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Abstract: In this work we considered a nonlinear deterministic dynamical system to study dynamics of 

HIV/AIDS with different mode of transmissions. We found that the diseases free equilibrium point and endemic 

equilibrium point exist and we perform their local stability and global stability analysis using nonlinear stability 

methods. We found the reproduction number𝑅0 =
(𝑘2+𝛿2+𝜇−𝑝2)(𝛽1+𝜎)+𝜃(𝛽2+𝜎)

(𝑘1+𝜃+𝛿1+𝜇−𝑝1−  1−𝜖 𝜙)(𝑘2+𝛿2+𝜇−𝑝2)
which depends on twelve 

parameters? Using the collected standard data we found the numerical value of the reproduction number is 
𝑅0 = 𝟐. 𝟗𝟖𝟗𝟓 > 1. This shows that the considered disease spreads in the community.  From the sensitivity 

index of the dynamical system we found that the most sensitive parameter is the rate of transmission of the 

disease to susceptible individuals by unaware infective 𝛽1. We also show the effect of all parameters on the 

basic reproduction number using numerical simulation.  

Keywords: Nonlinear dynamical system, HIV/AIDS dynamics, Stability analysis, Numerical simulation, 

Sensitivity analysis.    
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I. Introduction 
Diseases can be transmitted in many ways some of which can be classified as either horizontal or 

vertical. In the case of HIV/AIDS, horizontal transmission can result from direct physical contact between an 

infected individual and a susceptible individual. Vertical transmission, on the other hand, can result from direct 

transfer of a disease from an infected mother to an unborn or newborn offspring
[19]

.Researchers found that about 

20% of the children infected with HIV develop AIDS in the first year of their lives, and most of them die by the 

age of four years. The others up to 80% of infected children develop symptoms of HIV/AIDS at school entry 

age or even during adolescence
[2, 26]

. 

The first simple HIV Mathematical epidemic model developed and analyzed by Anderson in 1986 and 

he suggested that behavioral change was recognized as the major way of combating the spread of HIV/AIDS 

epidemic as there was no treatment or vaccine to the virus.After the discovery of Anti-retroviral treatment, 

modeling of HIV/AIDS was directed towards incorporating behavioral change and effects of treatment. 

Treatment reduces the infectiousness of an infected individual reducing the probability of transmission from an 

infective individual to a susceptible individual. On the contrary anti- retroviral therapies increases the lifespan of 

the HIV infectives and as such they can infect more people if the treatment does not reduce infectiousness with 

no change in social behavior
[21]

. 

Mathematical modeling has proved to be an important tool in analyzing the spread and control of 

different kinds of infectious diseases 
[3, 18]

. The results of modeling and analysis help to improve understanding 

of the major contributing factors to the pandemic. Mathematical models have been studied and important 

inferences have been drawn in case of epidemics
[1, 5, 6, 7, 9, 15]

. The Mathematical model analysis by Valesco - 

Hernandez and Hsieh found that only significant reductions in the transmission probability can contain the 

spread of the epidemic. Such reductions could be through adoption of safer sexual practices or through 

reductions in viral load due to treatmentA model by Ying -Yen and Cooke on Behavioral change and treatment 

of core groups and its effects on the spread of HIV/AIDS showed that behavioral change and treatment can 

eradicate the disease however if the treatment and behavioral change levels do not reach critical values, 

detrimental effects could be realized resulting from slower progression to AIDS without sufficiently lower 

transmission rates resulting in increased spread of HIV infection
[11,12]

. 

Several researchers have developed HIV/AIDS models so as to understand and explain the dynamics 

and the spread of the disease and succeeded to a large extent. Modeling and Analysis of the spread of AIDS 

epidemic with immigration of HIV infectives is studied in 
[10, 22]

. A theoretical framework describing the 

transmission of HIV/AIDS with screening of unaware infective persons is presented in 
[23, 24]

. The joint effect of 

both medical screening and variable inflow of aware and unaware infective immigrants on the disease 
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transmission has been studied by 
[13]

. Modeling the Combined Effect of Vertical Transmission and Variable 

Inflow of Infective Immigrants on the Dynamics of HIV/AIDS has been studied by 
[25]

. The spread of the 

disease due to vertical transmission has also been studied by 
[4]

. 

In this work, we proposed an extension of the model studied entitled by Modeling the Combined Effect 

of Vertical Transmission and Variable Inflow of Infective Immigrants on the Dynamics of HIV/AIDS
[25]

. Here 

we have investigated the combined effect of unaware infective immigrants, different mode of transmissions and 

aware infective immigrants, on the dynamics of HIV/AIDS.  

 

II. The Mathematical Model 
Our initial model 

[25]
 is represented by four ordinary differential equations. Our extended model is 

represented by five ordinary differential equations by adding one more compartment based on the following 

basic assumptions. For this dynamical system we considered susceptible class𝑆(𝑡), Unaware infective 

class𝐼1(𝑡), Aware infective class𝐼2(𝑡), AIDS class𝐴(𝑡) and Seropositive class𝑆𝑝(𝑡).Individuals will join the 

susceptible compartment 𝑆(𝑡)by natural birth. Some of these people will leave this compartment due to natural 

deaths and some others will go to 𝐼1(𝑡)compartment after getting infected. The remaining people will stay in the 

𝑆(𝑡)compartment itself. People of 𝑆(𝑡)compartment are likely to get infected by the people of 𝐼1(𝑡)and 

𝐼2(𝑡)compartments only. But the people of AIDS compartment  𝐴(𝑡)being physically too weak to participate in 

sexual activities, cannot transfer infection to susceptible people. In this study we considered that, the transfer of 

HIV from infected people to susceptible people is by sexual intercourse and transferring HIV by any other 

means like sharing needles; blood transfusion. 

The population under this study is heterogeneous and varying with time, the whole human population 

is divided in to five classes, the HIV can be transmitted by the sexual intercourse with infective peoples and 

blood borne transmission, the full blown AIDS class is sexually inactive, the seropositive class could not 

transmit the disease, all the new infected people are assumed to be initially unaware of the infection and the 

probability of transferring the disease to susceptible population by unaware infected person is more than by 

aware infected person i. e.𝛽1 > 𝛽2 , the unaware infected people grow to AIDS much faster than the aware 

infected people i. e.  𝛿1 > 𝛿2. 

Based on these assumptions we construct the following flow chart which shows the movement of individuals 

from compartment to compartment.  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 1: The flow chart of the model 

 

Based on the above basic assumptions and flow chart we do have the following corresponding dynamical 

system represented by five non-linear ordinary differential equations.  
𝑑𝑆

𝑑𝑡
= 𝑄0 − [𝛽1𝐼1 + 𝛽2𝐼2]

𝑆

𝑁
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𝑆

𝑁
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𝑆
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𝑁
+ 𝑝1𝐼1 +  (1 − 𝜖)𝜙𝐼1 −  𝑘1 + 𝜃 + 𝛿1 + 𝜇 𝐼1 (2) 

𝑑𝐼2

𝑑𝑡
= 𝑝2𝐼2 + 𝜃𝐼1 − 𝑘2𝐼2 −  𝛿2 + 𝜇 𝐼2       (3) 

𝑑𝑆𝑝
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𝑑𝐴

𝑑𝑡
= 𝛿1𝐼1 + 𝛿2𝐼2 − (𝛼 + 𝜇)𝐴        (5) 

With initial conditions 𝑆 0 = 𝑆0 ,  𝐼1 0 = 𝐼10 ,  𝐼2 0 = 𝐼20 , 𝑆𝑝 0 = 𝑆𝑝0
and 𝐴 0 = 𝐴0. 

 

Theorem-1: /positivity/ 

The solutions of the dynamical system (1) − (5) with initial conditions satisfy 𝑆 𝑡 > 0, 𝐼1 𝑡 > 0, 𝐼2 𝑡 >
0, 𝑆𝑝 𝑡 > 0, 𝐴 𝑡 > 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 > 0. The region Ω ⊂ ℝ+

5 is positively invariant and attracting with respect to 

system (1)− (5). 

Proof  

By considering the five ordinary differential equations and after taking some steps on finding their solution we 

do have 

i. Consider the first differential equation 
𝑑𝑆

𝑑𝑡
= 𝑄0 − [𝛽1𝐼1 + 𝛽2𝐼2]

𝑆

𝑁
− 𝜎[𝐼1 + 𝐼2]

𝑆

𝑁
− 𝜇𝑆 

Whose solution is 𝑆 𝑡 = 𝑆 0 𝑒−𝑄 𝑡 +𝑄 0 −𝜇𝑡 +
1

𝑒𝑄 𝑡 +𝜇𝑡  𝑄0𝑒
 𝑄 𝑠 −𝑄 𝑡  +𝜇 (𝑠−𝑡)𝑑𝑠

𝑡

0
> 0,since 𝑆 0 > 0, 𝑄0 > 0 

and the exponential function always positive. 

ii. Consider the second differential equation 
𝑑𝐼1

𝑑𝑡
=  𝛽1𝐼1 + 𝛽2𝐼2 

𝑆

𝑁
+ 𝜎[𝐼1 + 𝐼2]

𝑆

𝑁
+ 𝑝1𝐼1 +  (1 − 𝜖)𝜙𝐼1 −  𝑘1 + 𝜃 + 𝛿1 + 𝜇 𝐼1 

whose solution is 𝐼1 𝑡 = 𝐼1(0)𝑒−𝐾𝑡+(𝛽1+𝜎)𝑄 𝑡 −(𝛽1+𝜎)𝑄 0 + 𝑒−𝐾𝑡+(𝛽1+𝜎)𝑄 𝑡  (𝛽1 + 𝜎)
𝐼2𝑆

𝑁
𝑒𝐾𝑠−(𝛽1+𝜎)𝑄 𝑠 𝑑𝑠

𝑡

0
>

0, since 𝐼1 0 ≥ 0 and the exponential function always positive. 

iii. Consider the third differential equation
𝑑𝐼2

𝑑𝑡
= 𝑝2𝐼2 + 𝜃𝐼1 − 𝑘2𝐼2 −  𝛿2 + 𝜇 𝐼2  

Whose solution is𝐼2 𝑡 = 𝐼2(0)𝑒−ℎ𝑡 + 𝑒−ℎ𝑡  𝑒ℎ𝑠𝜃𝐼1𝑑𝑠
𝑡

0
> 0, since 𝐼2 0 ≥ 0 and the exponential function 

always positive. 

iv. Consider the fourth differential equation 
𝑑𝑆𝑝

𝑑𝑡
= 𝑘1𝐼1 + 𝑘2𝐼2 − 𝜇𝑆𝑝  whose solution is 𝑆𝑝 𝑡 =

𝑆𝑝 0 𝑒−𝜇𝑡 + 𝑒−𝜇𝑡  𝑒𝜇𝑠  𝑘1𝐼1 + 𝑘2𝐼2 𝑑𝑠
𝑡

0
> 0𝑆𝑝 0 ≥ 0 and the exponential function always positive. 

v. Consider the fifth differential equation 
𝑑𝐴

𝑑𝑡
= 𝛿1𝐼1 + 𝛿2𝐼2 −  𝛼 + 𝜇 𝐴 whose solution is 𝐴 𝑡 =

𝐴 0 𝑒− 𝛼+𝜇 𝑡 + 𝑒− 𝛼+𝜇 𝑡  𝑒 𝛼+𝜇 𝑠 𝛿1𝐼1 + 𝛿2𝐼2 𝑑𝑠
𝑡

0
> 0, since 𝐴 0 ≥ 0 and the exponential function always 

positive. 

 

Theorem-2: /Boundedness/ 

The feasible region Ω of the dynamical system (1) - (5) is defined as: 

Ω =   𝑆 𝑡 , 𝐼1 𝑡 , 𝐼2 𝑡 , 𝑆𝑝 𝑡 , 𝐴 𝑡  𝜖ℜ+
5 : 0 < 𝑁 𝑡 ≤

𝑄0

𝜇
 is bounded.  

Proof  

Assume that all state variables and parameters are positive. Here we have 𝑁 = 𝑆 + 𝐼1 + 𝐼2 + 𝑆𝑝 + 𝐴 then  
𝑑𝑁

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
+

𝑑𝐼1

𝑑𝑡
+

𝑑𝐼2

𝑑𝑡
+

𝑑𝑆𝑝

𝑑𝑡
+

𝑑𝐴

𝑑𝑡
and thus we have 𝑝1𝐼1 +  1 − 𝜖 𝜙𝐼1 + 𝑝2𝐼2 ≤ 𝛼𝐴 that is  

𝑑𝑁

𝑑𝑡
≤ 𝑄0 − 𝜇𝑁. Which 

implies 
𝑑𝑁

𝑄0−𝜇𝑁
≤ 𝑑𝑡. After some simplification in the integration process we get 𝑁 𝑡 ≤

𝑄0

𝜇
+ 𝑁 0 𝑒−𝜇𝑡 . And 

hence as 𝑡 → ∞ we have 0 < 𝑁 𝑡 ≤
𝑄0

𝜇
 which shows that the total population is bounded. 

 

III. Equilibrium points of the dynamical system 
3.1 Disease Free Equilibrium point /DFE/ 

The disease free equilibrium point is obtained by setting the right hand side of the dynamical system 

(1) - (5)equal to zero with assumptions there are neither infective people nor AIDS patients, that is 𝐼1 = 𝐼2 =

𝐴 = 0. And thus we obtain the disease free equilibrium point of the dynamical system is 𝐸0 = (
𝑄0

𝜇
, 0, 0, 0, 0).  

 

3.1.1Basic Reproduction number𝑹𝟎 

The reproduction number is defined as the average number of secondary cases produced by a typical 

infected individual during his or her entire life as infectious or infectious period when introduced or allowed to 

live in a population of susceptible. We shall now compute the basic reproduction number of the present model 

using the next generation method. The basic reproduction number is a threshold quantity used to study the 

spread of an infection disease in epidemiological modeling and it is the spectral radius of the next generation 

matrix [8].In the dynamical system (1)-(5) the rate of appearance of new infections ℱ and the transfer rate of 

individuals 𝒱 at the disease free steady state 𝐸0 = (
𝑄0

𝜇
, 0, 0, 0, 0)with 𝑆~𝑁is ℱ =  

𝛽1 + 𝜎 𝛽2 + 𝜎
0 0

  , 𝒱 =
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 𝑘1 + 𝜃 + 𝛿1 + 𝜇 − (𝑝1 +  1 − 𝜖 𝜙)     0

−𝜃  𝑘2 + 𝛿2 + 𝜇 − 𝑝2
  

and  

𝒱−1 =

 
 
 
 

1

𝑘1 + 𝜃 + 𝛿1 + 𝜇 − 𝑝1 −  1 − 𝜖 𝜙
    0

𝜃

[𝑘1 + 𝜃 + 𝛿1 + 𝜇 − 𝑝1 −  1 − 𝜖 𝜙][𝑘2 + 𝛿2 + 𝜇 − 𝑝2]

1

𝑘2 + 𝛿2 + 𝜇 − 𝑝2 
 
 
 

 

The spectral radius or Eigen value of ℱ𝒱−is the required basic reproduction number obtained by 𝑅0 =
(𝑘2+𝛿2+𝜇−𝑝2)(𝛽1+𝜎)+𝜃(𝛽2+𝜎)

(𝑘1+𝜃+𝛿1+𝜇−𝑝1−  1−𝜖 𝜙)(𝑘2+𝛿2+𝜇−𝑝2)
.  

 

3.1.2Local stability of the disease free equilibrium point 𝑬𝟎 

Theorem-3: 

The disease free equilibrium point 𝐸0 of the dynamical system (1) - (5) is locally asymptotically stable if 𝑅0 < 1 

and unstable if𝑅0 > 1. 

 

Proof  

TheJacobean matrix of the dynamical system (1) - (5) at the DFE point 𝐸0 = (
𝑄0

𝜇
, 0, 0, 0, 0) is: 





































21

2

211

21

0

0

00

00

0)()(

)(

kk

EJ  

Where ∆1= 𝑘1 + 𝜃 + 𝛿1 + 𝜇 − 𝑝1 −  1 − 𝜖 𝜙 and ∆2= 𝑘2 + 𝛿2 + 𝜇 − 𝑝2 

The corresponding characteristic equation for the eigenvalue 𝜆 is with  

0

0

00

00

0)()(

21

2

211

21



















kk

 

Or (𝜇 + 𝜆)2[ 𝛽1 + 𝜎 − ∆1 − 𝜆  −∆2 − 𝜆 − 𝜃 𝛽2 + 𝜎 ] = 0 or (𝜇 + 𝜆)2[𝜆2 + 𝐵𝜆 + 𝐶] = 0 where 𝐶 =
∆1∆2 −  𝛽1 + 𝜎 ∆2 − 𝜃 𝛽2 + 𝜎 and 𝐵 =  ∆2 − 𝛽1 − 𝜎 + ∆1 .  

If 𝑅0 < 1 implies  
∆2 𝛽1+𝜎 +𝜃(𝛽2+𝜎)

∆1∆2
< 1which implies that  ∆2 𝛽1 + 𝜎 + 𝜃(𝛽2 + 𝜎) < ∆1∆2 

 And ∆1∆2 − ∆2 𝛽1 + 𝜎 − 𝜃(𝛽2 + 𝜎) > 0 which implies that 𝐶 > 0. Since ∆1∆2 − ∆2 𝛽1 + 𝜎 − 𝜃(𝛽2 + 𝜎) >
0 we have (∆1 −  𝛽1 + 𝜎 )∆2 − 𝜃(𝛽2 + 𝜎) > 0 which implies that  

∆1 −  𝛽1 + 𝜎 > 0that is 𝐵 > 0. Therefore the quadratic equation 𝜆2 + 𝐵𝜆 + 𝐶 = 0 has two negative real 

roots.In general we have all eigenvalues of the Jacobian matrix are negative. Hence the disease free equilibrium 

point is locally asymptotically stable and if 𝑅0 > 1 then the characteristic equation will have positive 

eigenvaluestherefore𝐸0 is unstable. 

 

3.1.3Global stability of disease-free equilibrium point 

Theorem-4: 

The disease free equilibrium point 𝐸0 is globally asymptotically stable if 𝑅0 < 1. 

Proof 

We construct a Liapunov function by 𝑉 = 𝛼1𝐼1 + 𝛼2𝐼2 + 𝛼3𝑆𝑝 + 𝛼4𝐴and thus we get 𝑉 is continuous function 

and has first order partial derivatives and 𝑉 has minimum at 𝐸0 = (
𝑄0

𝜇
, 0, 0, 0, 0) which is 𝑉(

𝑄0

𝜇
, 0, 0, 0, 0) = 0. 

Finally we calculate the time derivative of  𝑉along the solution path yields 
𝑑𝑉

𝑑𝑡
= 𝛼1

𝑑𝐼1

𝑑𝑡
+ 𝛼2

𝑑𝐼2

𝑑𝑡
+ 𝛼3

𝑑𝑆𝑝

𝑑𝑡
+ 𝛼4

𝑑𝐴

𝑑𝑡
=  𝛼1[ 

𝛽1+𝜎

𝑁
 𝑆 − ∆1] + 𝛼2𝜃 + 𝛼3𝑘1 + 𝛼4𝛿1 𝐼1 +  𝛼1  

𝛽2+𝜎

𝑁
 𝑆 − 𝛼2∆2 +

𝛼3𝑘2+𝛼4𝛿2𝐼2−𝛼3𝜇𝑆𝑝−𝛼4(𝛼+𝜇)𝐴≤𝛼1[𝛽1+𝜎−∆1]+𝛼2𝜃+𝛼3𝑘1+𝛼4𝛿1𝐼1+𝛼1𝛽2+𝜎−𝛼2∆2+𝛼3𝑘2+𝛼4𝛿2
𝐼2−𝛼3𝜇𝑆𝑝−𝛼4(𝛼+𝜇)𝐴. Take the coefficients of 𝐼2, 𝑆𝑝 and 𝐴 are equal to zero. Then we get𝛼3=0, 𝛼4=0 and 

𝛼2 =
𝛼1 𝛽2+𝜎 

∆2
.  
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Then
𝑑𝑉

𝑑𝑡
≤  𝛼1[ 𝛽1 + 𝜎 − ∆1] + 𝛼2𝜃 𝐼1 =  𝛼1[ 𝛽1 + 𝜎 − ∆1] +

𝛼1 𝛽2+𝜎 𝜃

∆2
 𝐼1 =  𝛼1 𝛽1 + 𝜎 − 𝛼1∆1 +

𝛼1𝛽2+𝜎𝜃∆2𝐼1=𝛼1∆2𝛽1+𝜎+𝛽2+𝜎𝜃∆2−𝛼1∆1𝐼1≤𝛼1𝑅0∆1∆2∆2−𝛼1∆1𝐼1 

This implies that  
𝑑𝑉

𝑑𝑡
≤  𝛼1𝑅0∆1 − 𝛼1∆1 𝐼1 = 𝛼1∆1 𝑅0 − 1 𝐼1  

We observe that 
𝑑𝑉

𝑑𝑡
≤ 0if 𝑅0 < 1. Furthermore,  

𝑑𝑉

𝑑𝑡
= 0 if and only if 𝐼1 = 𝐼2 = 𝑆𝑝 = 𝐴 = 0. Therefore, the 

largest compact invariant set in  𝑆, 𝐼1 , 𝐼2 , 𝑆𝑝 , 𝐴 ∈ Ω ∶
𝑑𝑉

𝑑𝑡
= 0. Thus the endemic equilibrium point  𝐸0 is 

globally asymptotically stable.  

 

3.2Endemic equilibrium point 

The endemic equilibrium point is obtained by setting the right hand side of the dynamical system (1)-(5) equal 

to zero. Thus we get the endemic equilibrium point is𝐸∗ = (𝑆∗, 𝐼1
∗, 𝐼2

∗, 𝑆𝑝
∗, 𝐴∗)where  

𝑆∗ =
𝑁

𝑅0
, 𝐼1

∗ =
𝑄0

∆1
 1 −

1

𝑅0
 ,   𝐼2

∗ =
𝑄0𝜃 1−

1

𝑅0
 

∆1∆2
, 𝑆𝑝

∗ =
𝑘1∆2𝑄0 1−

1

𝑅0
 +𝑘2𝑄0𝜃 1−

1

𝑅0
 

𝜇∆1∆2
  and  

𝐴∗ =
𝛿1∆2𝑄0  1 −

1

𝑅0
 + 𝛿2𝑄0𝜃  1 −

1

𝑅0
 

 𝛼 + 𝜇 ∆1∆2

 

 

3.2.1 Local stability of endemic equilibrium point 
Theorem-5: 

The positive endemic equilibrium point 𝐸∗  of the system of equations (1) - (5) is locally asymptotically stable if 

𝑅0 > 1. 

Proof 

The Jacobian matrix of the system of equations (1) - (5) at the endemic equilibrium point is 

𝐽 𝐸∗ =

 

 
 
 
 

−𝑎 − 𝜇 − 
𝛽1 + 𝜎

𝑁
 𝑆∗ − 

𝛽2 + 𝜎

𝑁
 𝑆∗ 0 0

𝑎  
𝛽1 + 𝜎

𝑁
 𝑆∗ − ∆1  

𝛽2 + 𝜎

𝑁
 𝑆∗ 0 0

0 𝜃 −∆2 0 0
0 𝑘1 𝑘2 −𝜇 0
0 𝛿1 𝛿2 0 −(𝛼 + 𝜇) 

 
 
 
 

 

The corresponding characteristic equation is  

 

 
−𝑎 − 𝜇 − 𝜆 − 

𝛽1 + 𝜎

𝑅0

 −  
𝛽2 + 𝜎

𝑅0

 0 0

𝑎  
𝛽1 + 𝜎

𝑅0

 − ∆1 − 𝜆  
𝛽2 + 𝜎

𝑅0

 0 0

0 𝜃 −∆2 − 𝜆 0 0
0 𝑘1 𝑘2 −𝜇 − 𝜆 0

0 𝛿1 𝛿2 0 − 𝛼 + 𝜇 − 𝜆

 

 

= 0 

After some calculations using Routh Hurwitz stability criterion  we found that all roots of the characteristic 

equation have negative real part, therefore the endemic equilibrium point is locally asymptotically stable. 

 

3.2.2Global stability of endemic equilibrium point 

Theorem-6: 

The endemic equilibrium point 𝐸∗ is globally asymptotically stable if  
𝛽2+𝜎

𝑁
 𝑆∗ 𝐼1

∗𝐼2

𝐼1
+  

𝛽2+𝜎

𝑁
 𝐼2

∗𝑆 <

−  𝜇𝑆∗  2 −
𝑆

𝑆∗ −
𝑆∗

𝑆
 +  

𝛽1+𝜎

𝑁
 𝐼1

∗𝑆∗  2 −
𝑆∗

𝑆
−

𝑆

𝑆∗ +  
𝛽2+𝜎

𝑁
 𝐼2

∗𝑆∗  2 −
𝑆∗

𝑆
−

𝑆

𝑆∗  +  
𝛽2+𝜎

𝑁
 

𝐼1
∗

𝐼1
𝐼2𝑆 −

 
𝛽2+𝜎

𝑁
 𝑆∗𝐼2

∗  1 −
𝐼2
∗𝐼1

𝐼2𝐼1
∗ −

𝐼1
∗𝐼2

𝐼1𝐼2
∗ .   

Proof 

We defined a Liapunov function by  

𝑉 =  𝑆 − 𝑆∗𝑙𝑛𝑆 +  𝐼1 − 𝐼1
∗𝑙𝑛𝐼1 + 𝛾1 𝐼2 − 𝐼2

∗𝑙𝑛𝐼2 + 𝛾2 𝑆𝑝 − 𝑆𝑝
∗𝑙𝑛𝑆𝑝 + 𝛾3(𝐴 − 𝐴∗𝑙𝑛𝐴)and thus we get 𝑉 is 

continuous function and has first order partial derivatives and 𝑉 has minimum at 𝐸∗ which is 𝐸∗0. Finally we 

calculate the time derivative of  𝑉along the solution path yields
𝑑𝑉

𝑑𝑡
=  1 −

𝑆∗

𝑆
 

𝑑𝑆

𝑑𝑡
+  1 −

𝐼1
∗

𝐼1
 

𝑑𝐼1

𝑑𝑡
+ 𝛾1  1 −

𝐼2∗𝐼2𝑑𝐼2𝑑𝑡+𝛾21−𝑆𝑝∗𝑆𝑝𝑑𝑆𝑝𝑑𝑡+𝛾31−𝐴∗𝐴𝑑𝐴𝑑𝑡 
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𝑑𝑉

𝑑𝑡
=  1 −

𝑆∗

𝑆
  𝑄0 −   

𝛽1 + 𝜎

𝑁
 𝐼1 +  

𝛽2 + 𝜎

𝑁
 𝐼2 𝑆 − 𝜇𝑆 +  1 −

𝐼1
∗

𝐼1

    
𝛽1 + 𝜎

𝑁
 𝐼1 +  

𝛽2 + 𝜎

𝑁
 𝐼2 𝑆 − ∆1𝐼1 

+ 𝛾1  1 −
𝐼2
∗

𝐼2

  𝜃𝐼1 − ∆2𝐼2 + 𝛾2  1 −
𝑆𝑝

∗

𝑆𝑝

  𝑘1𝐼1 + 𝑘2𝐼2 − 𝜇𝑆𝑝  + 𝛾3  1 −
𝐴∗

𝐴
 [𝛿1𝐼1 + 𝛿2𝐼2

− (𝛼 + 𝜇)𝐴] 
𝑑𝑉

𝑑𝑡
= 𝑍 − 𝑌where𝑍 =  

𝛽2+𝜎

𝑁
 𝑆∗ 𝐼1

∗𝐼2

𝐼1
+  

𝛽2+𝜎

𝑁
 𝐼2

∗𝑆 and  𝑌 = −  𝜇𝑆∗  2 −
𝑆

𝑆∗ −
𝑆∗

𝑆
 +  

𝛽1+𝜎

𝑁
 𝐼1

∗𝑆∗  2 −
𝑆∗

𝑆
−

𝑆

𝑆∗ +

𝛽2+𝜎𝑁𝐼2∗𝑆∗2−𝑆∗𝑆−𝑆𝑆∗+𝛽2+𝜎𝑁𝐼1∗𝐼1𝐼2𝑆−𝛽2+𝜎𝑁𝑆∗𝐼2∗1−𝐼2∗𝐼1𝐼2𝐼1∗−𝐼1∗𝐼2𝐼1𝐼2∗.  Hence, if 𝑍<𝑌 

then, 
𝑑𝑉

𝑑𝑡
 will be negative definite, implying that 

𝑑𝑉

𝑑𝑡
< 0. Also 

𝑑𝑉

𝑑𝑡
= 0, if and only if 𝑆 = 𝑆∗, 𝐼1 = 𝐼1

∗,  𝐼2 =

𝐼2
∗,   𝑆𝑝 = 𝑆𝑝

∗ 𝑎𝑛𝑑 𝐴 = 𝐴∗. Therefore the endemic equilibrium point 𝐸∗is globally asymptotically stable in Ωif 

𝑍 < 𝑌. 
 

IV. Parameter Estimation For Numerical Simulation And Senstivity Analysis 
To perform numerical simulation and sensitivity analysis we collect the following parameter values obtained 

from different sources. 

 
Parameter Description Estimated value Ref. 

𝛽1 Probability of transmission of the disease to susceptible individuals 

by unaware infective 

0.9 [25] 

𝛽2 Probability of transmission of the disease to susceptible individuals 

by aware infectives 

0.7 [25] 

𝛿1 Rate of development to AIDS from unaware infectives 0.3 [25] 

𝛿2 Rate of development to AIDS from aware infectives 0.02 [25] 

𝜎 Rate of transmission through blood borne  0.003 [13] 

𝜇 Natural mortality 0.02 [15] 

𝜃 Rate of aware infectives from unaware infectives 0.3 [25] 

𝑘1 Rate of treatment of unaware infectives 0.1 Estimated 

𝑘2 Rate of treatment of aware infectives 0.4 [17] 

𝑝1 Rate of unaware infectives immigrants 0.1 [25] 

𝑝2 Rate of aware infectives immigrants 0.2 [25] 

𝜙 Rate of vertical transmission 0.03 [25] 

𝜖 Probability of death at birth 0.2 [25] 

𝛼 AIDS induced death rate 0.9 [25] 

Table 1: Parameter estimation 

 

4.1 Estimation of basic reproduction number 𝑹𝟎 

𝑅0 =
(𝑘2 + 𝛿2 + 𝜇 − 𝑝2)(𝛽1 + 𝜎) + 𝜃(𝛽2 + 𝜎)

(𝑘1 + 𝜃 + 𝛿1 + 𝜇 − 𝑝1 −  1 − 𝜖 𝜙)(𝑘2 + 𝛿2 + 𝜇 − 𝑝2)
 

𝑅0 = 𝟐. 𝟗𝟖𝟗𝟓 

1. Numerical Simulations 
The numerical analysis is obtained from the graphs of basic reproduction number with respect to the parameters 

obtained and given in Table1. 
Rate of transmission of the disease from unaware infective class 𝜷𝟏 

Graphical representation of the basic reproduction number 𝑅0versus rate of transmission of the disease from 

unaware infective class 𝛽1and keeping other parameters constant 

 

 
Figure 2: This figure showsan increase in the rate of transmission, 𝛽1, makes an increase in the reproduction 

number, 𝑅0. That is the disease always persists for any value of parameter𝛽1. 
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Rate of transmission of the disease from aware infective class 𝜷𝟐 

Graphical representation of the basic reproduction number 𝑅0versus rate of transmission of the disease from 

aware infective class 𝛽2and keeping other parameters constant 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 3: This figure showsan increase in the rate of transmission, 𝛽2, makes an increase in the reproduction 

number, 𝑅0 . That is the disease always persists for any value of parameter  𝛽2 

 

Rate of blood borne transmission of the disease  𝝈 
Graphical representation of the basic reproduction number 𝑅0versus rate of blood borne transmission of the 

disease  𝜎and keeping other parameters constant 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: This figure showsan increase in the rate of blood borne transmission, 𝜎, makes an increase in the 

reproduction number, 𝑅0. That is the disease always persists for any value of parameter𝜎 

 

Rate of progress of unaware infective to AIDS 𝜹𝟏 
Graphical representation of the basic reproduction number 𝑅0versus rate of progress of unaware infective to 

AIDS 𝛿1and keeping other parameters constant 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: This figure showsan increase in the rate of progress of unaware infective to AIDS, 𝛿1, between the 

parametric values 0 and 1.48575 makes a decrease in the reproduction number, 𝑅0, but the reproduction number 

is greater than one that indicates the disease persists. If the parameter value of 𝛿1 greater than 1.48575, then the 

reproduction number decreases and becomes less than one where the disease dies out. 

𝑅0 

𝛿1 

𝑅0 = 1 

𝑅0 =
0.42762

(0.07104 + 0.24𝛿1)
 

𝛽2 

𝑅0 = 1 

𝑅0 

𝑅0 =
0.22572 + 0.3𝛽2

0.14304
 

𝜎 

𝑅0 = 1 

𝑅0 

𝑅0 =
0.426 + 0.54𝜎

0.14304
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Rate of progress of aware infective to AIDS 𝜹𝟐 
Graphical representation of the basic reproduction number 𝑅0versus rate of progress of aware infective to AIDS 

𝛿2 and keeping other parameters constant 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: This figure shows an increase in the rate of progress of aware infective to AIDS, 𝛿2, makes a decrease 

in the reproduction number, 𝑅0, but the reproduction number is greater than one that indicates the disease still 

persists. 

 

Rate of unaware infective immigrants 𝒑𝟏 

Graphical representation of the basic reproduction number 𝑅0versus rate of unaware infective immigrants 𝑝1  

and keeping other parameters constant 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: This figure shows an increase in the rate of unaware infective immigrants, 𝑝1, between 0 and 0.696, 

makes an increase in the reproduction number, 𝑅0 > 1 and tell us the disease persists 

 

Rate of aware infective immigrants 𝒑𝟐 
Graphical representation of the basic reproduction number 𝑅0versus rate of aware infective immigrants 𝑝2 and 

keeping other parameters constant 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: This figure shows an increase in the rate of aware infective immigrants, 𝑝2, between 0 and 0.44, 

makes an increase in the reproduction number, 𝑅0 > 1 and tell us the disease persists. If the rate of aware 

𝛿2 

𝑅0 = 1 

𝑅0 

𝑅0 =
0.40956 + 0.903𝛿2

(0.13112 + 0.596𝛿2)
 

𝑅0 = 1 

𝑝1 

𝑅0 

𝑅0 =
0.42762

(0.16704 − 0.24𝑝1)
 

𝑝2 

𝑅0 = 1 

𝑅0 

𝑅0 =
0.60822 − 0.903𝑝2

(0.26224 − 0.596𝑝2)
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infective immigrants between 0.44 and 1.126971 makes an increase in the reproduction number with, 𝑅0 < 1 

and tell us the disease not persists. Whereas, the rate of aware infective immigrants greater than 1.126971, 

makes an increase in the reproduction number, 𝑅0 > 1, and tell us the disease persists. 

 

Rate of transmission of unaware infective to seropositive class𝒌𝟏 

Graphical representation of the basic reproduction number 𝑅0versus rate of transmission of unaware infective to 

seropositive class𝑘1  and keeping other parameters constant 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: This figure shows an increase in the rate of transmission of unaware infective to seropositive class, 𝑘1, 

between 0 and 1.28575, makes a decrease in the reproduction number, with 𝑅0 > 1 and tell us the disease 

persists. If the rate of transmission of unaware infective to seropositive class greater than 1.28575 makes a 

decrease in the reproduction number with, 𝑅0 < 1 and tell us the disease dies out. 

 

Rate of transmission of aware infective to seropositive class𝒌𝟐 

Graphical representation of the basic reproduction number 𝑅0versus rate of transmission of aware infective to 

seropositive class𝑘2   and keeping other parameters constant 

 

 
 
 
 
 
 
 
 
 
 

 

Figure 10: This figure shows an increase in the rate of transmission of aware infective to seropositive class, 𝑘2, 

makes a decrease in the reproduction number, with 𝑅0 > 1 and tell us the disease still persists.  

 

Rate of transmission of unaware infective to aware infective 𝜽 

Graphical representation of the basic reproduction number 𝑅0versus rate of transmission of unaware infective to 

aware infective 𝜃 and keeping other parameters constant 

 
 
 

𝑘1 

𝑅0 = 1 

𝑅0 

𝑅0 =
0.42762

(0.24𝑘1 + 0.11904)
 

𝑘2 

𝑅0 = 1 

𝑅0 

𝑅0 =
0.903𝑘2 + 0.06642

(0.596𝑘2 − 0.09536)
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Figure 11: This figure shows an increase in the rate of transmission of unaware infective to aware infective, 𝜃, 

then the reproduction number almost constant, with 𝑅0 > 1 and tell us the disease still persists with constant 

reproduction number(i.e approximately 2.9292 ). 

 

Rate of vertical transmission 𝝓 

Graphical representation of the basic reproduction number 𝑅0versus rate of vertical transmission 𝜙 and keeping 

other parameters constant 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 12: This figure shows an increase in the rate of vertical transmission, 𝜙, between 0 and  0.775 then the 

reproduction number also increases, with 𝑅0 > 1 and tell us the disease persists. 

 

Natural death rate 𝝁 

Graphical representation of the basic reproduction number 𝑅0versus natural death rate 𝜇and keeping other 

parameters constant 

 
 

 

 

 

 

 

 

 

 

 

Figure 13: This figure shows an increase in the natural death rate, 𝜇, between 0 and  0.58801 then the 

reproduction number decreases, with 𝑅0 > 1 and tell us the disease still persists. If the natural death rate is 

greater than 0.58801, then the reproduction number is decreases, with  𝑅0 < 1 and this tell us the disease dies 

out.  

 

V. Sensitivity analysis 
The parameter values and assumptions of any model are subject to change and error. Sensitivity 

analysis is the investigation of these potential changes & errors and their impacts on conclusions to be drawn 

from the model. Here we use it to discover parameters that have a high impact on reproduction number 𝑅0. We 

𝜙 

𝑅0 = 1 

𝑅0 
𝑅0 =

0.42762

(0.1488 −  0.192𝜙)
 

𝑅0 

𝑅0 = 1 

𝜇 

𝑅0 =
0.40956 + 0.903𝜇

(0.576 + 𝜇)(0.22 + 𝜇)
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calculate the normalized forward sensitivity index of a variable 𝑢 that depends differentiable on a parameter 𝑝 is 

defined by𝑆𝐼(𝑝) =
𝜕𝑢

𝜕𝑝
𝑋

𝑝

𝑢
. 

After some simplifications and numerical calculation we get values of sensitivity index for the important 

parameters mentioned by the table below: 

 
Parameter Sensitivity Index 

𝛽1 0.50512137 

𝛿1 −0.50335570 

𝛽2 0.49109022 

𝑝2 0.41099574 

𝑘2 −0.280622983 

𝑝1 0.16778523 

𝑘1 −0.16778523 

𝜃 0.09332127 

𝜇 −0.07465662 

𝛿2 −0.04109957 

𝜙 0.04026846 

𝜎 0.00378841 

Table 2: Sensitive indices 

 

VI. Results and Discussion 
Results from Numerical simulation show that as the probability of transmission of the disease from 

unaware infective and aware infective increases, the basic reproduction number increases. This will result in 

increasing on the transmission of HIV/AIDS.We can also observe that an increase in the rate of bloodborne 

transmission,𝜎, makes an increase in the reproduction number, 𝑅0. That is the disease always persists for any 

value of parameter𝜎. Moreover an increase in the rate of progress of unaware infective to AIDS, 𝛿1, between the 

parametric values 0 and 1.48575 makes a decrease in the reproduction number, 𝑅0, but the reproduction number 

is greater than one that indicates the disease persists. If the parameter value of 𝛿1 greater than 1.48575, then the 

reproduction number decreases and becomes less than one where the disease dies out.  

An increase in the rate of progress of aware infective to AIDS, 𝛿2, makes a decrease in the 

reproduction number, 𝑅0, but the reproduction number is greater than one that indicates the disease still persists. 

We also observed that an increase in the rate of unaware infective immigrants, 𝑝1, between 0 and 0.696, makes 

an increase in the reproduction number, 𝑅0 > 1 and tell us the disease persists. In addition to an increase in the 

rate of aware infective immigrants, 𝑝2, between 0 and 0.44, makes an increase in the reproduction number, 

𝑅0 > 1 and tell us the disease persists. If the rate of aware infective immigrants between 0.44 and 1.126971 

makes an increase in the reproduction number with, 𝑅0 < 1 and tell us the disease dies out. Whereas, the rate of 

aware infective immigrants greater than 1.126971, makes an increase in the reproduction number, 𝑅0 > 1, and 

tell us the disease persists. 

We can also observed that an increase in the rate of transmission of unaware infective to seropositive 

class, 𝑘1, between 0 and 1.28575, makes a decrease in the reproduction number, with 𝑅0 > 1 and tell us the 

disease persists. If the rate of transmission of unaware infective to seropositive class greater than 1.28575 makes 

a decrease in the reproduction number with, 𝑅0 < 1 and tell us the disease dies out.An increase in the rate of 

transmission of aware infective to seropositive class, 𝑘2, makes a decrease in the reproduction number, with 

𝑅0 > 1 and tell us the disease still persists,we also observed that an increase in the rate of transmission of 

unaware infective to aware infective, 𝜃, then the reproduction number almost constant, with 𝑅0 > 1 and tell us 

the disease still persists with constant reproduction number(i.e approximately 2.9292 ). Whereas an increase in 

the rate of vertical transmission, 𝜙, between 0 and  0.775 then the reproduction number also increases, with 

𝑅0 > 1 and tell us the disease persists. Moreover we can also observed that an increase in the natural death rate, 

𝜇, between 0 and  0.58801 then the reproduction number decreases, with 𝑅0 > 1 and tell us the disease still 

persists. If the natural death rate is greater than 0.58801, then the reproduction number is decreases, with  

𝑅0 < 1 and this tell us the disease dies out. 

From sensitive analysis we observed that the most sensitive parameter is the probability of the disease 

transmits to susceptible people by unaware infective humans, 𝛽1 and the least sensitive parameter is the rate of 

transmission through bloodborne, 𝜎. The indices having positive signs increase the value of 𝑅0as one increase 

them and those having negative signs decrease the value of 𝑅0, when they are increased. 

 

VII. Conclusion 
In this paper, we proposed an improvement of the model 

[25]
 that is to show the effect of unaware 

infective immigrants, aware infective immigrants, vertical and bloodborne transmission and treatment on the 

dynamics of HIV/AIDS. A non-linear differential equation was formulated to represent the model. The stability 
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analysis on the model shows that the disease frees equilibrium point 𝐸0 is shown to be locally asymptotically 

stable and globally asymptotically stable when 𝑅0 < 1and the positive endemic equilibrium point 𝐸∗ is shown 

to be locally asymptotically stable and globally asymptotically stable 𝑍 < 𝑌. Results from Numerical simulation 

show that as the probability of transmission of the disease to susceptible individuals by unaware and aware 

infective individuals increases, the basic reproduction number also increases. This will result in increasing on 

the transmission of HIV/AIDS. A sensitivity analysis of the basic reproduction number indicates that 

transmission probability, the rate of progress to AIDS and the rate of aware infective immigrants‟ are the most 

sensitive parameters that can be used to control the spread of the disease.  

 

VIII. Recommendation 
From the above results and discussion we would like to recommend the following to control the spread 

of HIV/AIDS: keep the rate of progress of unaware infective to AIDS, 𝛿1, greater than 1.48575, where the 

reproduction number is less than one, keep the rate of aware infective immigrants between 0.44 and 1.126971, 

keep the rate of transmission of unaware infective to seropositive class greater than 1.28575,keep the natural 

death rate greater than 0.58801 and The most sensitive parameters like transmission probability, the rate of 

progress to AIDS and the rate of aware infective immigrants‟, these parameters are those that should be targeted 

most by policymakers in the fight against the disease,. 
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