccine at a rate . A proportion α of vaccinated individuals acquires complete protection from the disease 

and enter the recovered class R.  
 

The mathematical model for the system is of the form; 

 
 

2.1 EquilibriumAnalysis 
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2.2 Basic ReproductionNumber 

Basic reproduction number is one of the most important quantity in infectious disease modeling. Its 

value provides insights when designing control interventions for established infections and in emerging disease 

outbreaks, it is one of the most urgently estimated quantity to provide insights on the suitable control methods. 

Basic reproduction number is usually denoted by R0 and defined as the average number of infections resulting 

from an index case in an otherwise susceptible population. In general if R0 > 1 then the index case will on 

average infect more than one individual during its entire infectious period thus the pathogen will invade the 

population. If on the other hand R0 < 1 then each index case will on average infect less than one other individual 

in the population during its entire infectious period which implies that the infectious disease will die out. In this 

case the pathogen is not able to invade the population. It has been shown that the basic reproduction number is 

mathematically characterised by regarding infections as a demographic process where producing offspring is not 

seen as giving birth in the normal demographic sense but as causing a new infection through transmission. This 

process is termed epidemiological birth. In natural way this leads to viewing the infection process in terms of 

consecutive generations of infected individuals [4]. 
In epidemic modeling, generations are the waves of secondary infections that flow from each previous 

infection. Thus the first generation of an epidemic comprise of all the secondary infections that result from the 

infectious contact with the index case who is regarded as generation zero. Therefore if Ri denotes the 

reproduction number of the i th generation, then R0 will denote the number of infections generated by the index 

case [3]. These numbers are small and are subject to sampling errors, we however determine the mean value 

hence we find an average over a large number of epidemics. The first step when determining this number is to 

construct the next generation matrix (NGM) of the epidemic. In the construction of the next generation matrix, 

one begins by identifying those equations in the system that describe the production of new infections and the 

changes in state among infected individuals. This set of equations is referred to as the infected subsystem. We 

then linearlise the system over the disease free equilibrium (DFE), the linearlization indicates that R0 

characterises the potential for the initial spread of the infectious agent when it is introduced into a fully 

susceptible population and therefore we assume that the change in the susceptible population is negligible 

during the initial spread. 
The right hand side of the system is split into the transmission matrix (T) and the transition matrix (V) where T 

is a non-negative matrix and V in a non-singular M-matrix. The basic reproduction number is then obtained as 

the spectral radius of the next generation matrix (TV −1) i.e R0 = ρ(TV −1) [4]. 
 

For the system 1 above the infected subsystem is given by; 

 

https://docs.google.com/document/d/1AdAfg0O71KiBdJWO8qEzi8m1oRZ6x_GHuIfN13YIy6w/edit#heading=h.1t3h5sf
https://docs.google.com/document/d/1AdAfg0O71KiBdJWO8qEzi8m1oRZ6x_GHuIfN13YIy6w/edit#heading=h.3dy6vkm
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The next generation matrix K of the system is given by 

 
and the basic reproduction number is given by 
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2.3  StabilityAnalysis 

In this section, we investigate the stability of the disease free equilibrium. To determine its stability 
criteria, we first construct the Jacobian matrix and linearlise it at disease free equilibrium. 
 

The Jacobian matrix J of the system 1 is givenby; 
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Solving, we get the Eigen values 

 

 
 

 
III. Results And Discussion 
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