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Abstract: In this Paper studies the existence of solution for a fractional order nonlinear quadratic differential 

equation with initial value condition in banach algebras. Moreover; we show that solutions of this equation are 
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I.Introduction 
Fractional differential equations arise in many engineering and scientific disciplines as the 

mathematical modelling of systems and processes in the fields of physics, chemistry, aerodynamics, 

electrodynamics of complex medium etc. involves derivatives of fractional order [1,5,10]. Recently, many 

authors have studied fractional Order differential equations from two aspects, one is the theoretical aspects of 

existence and uniqueness of solutions, the other is the analytic and numerical methods for finding solutions. 

Fractional differential equations also serve as an excellent tool for the description of hereditary properties of 

various materials and processes. In consequence, the subject of fractional differential equations is gaining more 

and more attention. For some recent development on the topic, see [3,7, 11] and the references therein. 

Nonlinear differential equation of fractional order plays an important role in branch of nonlinear analysis and 

their applications. There are different methods for dealing with the nonlinear differential equations.  

As fixed point theory constitutes an important and core part of the subject of nonlinear analysis. The 

fixed point method is powerful technique that I have used for the existence the solution of fractional order 

nonlinear differential equation. This method has been shown to effectively, easily and accurately to solve a large 

class of nonlinear problems. At present there are several fixed point theorems which are useful in applications to 

nonlinear differential and integral equations. The selection of the fixed point theorem depends upon the given 

data. 

We consider the following Fractional Order Nonlinear Quadratic Differential Equation (FNQDE) with Initial 

Conditions: 

 
𝔇𝜉  

𝓍 𝑡 

𝑓 𝑡,𝓍 𝑡  
 + 𝜆  

𝓍 𝑡 

𝑓 𝑡,𝓍 𝑡  
 = 𝑔 𝑡, 𝓍 𝑡  , 𝑡 ∈ ℝ+

𝓍 𝑡0 = 𝓍0 ∈ ℝ

𝑓 𝑡0, 𝓍 𝑡0  = 𝑓 𝑡0, 𝓍0 ∈ ℝ  
 

 

 (1.1) 

for 𝜆 > 0 ∈ ℝ, 𝜉 ∈  0,1  

Where,𝑓: ℝ+ × ℝ → ℝ −  0  and 𝑔: ℝ+ × ℝ → ℝ are continuous functions. 

By a solution of Fractional Order Nonlinear Quadratic Differential Equation (1.1) we mean a function 𝓍 ∈
𝒞(ℝ+, ℝ)such that: 

(i) The function  𝑡 →  
𝓍 𝑡 

𝑓 𝑡,𝓍 𝑡  
   is continuous for each𝓍 ∈ ℝ. 

(ii) 𝓍 satisfies (1.1) 

 

II. Preliminaries 
In this section we give the definitions, notation, hypothesis and preliminary tools, which will be used in the 

sequel. 

Let  𝕏 = 𝒞(ℝ+, ℝ)  be the space of continuous real valued function on ℝ+  and Ω be a subset of 𝕏. Let a 

mapping 𝔸: 𝕏 → 𝕏 be an operator and consider the following operator equation in   𝕏, namely, 

𝓍 𝑡 =  𝔸𝓍  𝑡 , for all  𝑡 ∈ ℝ+  (2.1)                                                                                      
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 Below we give some different characterization of the solutions for operator equation (2.1)  onℝ+. We need the 

following definitions. 

Definition 2.1 [8]: We say that solution of the equation (2.1) are locally attractive if there exists a closed ball  

𝐵𝓇(0) in the space 𝒜𝒞 ℝ+, ℝ and for some real number 𝑟 > 0 such that for arbitrary solution 𝓍 = 𝓍 𝑡  and 

𝓎 = 𝓎(𝑡) of equation (2.1) belonging to 𝐵𝓇(0) ∩ Ω we have that  

   lim𝑡→∞ 𝓍 𝑡 − 𝓎 𝑡  = 0  (2.2)                     

Definition 2.2[6]: Let 𝕏  be a Banach space. A mapping 𝔸: 𝕏 → 𝕏 is called Lipschitz if there is a constant 

𝛼 > 0 such that, 𝔸𝓍 − 𝔸𝓎 ≤ 𝛼 𝓍 − 𝓎 for all 𝓍, 𝓎 ∈ 𝕏. If𝛼 < 1, then 𝔸 is called a contraction on 𝕏 with the 

contraction constant𝛼. 

Definition 2.3 [4]: An operator ℚ on a Banach space 𝕏 into itself is called compact if for any bounded subset 

𝑆of 𝕏, ℚ(𝑆) is relatively compact subset of 𝕏. If ℚ is continuous and compact, then it is called completely 

continuous on 𝕏. 

Definition 2.4[6]:(Dugunji and Granas) Let𝕏 be a Banach space with the norm  ∙  and let ℚ: 𝕏 → 𝕏, be an 

operator (in general nonlinear). Then ℚ is called 

i. Compact if ℚ(𝑋) is relatively compact subset of 𝕏. 

ii. Totally compact if ℚ(𝑆) is totally bounded subset of 𝕏 for any bounded subset 𝑆of 𝕏. 

iii. Completely continuous if it is continuous and totally bounded operator on  𝕏. 

It is clear that every compact operator is totally bounded but the converse need not be true. 

We recall the basic definitions of fractional calculus which are useful in what follows. 

Definition 2.5 [9]: The Riemann – Liouville fractional derivative of order 𝜉 > 0, 𝑛 − 1 < 𝜉 < 𝑛, 𝑛 ∈ 𝒩  with 

lower limit zero for a function 𝑓 is defined as 𝔇𝜉𝑓 𝑡 =
1

𝛤(1−𝜉)

𝑑

𝑑𝑡
 

𝑓(𝑠)

 𝑡−𝑠 𝜉
𝑑𝑠     , 𝑡 > 0

𝑡

0
 

Such that 𝔇−𝜉𝑓 𝑡 = 𝐼𝜉𝑓 𝑡 =
1

𝛤(𝜉)
 

𝑓(𝑠)

 𝑡−𝑠 1−𝜉 𝑑𝑠
𝑡

0
respectively. 

Definition 2.6[8]: The Riemann-Liouville fractional integral of order 𝜉 > 0, 𝑛 − 1 < 𝜉 < 𝑛, 𝑛 ∈ 𝒩 with lower 

limit zero for a function 𝑓 is defined by the formula:                    𝐼𝜉𝑓 𝑡 =
1

𝛤(𝜉)
 

𝑓(𝑠)

 𝑡−𝑠 1−𝜉 𝑑𝑠 ,    𝑡 > 0
𝑡

0
 

where Γ(𝜉) denote the Euler gamma function. The Riemann-Liouville fractional derivative operator of order 𝜉  

defined by 𝔇𝜉 =
𝑑𝜉

𝑑𝑡 𝜉 =
𝑑

𝑑𝑡
°𝐼1−𝜉 . 

Theorem 2.1[6]: (Arzela-Ascoli Theorem) If every uniformly bounded and equicontinuous sequence  𝑓𝓃  of 

functions in𝒞(ℝ+, ℝ), then it has a convergent subsequence. 

Theorem 2.2[6]: A metric space X is compact iff every sequence in X has a convergent subsequence. 

We employ a new hybrid fixed pint theorem proved by Dhage [2] which is the main tool in the existence 

theorem of solutions of FNQDE.  

Theorem 2.3[2]: Let 𝑆  be a non-empty, bounded and closed-convex subset of the Banach space 𝕏 and let 

𝔸: 𝕏 → 𝕏 and 𝔹: 𝑆 → 𝕏 are two operators satisfying: 

a) 𝔸 is Lipschitz with a lipschitz constant 𝛼, 

b) 𝔹 is completely continuous, and 

c) 𝔸𝓍𝔹𝓍 ∈ 𝑆 for all 𝓍 ∈ 𝑆, and 

d) 𝛼𝑀 < 1where𝑀 =  𝔹(𝑆) : sup⁡{ 𝔹𝓍 : 𝓍 ∈ 𝑆}.Then the operator equation 𝔸𝓍𝔹𝓍 = 𝓍 has a solution 

in𝑆. 

Existence Theory: 

We seek the solution of (2.1) in the space 𝒞(ℝ+, ℝ) of continuous and real – valued function defined on ℝ+ . 

Define a standard norm  ∙  and a multiplication “ ∙ ” in 𝒞(ℝ+, ℝ) by, 

 𝓍 = 𝑠𝑢𝑝  𝓍(𝑡) : 𝑡 ∈ ℝ+ ,    𝑥𝑦  𝑡 = 𝓍 𝑡 𝓎 𝑡 ,   𝑡 ∈ ℝ+ 

Clearly, 𝒞 ℝ+, ℝ  becomes a Banach space with respect to the above norm and the multiplication in it. 

Definition 3.1[6]: A mapping 𝑔: ℝ+ × ℝ → ℝ is Caratheodory if: 

i) 𝑡 → 𝑔 𝑡, 𝓍  is measurable for each 𝓍 ∈ ℝ and 

ii)  𝓍 → 𝑔 𝑡, 𝓍,  is continuous almost everywhere for 𝑡 ∈ ℝ+. 

Furthermore a Caratheodory function 𝑔 is ℒ1 −Caratheodory if: 

iii) For each real number 𝑟 > 0  there exists a function 𝒽𝑟 ∈ ℒ1 ℝ+, ℝ  such 

that 𝑔 𝑡, 𝓍  ≤ 𝒽𝑟 𝑡 𝑎. 𝑒.   𝑡 ∈ ℝ+ for all 𝑥 ∈ ℝ with  𝓍 𝑟 ≤ 𝑟. 
Finally a caratheodory function 𝑔 is ℒ𝕏

1 −caratheodory if: 

iv) There exists a function 𝒽 ∈ ℒ1 ℝ+, ℝ  such that  𝑔 𝑡, 𝓍  ≤ 𝒽 𝑡 ,    𝑎. 𝑒.   𝑡 ∈ ℝ+  for all 𝓍 ∈ ℝ 

For convenience, the function 𝒽 is referred to as a bound function for 𝑔. 
Lemma 3.1: Suppose that 𝜉 ∈  0,1  and the function  𝑓, 𝑔 satisfying FNQDE (1.1). Then 𝓍  is the solution of 

the FNQDE (1.1) if and only if it is the solution of integral equation 

𝓍 𝑡 = 𝑓 𝑡, 𝓍 𝑡   
𝓍0

𝑓 𝑡0 ,𝓍0 
−

𝜆

Γ 𝜉 
 

𝓍 𝑠 

𝑓 𝑠,𝓍 𝑠   𝑡−𝑠 1−𝜉 𝑑𝑠
𝑡

𝑡0
+

1

Γ 𝜉 
 

𝑔 𝑠,𝓍 𝑠  

 𝑡−𝑠 1−𝜉 𝑑𝑠
𝑡

𝑡0
 (3.1) 
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for all 𝑡 ∈ ℝ+ 

Proof: Integrating equation (1.1) of fractional order 𝜉w.r.to, we get,     

𝔇𝜉 𝐼𝜉  
𝓍 𝑡 

𝑓 𝑡, 𝓍 𝑡  
 + 𝜆𝐼𝜉  

𝓍 𝑡 

𝑓 𝑡, 𝓍 𝑡  
 = 𝐼𝜉  𝑔 𝑡, 𝓍 𝑡    

 
𝓍 𝑡 

𝑓 𝑡, 𝓍 𝑡  
 
𝑡0

𝑡

+ 𝜆𝐼𝜉  
𝓍 𝑡 

𝑓 𝑡, 𝓍 𝑡  
 = 𝐼𝜉  𝑔 𝑡, 𝓍 𝑡    

𝓍 𝑡 

𝑓 𝑡, 𝓍 𝑡  
−

𝓍 𝑡0 

𝑓 𝑡0, 𝓍 𝑡0  
+

𝜆

𝛤 𝜉 
 

𝓍 𝑠 

𝑓 𝑠, 𝓍 𝑠  
 𝑡 − 𝑠 𝜉−1𝑑𝑠 =

1

𝛤 𝜉 

𝑡

𝑡0

 𝑔 𝑠, 𝓍 𝑠  
𝑡

𝑡0

 𝑡 − 𝑠 𝜉−1𝑑𝑠 

𝓍 𝑡 = 𝑓 𝑡, 𝓍 𝑡   
𝓍 𝑡0 

𝑓 𝑡0, 𝓍 𝑡0  
−

𝜆

𝛤 𝜉 
 

𝓍 𝑠 

𝑓 𝑠, 𝓍 𝑠  
 𝑡 − 𝑠 𝜉−1𝑑𝑠 +

1

𝛤 𝜉 

𝑡

𝑡0

 
𝑔 𝑠, 𝓍 𝑠  

 𝑡 − 𝑠 1−𝜉

𝑡

𝑡0

𝑑𝑠  

Since  𝓍 𝑡0 = 𝓍0 ∈ ℝ and 𝑓 𝑡0, 𝓍 𝑡0  = 𝑓 𝑡0, 𝓍0 ∈ ℝ 

Conversely differentiate (3.1) of order 𝜉w.r.to 𝑡, we get, 

𝔇𝜉  
𝓍 𝑡 

𝑓 𝑡, 𝓍 𝑡  
 = 𝔇𝜉  

𝓍 𝑡0 

𝑓 𝑡0, 𝓍 𝑡0  
−

𝜆

𝛤 𝜉 
 

𝓍 𝑠 

𝑓 𝑠, 𝓍 𝑠  
 𝑡 − 𝑠 𝜉−1𝑑𝑠 +

1

𝛤 𝜉 

𝑡

𝑡0

 
𝑔 𝑠, 𝓍 𝑠  

 𝑡 − 𝑠 1−𝜉

𝑡

𝑡0

𝑑𝑠  

𝔇𝜉  
𝓍 𝑡 

𝑓 𝑡, 𝓍 𝑡  
 = 𝔇𝜉  

𝓍 𝑡0 

𝑓 𝑡0, 𝓍 𝑡0  
 − 𝜆𝔇𝜉 𝐼𝜉  

𝓍 𝑡 

𝑓 𝑡, 𝓍 𝑡  
 + 𝔇𝜉 𝐼𝜉  𝑔 𝑡, 𝓍 𝑡    

𝔇𝜉  
𝓍 𝑡 

𝑓 𝑡, 𝓍 𝑡  
 = 0 − 𝜆  

𝓍 𝑡 

𝑓 𝑡, 𝓍 𝑡  
 +  𝑔 𝑡, 𝓍 𝑡    

𝔇𝜉  
𝓍 𝑡 

𝑓 𝑡, 𝓍 𝑡  
 + 𝜆  

𝓍 𝑡 

𝑓 𝑡, 𝓍 𝑡  
 =  𝑔 𝑡, 𝓍 𝑡    

We need following hypothesis for existence the solution of fractional order nonlinear quadratic differential 

equation (FNQDE) (1.1). 

( 𝓗𝟏 ) The function 𝑓: ℝ+ × ℝ → ℝ −  0  is continuous and bounded with bound 

𝔽 = 𝑠𝑢𝑝 𝑡,𝓍 𝑡  ∈ℝ+×ℝ 𝑓 𝑡, 𝓍 𝑡   .There exist a bounded function 𝛼: ℝ+ → ℝ  with bound   𝛼  satisfying: 

 𝑓 𝑡, 𝓍 𝑡  − 𝑓 𝑡, 𝓎 𝑡   ≤ 𝛼 𝑡  𝓍 𝑡 − 𝓎 𝑡   for all 𝓍, 𝓎 ∈ ℝ. 

 (𝓗𝟐) The function 𝑔 𝑡, 𝓍 = 𝑔: ℝ+ × ℝ → ℝ is satisfying caratheodory condition with continuous function 

𝑕 𝑡 : ℝ+ → ℝ such that 𝑔 𝑡, 𝓍 ≤ 𝑕 𝑡 ∀𝑡 ∈ ℝ+  and  𝓍 ∈ ℝ. 
( 𝓗𝟑 ) The function 𝑓: ℝ+ × ℝ → ℝ −  0  is satisfying caratheodory condition with continuous function 

𝕡 𝑡 : ℝ+ → ℝ such that 
𝓍 𝑡 

𝑓 𝑡,𝓍 𝑡  
≤ 𝕡 𝑡 , ∀𝑡 ∈ ℝ+  and  𝓍 ∈ ℝ. 

(𝓗𝟒) The function 𝓊, 𝑣: ℝ+ → ℝ defined by the formulas 𝓊 𝑡 =  
𝕡 𝑠 

 𝑡−𝑠 1−𝜉 𝑑𝑠
𝑡

0
 and  𝑣 𝑡 =  

𝑕 𝑠 

 𝑡−𝑠 1−𝜉 𝑑𝑠
𝑡

0
 is 

bounded on ℝ+ and the functions 𝕡 𝑡 , 𝓊 𝑡 𝑎𝑛𝑑𝑣 𝑡  vanish at infinity. 

Remark 3.1: Note that the  ℋ1  and  ℋ4  hold, then there exists a constant 𝐾1 , 𝐾2 > 0  such that  𝐾1 =

sup⁡ 
𝜆𝓊 𝑡 

𝛤 𝜉 
: 𝑡 ∈ ℝ+  and 𝐾2 = sup⁡ 

𝑣 𝑡 

𝛤 𝜉 
: 𝑡 ∈ ℝ+  for all 𝑡 ∈ ℝ+ and 𝕡 + 𝐾1 + 𝐾2 = 𝕂 say. 

Main Result: 
In this section we consider the FNQDE (1.1). The above hybrid fixed point theorem for three operators in 

Banach algebras 𝕏,  due to B.C.Dhage [2] will be used to prove existence the solution for given equation (1.1). 

Theorem 4.1: Assume that conditions (ℋ1) − (ℋ4)  hold. Further if 𝔽𝕂 < 𝓇 and𝕂𝐾1 < 1, where 𝕂 and 𝐾1 is 

defined in remark (3.1). Then FNQDE (1.1) has a solution in the space𝒞(ℝ+, ℝ), moreover solution of (1.1) are 

locally attractive on ℝ+. 
Proof: By a solution of FNQDE (1.1) we mean a continuous function  𝕏: ℝ+ → ℝ that satisfies FNQDE (1.1) 

on  ℝ+. Set 𝕏 = 𝒞 ℝ+, ℝ  and define a subset 𝑆 of𝕏as  𝑆 =  𝓍 ∈ 𝕏:  𝓍 ≤ 𝓇 . Where𝓇satisfies the inequality, 

𝔽𝕂 ≤ 𝓇. 
Let 𝕏 = 𝒞(ℝ+, ℝ) be a Banach Algebra of all continuous real-valued function on ℝ+ with the norm, 

 𝑥 = 𝑠𝑢𝑝 𝑥 𝑡  , 𝑡 ∈ ℝ+                                                                                   (4.1) 

We shall obtain the solution of FNQDE (1.1) under some suitable conditions involved in (1.1) 

Now the FNQDE (1.1) is equivalent to the FNQIE (3.1) 

Let us define the two mappings 𝔸: 𝕏 → 𝕏and𝔹: 𝑆 → 𝕏 by, 

𝔸𝑥 𝑡 =  𝑓 𝑡, 𝓍 𝑡  , 𝑡 ∈ ℝ+ (4.2)                                    

𝔹𝑥 𝑡 =
𝓍 𝑡0 

𝑓 𝑡0 ,𝓍 𝑡0  
−

𝜆

𝛤 𝜉 
 

𝓍 𝑠 

𝑓 𝑠,𝓍 𝑠  
 𝑡 − 𝑠 𝜉−1𝑑𝑠 +

1

𝛤 𝜉 

𝑡

𝑡0
 

𝑔 𝑠,𝓍 𝑠  

 𝑡−𝑠 1−𝜉

𝑡

𝑡0
𝑑𝑠, 𝑡 ∈ ℝ+  (4.3)                                              

Thus from the FNQDE (1.1) we obtain the operator equation as follows: 

𝓍 𝑡 = 𝔸𝓍 𝑡 𝔹𝓍 𝑡 , 𝑡 ∈ ℝ+ (4.4) 
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If the operator 𝔸 and 𝔹 satisfy all the hypothesis of theorem (2.3), then the operator equation (4.4) has a solution 

on  𝑆. 

Step I: Firstly we show that 𝔸 is Lipschitz on  𝑆 . Let 𝓍, 𝓎 ∈ 𝐵𝓇(0); then by  ℋ1 ,  

 𝔸𝓍 𝑡 − 𝔸𝓎 𝑡  ≤  𝑓 𝑡, 𝓍 𝑡  − 𝑓 𝑡, 𝓎 𝑡    

≤ 𝛼 𝑡  𝓍 𝑡 − 𝓎 𝑡   
≤ 𝛼 𝑡  𝓍 𝑡 − 𝓎 𝑡  for all 𝑡 ∈ ℝ+, 𝓍, 𝓎 ∈ 𝑆 

Taking suprimum over  𝑡 we get, 

 𝔸𝓍 − 𝔸𝓎 ≤  𝛼  𝓍 − 𝓎 for all 𝓍, 𝓎 ∈ 𝑆 

Thus, 𝔸 is Lipchitz on 𝑆 with Lipschitz constant 𝛼 . 
Step II: To show the operator𝔹 is completely continuous on𝕏. Let  𝓍𝓃  be a sequence in S converging to a 

point 𝓍 . Then by lebesgue dominated convergence theorem for all 𝑡 ∈ ℝ+, we obtain 
lim𝑛→∞ 𝔹𝓍𝑛 𝑡  

 

= lim𝑛→∞  
𝓍𝑛 𝑡0 

𝑓 𝑡0, 𝓍𝑛 𝑡0  
−

𝜆

𝛤 𝜉 
 

𝓍𝑛 𝑠 

𝑓 𝑠, 𝓍𝑛 𝑠  
 𝑡 − 𝑠 𝜉−1𝑑𝑠 +

1

𝛤 𝜉 

𝑡

𝑡0

 
𝑔 𝑠, 𝓍𝑛 𝑠  

 𝑡 − 𝑠 1−𝜉

𝑡

𝑡0

𝑑𝑠  

=
𝓍 𝑡0 

𝑓 𝑡0, 𝓍 𝑡0  
−

𝜆

𝛤 𝜉 
 

𝓍 𝑠 

𝑓 𝑠, 𝓍 𝑠  
 𝑡 − 𝑠 𝜉−1𝑑𝑠 +

1

𝛤 𝜉 

𝑡

𝑡0

 
𝑔 𝑠, 𝓍 𝑠  

 𝑡 − 𝑠 1−𝜉

𝑡

𝑡0

𝑑𝑠 

= 𝔹𝓍 𝑡 , ∀𝑡 ∈ ℝ+ 

This shows that 𝔹 is continuous on 𝑆. 
Next we will prove that the set 𝔹(𝑆) is uniformly bounded in𝑆, for any𝑥 ∈ 𝑆,  

we have, 

 𝔹𝓍 𝑡  =  
𝓍 𝑡0 

𝑓 𝑡0, 𝓍 𝑡0  
−

𝜆

𝛤 𝜉 
 

𝓍 𝑠 

𝑓 𝑠, 𝓍 𝑠  
 𝑡 − 𝑠 𝜉−1𝑑𝑠 +

1

𝛤 𝜉 

𝑡

𝑡0

 
𝑔 𝑠, 𝓍 𝑠  

 𝑡 − 𝑠 1−𝜉

𝑡

𝑡0

𝑑𝑠  

≤  
𝓍 𝑡0 

𝑓 𝑡0, 𝓍 𝑡0  
 +  −

𝜆

𝛤 𝜉 
 

𝓍 𝑠 

𝑓 𝑠, 𝓍 𝑠  
 𝑡 − 𝑠 𝜉−1𝑑𝑠

𝑡

𝑡0

 +  
1

𝛤 𝜉 
 

𝑔 𝑠, 𝓍 𝑠  

 𝑡 − 𝑠 1−𝜉

𝑡

𝑡0

𝑑𝑠  

≤ 𝕡0 +
𝜆

𝛤 𝜉 
  

𝓍 𝑠 

𝑓 𝑠, 𝓍 𝑠  
  𝑡 − 𝑠 𝜉−1𝑑𝑠

𝑡

𝑡0

+
1

𝛤 𝜉 
 

 𝑔 𝑠, 𝓍 𝑠   

 𝑡 − 𝑠 1−𝜉

𝑡

𝑡0

𝑑𝑠 

≤ 𝕡0 +
𝜆

𝛤 𝜉 
 

𝕡 𝑠 

 𝑡 − 𝑠 1−𝜉
𝑑𝑠

𝑡

𝑡0

+
1

𝛤 𝜉 
 

𝑕 𝑠 

 𝑡 − 𝑠 1−𝜉

𝑡

𝑡0

𝑑𝑠 

Taking supremum over t, we obtain 

 𝔹𝓍 ≤ 𝕡0 +
𝜆𝓊 𝑡 

Γ 𝜉 
+

𝓋 𝑡 

Γ 𝜉 
≤ 𝕡 + 𝐾1 + 𝐾2 = 𝕂say. 

Therefore 𝔹𝓍 ≤ 𝕂, which shows that 𝔹 is uniformly bounded on 𝑆. 

Now we will show that𝔹(S) is equicontinuous set in𝕏. Let 𝑡1, 𝑡2 ∈ ℝ+ with 𝑡2 > 𝑡1and 𝓍 ∈ 𝑆, then we have 

 𝔹𝑥 𝑡2 − 𝔹𝑥 𝑡1   

=
 
 

 
𝓍 𝑡0 

𝑓 𝑡0, 𝓍 𝑡0  
−

𝜆

𝛤 𝜉 
 

𝓍 𝑠 

𝑓 𝑠, 𝓍 𝑠  
 𝑡2 − 𝑠 𝜉−1𝑑𝑠 +

1

𝛤 𝜉 

𝑡2

𝑡0

 
𝑔 𝑠, 𝓍 𝑠  

 𝑡2 − 𝑠 1−𝜉

𝑡2

𝑡0

𝑑𝑠 

− 
𝓍 𝑡0 

𝑓 𝑡0, 𝓍 𝑡0  
−

𝜆

𝛤 𝜉 
 

𝓍 𝑠 

𝑓 𝑠, 𝓍 𝑠  
 𝑡1 − 𝑠 𝜉−1𝑑𝑠 +

1

𝛤 𝜉 

𝑡1

𝑡0

 
𝑔 𝑠, 𝓍 𝑠  

 𝑡1 − 𝑠 1−𝜉

𝑡1

𝑡0

𝑑𝑠 
 
 
 

≤  
𝓍 𝑡0 

𝑓 𝑡0, 𝓍 𝑡0  
−

𝓍 𝑡0 

𝑓 𝑡0, 𝓍 𝑡0  
 +  

 

𝜆

𝛤 𝜉 
 

𝓍 𝑠 

𝑓 𝑠, 𝓍 𝑠  
 𝑡2 − 𝑠 𝜉−1𝑑𝑠

𝑡2

𝑡0

−
𝜆

𝛤 𝜉 
 

𝓍 𝑠 

𝑓 𝑠, 𝓍 𝑠  
 𝑡1 − 𝑠 𝜉−1𝑑𝑠

𝑡1

𝑡0

 
 
 

 + 
1

𝛤 𝜉 
 

𝑔 𝑠,𝓍 𝑠  

 𝑡2−𝑠 1−𝜉

𝑡2

𝑡0
𝑑𝑠 −

1

𝛤 𝜉 
 

𝑔 𝑠,𝓍 𝑠  

 𝑡1−𝑠 1−𝜉

𝑡1

𝑡0
𝑑𝑠  

≤
𝜆

𝛤 𝜉 
  𝕡 𝑠  𝑡2 − 𝑠 𝜉−1𝑑𝑠

𝑡2

𝑡0

−  𝕡 𝑠  𝑡1 − 𝑠 𝜉−1𝑑𝑠
𝑡1

𝑡0

  

+
1

𝛤 𝜉 
  𝑕 𝑠  𝑡2 − 𝑠 𝜉−1𝑑𝑠

𝑡2

𝑡0

−  𝑕 𝑠  𝑡1 − 𝑠 𝜉−1𝑑𝑠
𝑡1

𝑡0
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≤
𝜆

𝛤 𝜉 
 𝕡 ℒ1  

 
  𝑡2 − 𝑠 𝜉−1𝑑𝑠 −   𝑡1 − 𝑠 𝜉−1𝑑𝑠

𝑡2

𝑡0

𝑡2

𝑡0

+   𝑡1 − 𝑠 𝜉−1𝑑𝑠
𝑡2

𝑡0

−   𝑡1 − 𝑠 𝜉−1𝑑𝑠
𝑡1

𝑡0

 
 
 

+
 𝑕 ℒ1

𝛤 𝜉  
 

  𝑡2 − 𝑠 𝜉−1𝑑𝑠 −   𝑡1 − 𝑠 𝜉−1𝑑𝑠
𝑡2

𝑡0

𝑡2

𝑡0

+   𝑡1 − 𝑠 𝜉−1𝑑𝑠
𝑡2

𝑡0

−   𝑡1 − 𝑠 𝜉−1𝑑𝑠
𝑡1

𝑡0

 
 
 

≤
𝜆

𝛤 𝜉 
 𝕡 ℒ1

 
 
 

 
     𝑡2 − 𝑠 𝜉−1 −  𝑡1 − 𝑠 𝜉−1 𝑑𝑠

𝑡2

𝑡0

 

+    𝑡1 − 𝑠 𝜉−1𝑑𝑠
𝑡2

𝑡1

 
 
 
 

 
 

+
 𝑕 ℒ1

𝛤 𝜉 

 
 
 

 
     𝑡2 − 𝑠 𝜉−1 −  𝑡1 − 𝑠 𝜉−1 𝑑𝑠

𝑡2

𝑡0

 

+    𝑡1 − 𝑠 𝜉−1𝑑𝑠
𝑡2

𝑡1

 
 
 
 

 
 

 

≤
𝜆

𝛤 𝜉 
 𝕡 ℒ1    

 𝑡2 − 𝑠 𝜉

−𝜉
 
𝑡0

𝑡2

−  
 𝑡1 − 𝑠 𝜉

−𝜉
 
𝑡0

𝑡2

 +   
 𝑡1 − 𝑠 𝜉

−𝜉
 
𝑡1

𝑡2

  

+
 𝑕 ℒ1

𝛤 𝜉 
   

 𝑡2 − 𝑠 𝜉

−𝜉
 
𝑡0

𝑡2

−  
 𝑡1 − 𝑠 𝜉

−𝜉
 
𝑡0

𝑡2

 +   
 𝑡1 − 𝑠 𝜉

−𝜉
 
𝑡1

𝑡2

   

≤
𝜆

𝛤 𝜉 + 1 
 𝕡 ℒ1  

 
−  𝑡2 − 𝑡2 

𝜉 −  𝑡2 − 𝑡0 
𝜉  +

  𝑡1 − 𝑡2 
𝜉 −  𝑡1 − 𝑡0 

𝜉  
 +

 −  𝑡1 − 𝑡2 
𝜉 −  𝑡1 − 𝑡1 

𝜉   

 +
 𝑕 ℒ1

𝛤 𝜉 + 1 
 
 
−  𝑡2 − 𝑡2 

𝜉 −  𝑡2 − 𝑡0 
𝜉  +

  𝑡1 − 𝑡2 
𝜉 −  𝑡1 − 𝑡0 

𝜉  
 +

 −  𝑡1 − 𝑡2 
𝜉 −  𝑡1 − 𝑡1 

𝜉   

  

≤  
𝜆

𝛤 𝜉 + 1 
 𝕡 ℒ1 +

 𝑕 ℒ1

𝛤 𝜉 + 1 
    𝑡2 − 𝑡0 

𝜉 −  𝑡1 − 𝑡0 
𝜉    

→ 0 as  𝑡1 → 𝑡2, ∀𝓃 ∈ 𝒩. 
Implies 𝔹 is equicontinuous. 

Therefore by Arzela- Ascoli theorem that 𝔹 is completely continuous operator on 𝑆. 

Step III: To show  𝓍 = 𝔸𝓍𝔹𝓎 ⟹ 𝓍 ∈ 𝑆, ∀𝓎 ∈ 𝑆 

Let 𝓍 ∈ 𝕏, and 𝓎 ∈ 𝑆 such that  𝓍 = 𝔸𝓍𝔹𝓍 

 By assumptions (ℋ1, ℋ2, ℋ3) 

 𝓍 𝑡  =  𝔸𝓍 𝑡 𝔹𝓍 𝑡   
≤  𝔸𝓍 𝑡   𝔹𝓍 𝑡   

≤  𝑓 𝑡, 𝓍 𝑡    
𝓍 𝑡0 

𝑓 𝑡0, 𝓍 𝑡0  
−

𝜆

𝛤 𝜉 
 

𝓍 𝑠 

𝑓 𝑠, 𝓍 𝑠  
 𝑡 − 𝑠 𝜉−1𝑑𝑠 +

1

𝛤 𝜉 

𝑡

𝑡0

 
𝑔 𝑠, 𝓍 𝑠  

 𝑡 − 𝑠 1−𝜉

𝑡

𝑡0

𝑑𝑠  

≤ 𝔽  
𝓍 𝑡0 

𝑓 𝑡0, 𝓍 𝑡0  
 +  −

𝜆

𝛤 𝜉 
 

𝓍 𝑠 

𝑓 𝑠, 𝓍 𝑠  
 𝑡 − 𝑠 𝜉−1𝑑𝑠

𝑡

𝑡0

 +  
1

𝛤 𝜉 
 

𝑔 𝑠, 𝓍 𝑠  

 𝑡 − 𝑠 1−𝜉

𝑡

𝑡0

𝑑𝑠   

≤ 𝔽 𝕡0 +
𝜆

𝛤 𝜉 
  

𝓍 𝑠 

𝑓 𝑠, 𝓍 𝑠  
  𝑡 − 𝑠 𝜉−1𝑑𝑠

𝑡

𝑡0

+
1

𝛤 𝜉 
 

 𝑔 𝑠, 𝓍 𝑠   

 𝑡 − 𝑠 1−𝜉

𝑡

𝑡0

𝑑𝑠  

≤ 𝔽 𝕡0 +
𝜆

𝛤 𝜉 
 

𝕡 𝑠 

 𝑡 − 𝑠 1−𝜉
𝑑𝑠

𝑡

𝑡0

+
1

𝛤 𝜉 
 

𝑕 𝑠 

 𝑡 − 𝑠 1−𝜉

𝑡

𝑡0

𝑑𝑠  

Taking supremum over t, we obtain 

≤ 𝔽 𝕡0 +
𝜆𝓊 𝑡 

Γ 𝜉 
+

𝓋 𝑡 

Γ 𝜉 
 ≤ 𝔽 𝕡0 + 𝐾1 + 𝐾2 = 𝔽𝕂 ≤ 𝓇 

Therefore 𝓍 ≤ 𝔽𝕂 ≤ 𝓇,  

That is we have,   𝓍 =  𝔸𝓍𝔹𝓍 ≤ 𝓇, ∀𝓍 ∈ 𝑆. 
Hence assumption(𝑐) of theorem (2.3) is proved. 

Step IV:  Also we have  

 

𝑀 =  𝔹 𝑆  = 𝑠𝑢𝑝  𝔹𝑥 : 𝑥 ∈ 𝑆  

= 𝑠𝑢𝑝  
𝑠𝑢𝑝𝑡∈ℝ+

  
𝓍 𝑡0 

𝑓 𝑡0, 𝓍 𝑡0  
−

𝜆

𝛤 𝜉 
 

𝓍 𝑠 

𝑓 𝑠, 𝓍 𝑠  
 𝑡 − 𝑠 𝜉−1𝑑𝑠 +

1

𝛤 𝜉 

𝑡

𝑡0

 
𝑔 𝑠, 𝓍 𝑠  

 𝑡 − 𝑠 1−𝜉

𝑡

𝑡0

𝑑𝑠  

: 𝑥 ∈ 𝑆
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≤ 𝑠𝑢𝑝  
𝑠𝑢𝑝𝑡∈ℝ+

  
𝓍 𝑡0 

𝑓 𝑡0, 𝓍 𝑡0  
 +  −

𝜆

𝛤 𝜉 
 

𝓍 𝑠 

𝑓 𝑠, 𝓍 𝑠  
 𝑡 − 𝑠 𝜉−1𝑑𝑠

𝑡

𝑡0

 +  
1

𝛤 𝜉 
 

𝑔 𝑠, 𝓍 𝑠  

 𝑡 − 𝑠 1−𝜉

𝑡

𝑡0

𝑑𝑠  

: 𝑥 ∈ 𝑆

  

≤ 𝑠𝑢𝑝𝑡∈ℝ+
 𝕡0 +

𝜆

𝛤 𝜉 
  

𝓍 𝑠 

𝑓 𝑠, 𝓍 𝑠  
  𝑡 − 𝑠 𝜉−1𝑑𝑠

𝑡

𝑡0

+
1

𝛤 𝜉 
 

 𝑔 𝑠, 𝓍 𝑠   

 𝑡 − 𝑠 1−𝜉

𝑡

𝑡0

𝑑𝑠  

≤ 𝑠𝑢𝑝𝑡∈ℝ+
 𝕡0 +

𝜆

𝛤 𝜉 
 

𝕡 𝑠 

 𝑡 − 𝑠 1−𝜉
𝑑𝑠

𝑡

𝑡0

+
1

𝛤 𝜉 
 

𝑕 𝑠 

 𝑡 − 𝑠 1−𝜉

𝑡

𝑡0

𝑑𝑠  

taking supremum over t, we obtain 

≤  𝕡0 +
𝜆𝓊 𝑡 

Γ 𝜉 
+

𝓋 𝑡 

Γ 𝜉 
  

≤  𝕡0 + 𝐾1 + 𝐾2 = 𝕂 

and therefore 𝑀𝐾 = 𝕂𝐾 < 1 

Thus the condition (d) of theorem (2.3) is satisfied. 

Hence all the conditions of theorem (2.3) are satisfied and therefore the operator equation 𝔸𝑥𝔹𝑥 = 𝑥 has a 

solution in . As a result, the FNQDE (1.1) has a solution defined on  ℝ+ . 

Step V: Finally we have to show that the locally attractivity of the solution for FNQDE (1.1).  Let 𝓍 and 𝓎 be 

two solutions of FNQDE (1.1) in 𝑆 defined on ℝ+. 
Then we have  

 𝓍 𝑡 − 𝓎 𝑡  =
 
 
  𝑓 𝑡, 𝓍 𝑡    

𝓍 𝑡0 

𝑓 𝑡0, 𝓍 𝑡0  
−

𝜆

𝛤 𝜉 
 

𝓍 𝑠 

𝑓 𝑠, 𝓍 𝑠  
 𝑡 − 𝑠 𝜉−1𝑑𝑠 +

1

𝛤 𝜉 

𝑡

𝑡0

 
𝑔 𝑠, 𝓍 𝑠  

 𝑡 − 𝑠 1−𝜉

𝑡

𝑡0

𝑑𝑠  −

  𝑓 𝑡, 𝓎 𝑡    
𝓎 𝑡0 

𝑓 𝑡0, 𝓎 𝑡0  
−

𝜆

𝛤 𝜉 
 

𝓎 𝑠 

𝑓 𝑠, 𝓎 𝑠  
 𝑡 − 𝑠 𝜉−1𝑑𝑠 +

1

𝛤 𝜉 

𝑡

𝑡0

 
𝑔 𝑠, 𝓎 𝑠  

 𝑡 − 𝑠 1−𝜉

𝑡

𝑡0

𝑑𝑠  
 
 
 

≤   𝑓 𝑡, 𝓍 𝑡     
𝓍 𝑡0 

𝑓 𝑡0, 𝓍 𝑡0  
 +  −

𝜆

𝛤 𝜉 
 

𝓍 𝑠 

𝑓 𝑠, 𝓍 𝑠  
 𝑡 − 𝑠 𝜉−1𝑑𝑠

𝑡

𝑡0

 +  
1

𝛤 𝜉 
 

𝑔 𝑠, 𝓍 𝑠  

 𝑡 − 𝑠 1−𝜉

𝑡

𝑡0

𝑑𝑠   + 

  𝑓 𝑡, 𝓎 𝑡     
𝓎 𝑡0 

𝑓 𝑡0, 𝓎 𝑡0  
 +  −

𝜆

𝛤 𝜉 
 

𝓎 𝑠 

𝑓 𝑠, 𝓎 𝑠  
 𝑡 − 𝑠 𝜉−1𝑑𝑠

𝑡

𝑡0

 +  
1

𝛤 𝜉 
 

𝑔 𝑠, 𝓎 𝑠  

 𝑡 − 𝑠 1−𝜉

𝑡

𝑡0

𝑑𝑠    

≤ 𝔽 𝕡0 +
𝜆

𝛤 𝜉 
  

𝓍 𝑠 

𝑓 𝑠, 𝓍 𝑠  
  𝑡 − 𝑠 𝜉−1𝑑𝑠

𝑡

𝑡0

+
1

𝛤 𝜉 
 

 𝑔 𝑠, 𝓍 𝑠   

 𝑡 − 𝑠 1−𝜉

𝑡

𝑡0

𝑑𝑠 + 

𝔽  𝕡0 +
𝜆

𝛤 𝜉 
  

𝓎 𝑠 

𝑓 𝑠, 𝓎 𝑠  
  𝑡 − 𝑠 𝜉−1𝑑𝑠

𝑡

𝑡0

+
1

𝛤 𝜉 
 

 𝑔 𝑠, 𝓎 𝑠   

 𝑡 − 𝑠 1−𝜉

𝑡

𝑡0

𝑑𝑠  

≤ 𝔽 𝕡0 +
𝜆

𝛤 𝜉 
 

𝕡 𝑠 

 𝑡 − 𝑠 1−𝜉
𝑑𝑠

𝑡

𝑡0

+
1

𝛤 𝜉 
 

𝑕 𝑠 

 𝑡 − 𝑠 1−𝜉

𝑡

𝑡0

𝑑𝑠 + 

𝔽  𝕡0 +
𝜆

𝛤 𝜉 
 

𝕡 𝑠 

 𝑡 − 𝑠 1−𝜉
𝑑𝑠

𝑡

𝑡0

+
1

𝛤 𝜉 
 

𝑕 𝑠 

 𝑡 − 𝑠 1−𝜉

𝑡

𝑡0

𝑑𝑠  

≤ 2𝔽  𝕡0 +
𝜆

𝛤 𝜉 
 

𝕡 𝑠 

 𝑡 − 𝑠 1−𝜉
𝑑𝑠

𝑡

𝑡0

+
1

𝛤 𝜉 
 

𝑕 𝑠 

 𝑡 − 𝑠 1−𝜉

𝑡

𝑡0

𝑑𝑠  

Taking supremum over t, we obtain 

≤ 𝔽 𝕡0 +
𝜆𝓊 𝑡 

Γ 𝜉 
+

𝓋 𝑡 

Γ 𝜉 
  

Since lim𝑡→∞ 𝑣 𝑡 = 0 , lim𝑡→∞ 𝓊 𝑡 = 0 , lim𝑡→∞ 𝕡 𝑡 = 0 for 𝜖 > 0, there exist a real number 𝕋′ > 0, 𝕋′′ > 0 

and 𝕋′′′ > 0  such that 𝕡0 ≤
𝜖

6𝔽
, 𝓊 𝑡 ≤

Γ 𝜉 𝜖

𝜆6𝔽
 and 𝓋 𝑡 ≤

Γ 𝜉 𝜖

6𝔽
 for all   𝑡 ≥ 𝕋∗ ,  if we choose  

𝕋∗ = 𝑚𝑎𝑥 𝕋′, 𝕋′′, 𝕋′′′ . 
Then from above inequality it follows that  𝓍 𝑡 − 𝓎 𝑡  < 𝜖 for all  𝑡 ≥ 𝕋∗.      

Hence FNQIE (1.1) has a locally attractive solution on ℝ+. 

This completes the proof. 

 

Existence of extremal solutions: 

A closed and non-empty set  𝕂   in a Banach Algebra  𝕏  is called a cone if  

i. 𝕂 + 𝕂 ⊆ 𝕂 

ii. ℷ𝕂 ⊆ 𝕂  for  ℷ ∈ ℝ, ℷ ≥ 0  
iii.  −𝕂 ∩ 𝕂 = 0 where 0 is the zero element of𝕏. 

and is called positive cone if  
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iv. 𝕂 ∘ 𝕂 ⊆ 𝕂 

And the notation  ∘  is a multiplication composition in  𝕏 

We introduce an order relation  ≤  in 𝕏  as follows. 

Let 𝓍, 𝓎 ∈ 𝕏  then 𝓍 ≤ 𝓎  if and only if 𝓎 − 𝓍 ∈ 𝕂. A cone 𝕂  is called normal if the norm    ∙   is monotone 

increasing on𝕂.  It is known that if the cone   𝕂  is normal in  𝕏  then every order-bounded set in  𝕏  is norm-

bounded set in  𝕏. 
We equip the space  𝒞 ℝ+, ℝ   of continuous real valued function on  ℝ+  with the order relation   ≤  with the 

help of cone defined by,  

𝕂 =  𝓍 ∈ 𝒞 ℝ+, ℝ : 𝓍 𝑡 ≥ 0 ∀𝑡 ∈ ℝ+      (5.1) 

We well known that the cone  𝕂  is normal and positive in  𝒞 ℝ+, ℝ . As a result of positivity of the cone  𝕂  

we have:  

Lemma 5.1[3]:  Let 𝓅1 , 𝓅2, 𝓆1, 𝓆2 ∈ 𝕂  be such that   𝓅1 ≤ 𝓆1and  𝓅2 ≤ 𝓆2then  𝓅1𝓅2 ≤ 𝓆1𝓆2. 

For any  𝓅, 𝓆 ∈ 𝕏 = 𝒞 ℝ+, ℝ , 𝓅 ≤ 𝓆   the order interval  𝓅, 𝓆  is a set in 𝕏 given by,  
 𝓅, 𝓆 =  𝓍 ∈ 𝕏: 𝓅 ≤ 𝓍 ≤ 𝓆 (5.2) 

Definition 5.1[3]: A mapping 𝐺:  𝓅, 𝓆 → 𝕏 is said to be nondecreasing or monotone increasing if  𝓍 ≤ 𝓎 

implies  𝐺𝓍 ≤ 𝐺𝓎 for all  𝓍, 𝓎 ∈  𝓅, 𝓆 . 
For proving the existence of extremal solutions of the equations (1.1) under certain monotonicity conditions by 

using following fixed pint theorem of Dhage [3]. 

Theorem 5.1 [3] : Let  𝕂  be a cone in Banach Algebra  𝕏  and let   𝓅, 𝓆 ∈ 𝕏.  Suppose that  𝔸, 𝔹:  𝓅, 𝓆 → 𝕂  

are two operators such that 

a. 𝔸  is a Lipschitz with Lipschitz constant 𝛼, 

b. 𝔹  is completely continuous, 

c. 𝔸𝓍𝔹𝓍 ∈  𝓅, 𝓆   for each 𝓍 ∈  𝓅, 𝓆   and 

d. 𝔸and𝔹  are nondecreasing. 

Further if the cone 𝕂  is normal and positive then the operator equation  𝔸𝓍𝔹𝓍 = 𝓍  has the least and greatest 

positive solution in   𝓅, 𝓆   whenever  𝛼𝑀 < 1,  where  𝑀 =  𝔹  𝓅, 𝓆   = 𝑠𝑢𝑝  𝔹𝓍 : 𝓍 ∈  𝓅, 𝓆   
We need following definitions and hypothesis for existence the extremal solution of FNQDE (1.1). 

Definition 5.2: A function  𝓅 ∈ 𝒜𝒞 ℝ+, ℝ   is called a lower solution of the FNQDE (1.1) on  ℝ+  if the 

function  𝑡 →
𝓅 𝑡 

𝑓 𝑡,𝓅 𝑡  
  is continuous and  

 
𝔇𝜉  

𝓅 𝑡 

𝑓 𝑡, 𝓅 𝑡  
 ≤ 𝑔 𝑡, 𝓅 𝑡  − 𝜆  

𝓅 𝑡 

𝑓 𝑡, 𝓅 𝑡  
 , 𝑎. 𝑒. , 𝑡 ∈ ℝ+

𝓅 𝑡0 = 𝓅0

𝑓 𝑡0, 𝓅0 = 𝑓 𝑡0, 𝓅0  
 
 

 
 

 

Again a function 𝓆 ∈ 𝒜𝒞 ℝ+, ℝ   is called an upper solution of the FNQDE (1.1) on  ℝ+  if function the  

𝑡 →
𝓆 𝑡 

𝑓 𝑡,𝓆 𝑡  
  is continuous and 

 

𝔇𝜉  
𝓆 𝑡 

𝑓 𝑡, 𝓆 𝑡  
 ≥ 𝑔 𝑡, 𝓆 𝑡  − −𝜆  

𝓆 𝑡 

𝑓 𝑡, 𝓆 𝑡  
 , 𝑎. 𝑒. , 𝑡 ∈ ℝ+

𝓆 𝑡0 = 𝓆0

𝑓 𝑡0, 𝓆0 = 𝑓 𝑡0, 𝓆0 
 
 
 

 
 

 

Definition 5.3: A solution  𝓍𝑀   of the FNQDE (1.1) is said to be maximal if for any other solution 𝓍  to FNQDE 

(1.1) one has  𝓍 𝑡 ≤ 𝓍𝑀 𝑡   for all t ∈ ℝ+. Again a solution 𝓍𝑀   of the FNQDE (1.1) is said to be minimal if  

𝓍𝑀 𝑡 ≤ 𝓍 𝑡   for all t ∈ ℝ+ where 𝓍  is any solution of the FNQDE (1.1) on  ℝ+. 
Definition 5.4 (Caratheodory Case): 

We consider the following set of assumptions: 

𝔅1) The functions  𝑔 𝑡, 𝓍 𝑡   and 
𝓍 𝑡 

𝑓 𝑡,𝓍 𝑡  
 are Caratheodory. 

𝔅2) The functions  𝑡, 𝓍 𝑡   , 𝑔 𝑡, 𝓍 𝑡    and 
𝓍 𝑡 

𝑓 𝑡,𝓍 𝑡  
 are non-decreasing in  𝓍  almost everywhere for all   

𝑡 ∈ ℝ+. 

𝔅3) The FNQDE (1.1) has a lower solution 𝓅  and an upper solution  𝓆 on ℝ+with  𝓅 ≤ 𝓆. 

𝔅4) The function  𝑙: ℝ+, ℝ  defined by,𝑙 𝑡 =  𝑔 𝑡, 𝓅 𝑡   +  𝑔 𝑡, 𝓆 𝑡   is Lebesgue measurable.  

𝔅5) The function  𝕢: ℝ+, ℝ  defined by,𝕢 𝑡 =  
𝓅 𝑡 

𝑓 𝑡,𝓅 𝑡  
 +  

𝓆 𝑡 

𝑓 𝑡,𝓆 𝑡  
 is Lebesgue measurable.  

Remark 5.1: Assume that (𝔅1 − 𝔅5)   hold. Then 𝑔 𝑡, 𝓍 𝑡   ≤ 𝑙 𝑡 , 𝑎. 𝑒. 𝑡 ∈ ℝ+, for all  𝓍 ∈  𝓅, 𝓆  

and 
𝓍 𝑡 

𝑓 𝑡,𝓍 𝑡  
 ≤ 𝕢 𝑡 . 
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Theorem 5.1: Suppose that the assumptions (ℋ1) − (ℋ4)  and  (𝔅1) − (𝔅5) holds and 𝑙, 𝕢 are given in remark 

(5.1) and  𝛼  𝕡0 +
𝑇𝜉

𝛤 𝜉+1 
 𝜆 𝕢 ℒ1 +  𝑙 ℒ1   < 1 hold then FNQDE (1.1) has a minimal and maximal positive 

solution on ℝ+. 

Proof: Now FNQDE (1.1) is equivalent to FNQIE (3.1)onℝ+ . Let  𝕏 = 𝒞 ℝ+, ℝ  and define an order relation 

“≤” by the cone 𝕂  given by (5.1). Clearly 𝕂  is a normal cone in 𝕏. Define two operators  𝔸 and  𝔹 on 𝕏  by 

(4.2) and (4.3) respectively. Then FNQIE (3.1) is transformed into an operator equation 𝔸𝓍𝔹𝓍 = 𝓍 in 

BanachAlgebra𝕏. Notice that  𝔅1  implies 𝔸, 𝔹:  𝓅, 𝓆 → 𝕂  Since the cone  𝕂 in  𝕏 is normal,  𝓅, 𝓆 is a norm 

bounded set in 𝕏. Now it is shown, as in the proof of Theorem (4.1), that 𝔸  is a Lipschitz with a Lipschitz 

constant  𝛼   and 𝔹 is completely continuous operator on 𝓅, 𝓆 .  
Step I: Again the hypothesis  𝔅2   implies that  𝔸 and 𝔹 are non-decreasing on  𝓅, 𝓆 . To see this, let  𝓍, 𝓎 ∈
 𝓅, 𝓆   be such that  𝓍 ≤ 𝓎.then by   𝔅2  we have, 

𝔸𝓍 𝑡 = 𝑓 𝑡, 𝓍 𝑡  ≤ 𝑓 𝑡, 𝓎 𝑡  ≤ 𝔸𝓎 𝑡 , ∀𝑡 ∈ ℝ+ 

Similarly,  

𝔹𝑥 𝑡 =
𝓍 𝑡0 

𝑓 𝑡0, 𝓍 𝑡0  
−

𝜆

𝛤 𝜉 
 

𝓍 𝑠 

𝑓 𝑠, 𝓍 𝑠  
 𝑡 − 𝑠 𝜉−1𝑑𝑠 +

1

𝛤 𝜉 

𝑡

𝑡0

 
𝑔 𝑠, 𝓍 𝑠  

 𝑡 − 𝑠 1−𝜉

𝑡

𝑡0

𝑑𝑠 

≤
𝓎 𝑡0 

𝑓 𝑡0, 𝓎 𝑡0  
−

𝜆

𝛤 𝜉 
 

𝓎 𝑠 

𝑓 𝑠, 𝓎 𝑠  
 𝑡 − 𝑠 𝜉−1𝑑𝑠 +

1

𝛤 𝜉 

𝑡

𝑡0

 
𝑔 𝑠, 𝓎 𝑠  

 𝑡 − 𝑠 1−𝜉

𝑡

𝑡0

𝑑𝑠 

≤ 𝔹𝓎 𝑡 , ∀𝑡 ∈ ℝ+ 

Implies that 𝔸  and  𝔹  are non-decreasing operators on  𝓅, 𝓆 . 
Step II: Again definition (5.2) and hypothesis  (𝔅3)  implies that , 

𝓅 𝑡 ≤ 𝑓 𝑡, 𝓅 𝑡   
𝓅 𝑡0 

𝑓 𝑡0, 𝓅 𝑡0  
−

𝜆

𝛤 𝜉 
 

𝓅 𝑠 

𝑓 𝑠, 𝓅 𝑠  
 𝑡 − 𝑠 𝜉−1𝑑𝑠 +

1

𝛤 𝜉 

𝑡

𝑡0

 
𝑔 𝑠, 𝓅 𝑠  

 𝑡 − 𝑠 1−𝜉

𝑡

𝑡0

𝑑𝑠  

≤ 𝑓 𝑡, 𝓍 𝑡   
𝓍 𝑡0 

𝑓 𝑡0, 𝓍 𝑡0  
−

𝜆

𝛤 𝜉 
 

𝓍 𝑠 

𝑓 𝑠, 𝓍 𝑠  
 𝑡 − 𝑠 𝜉−1𝑑𝑠 +

1

𝛤 𝜉 

𝑡

𝑡0

 
𝑔 𝑠, 𝓍 𝑠  

 𝑡 − 𝑠 1−𝜉

𝑡

𝑡0

𝑑𝑠  

≤ 𝑓 𝑡, 𝓆 𝑡   
𝓆 𝑡0 

𝑓 𝑡0, 𝓆 𝑡0  
−

𝜆

𝛤 𝜉 
 

𝓆 𝑠 

𝑓 𝑠, 𝓆 𝑠  
 𝑡 − 𝑠 𝜉−1𝑑𝑠 +

1

𝛤 𝜉 

𝑡

𝑡0

 
𝑔 𝑠, 𝓆 𝑠  

 𝑡 − 𝑠 1−𝜉

𝑡

𝑡0

𝑑𝑠  

≤ 𝓆 𝑡 , ∀𝑡 ∈ ℝ+and𝓍 ∈  𝓅, 𝓆  
As a result  𝓅 𝑡 ≤ 𝔸𝓍 𝑡 𝔹𝓍 𝑡 ≤ 𝓆 𝑡 , ∀𝑡 ∈ ℝ+  and  𝓍 ∈  𝓅, 𝓆  
Hence 𝔸𝓍𝔹𝓍 ∈  𝓅, 𝓆 , ∀𝓍 ∈  𝓅, 𝓆  
Step III: Again 

𝑀 =  𝔹  𝓅, 𝓆   = 𝑠𝑢𝑝  𝔹𝓍 : 𝓍 ∈  𝓅, 𝓆   

≤ 𝑠𝑢𝑝  𝑠𝑢𝑝𝑡∈ℝ+
  

𝓍 𝑡0 

𝑓 𝑡0, 𝓍 𝑡0  
−

𝜆

𝛤 𝜉 
 

𝓍 𝑠 

𝑓 𝑠, 𝓍 𝑠  
 𝑡 − 𝑠 𝜉−1𝑑𝑠 +

1

𝛤 𝜉 

𝑡

𝑡0

 
𝑔 𝑠, 𝓍 𝑠  

 𝑡 − 𝑠 1−𝜉

𝑡

𝑡0

𝑑𝑠    

≤ 𝑠𝑢𝑝  
𝑠𝑢𝑝𝑡∈ℝ+

  
𝓍 𝑡0 

𝑓 𝑡0, 𝓍 𝑡0  
 +  −

𝜆

𝛤 𝜉 
 

𝓍 𝑠 

𝑓 𝑠, 𝓍 𝑠  
 𝑡 − 𝑠 𝜉−1𝑑𝑠

𝑡

𝑡0

 +  
1

𝛤 𝜉 
 

𝑔 𝑠, 𝓍 𝑠  

 𝑡 − 𝑠 1−𝜉

𝑡

𝑡0

𝑑𝑠  

: 𝑥 ∈ 𝑆

  

≤ 𝑠𝑢𝑝𝑡∈ℝ+
 𝕡0 +

𝜆

𝛤 𝜉 
  

𝓍 𝑠 

𝑓 𝑠, 𝓍 𝑠  
  𝑡 − 𝑠 𝜉−1𝑑𝑠

𝑡

𝑡0

+
1

𝛤 𝜉 
 

 𝑔 𝑠, 𝓍 𝑠   

 𝑡 − 𝑠 1−𝜉

𝑡

𝑡0

𝑑𝑠  

≤ 𝑠𝑢𝑝𝑡∈ℝ+
 𝕡0 +

𝜆

𝛤 𝜉 
 

𝕢 𝑠 

 𝑡 − 𝑠 1−𝜉
𝑑𝑠

𝑡

𝑡0

+
1

𝛤 𝜉 
 

𝑙 𝑠 

 𝑡 − 𝑠 1−𝜉

𝑡

𝑡0

𝑑𝑠  

≤ 𝕡0 +
𝜆 𝕢 ℒ1

𝛤 𝜉 
  

 𝑡 − 𝑠 𝜉

−𝜉
 
𝑡0

𝑡

 +
 𝑙 ℒ1

𝛤 𝜉 
  

 𝑡 − 𝑠 𝜉

−𝜉
 
𝑡0

𝑡

  

≤ 𝕡0 +
𝜆 𝕢 ℒ1

𝛤 𝜉 + 1 
   𝑡 − 𝑡 𝜉 −  𝑡 − 𝑡0 

𝜉   +
 𝑙 ℒ1

𝛤 𝜉 + 1 
   𝑡 − 𝑡 𝜉 −  𝑡 − 𝑡0 

𝜉    

≤ 𝕡0 +
𝜆 𝕢 ℒ1

𝛤 𝜉 + 1 
 𝑡 − 𝑡0 

𝜉 +
 𝑙 ℒ1

𝛤 𝜉 + 1 
 𝑡 − 𝑡0 

𝜉  

≤ 𝕡0 +
𝜆 𝕢 ℒ1

𝛤 𝜉 + 1 
𝑇𝜉 +

 𝑙 ℒ1

𝛤 𝜉 + 1 
𝑇𝜉  

≤ 𝕡0 +
𝑇𝜉

𝛤 𝜉 + 1 
 𝜆 𝕢 ℒ1 +  𝑙 ℒ1  
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Since  𝛼𝑀 < 1 that is 𝛼  𝕡0 +
𝑇𝜉

𝛤 𝜉+1 
 𝜆 𝕢 ℒ1 +  𝑙 ℒ1  < 1 

We apply theorem (5.1) to the operator equation  𝔸𝓍𝔹𝓍 = 𝓍  to yield that the FNQDE (1.1) has minimum and 

maximum positive solution on ℝ+. 
This completes the proof. 

Example: 
Example: Consider the following FNQDE of type (1.1) 

𝔇
1

2  
𝓍 𝑡 

𝑓 𝑡,𝓍 𝑡  
 + 3  

𝓍 𝑡 

𝑓 𝑡,𝓍 𝑡  
 = 𝑔 𝑡, 𝓍 𝑡  , 𝑡 ∈ ℝ+

𝓍 0 = 0

𝑓 0,0 = 𝑓 0,0 

 (6.1) 

Where the functions  

𝑓 𝑡, 𝓍 𝑡  = 𝑠𝑖𝑛4𝑡  
𝓍 𝑡 

1−𝓍(𝑡)
 , 𝑔 𝑡, 𝓍 𝑡  =

1

𝑡 1+𝓍 𝑡  
, 𝑕 𝑡 =

1

𝑡
 and 𝕡 𝑡 =

1

𝑠𝑖𝑛4𝑡
 

and 𝜉 =
1

2
, 𝜆 = 3. 

(ℋ1) Now  𝑓 𝑡, 𝓍 𝑡  − 𝑓 𝑡, 𝓎 𝑡    

=   𝑠𝑖𝑛4𝑡  
𝓍 𝑡 

1 − 𝓍(𝑡)
  −  𝑠𝑖𝑛4𝑡  

𝓎 𝑡 

1 − 𝓎(𝑡)
    

=  𝑠𝑖𝑛4𝑡  
𝓍 𝑡 

1 − 𝓍(𝑡)
−

𝓎 𝑡 

1 − 𝓎(𝑡)
   

≤  𝑠𝑖𝑛4𝑡  
𝓍 𝑡 𝓎 𝑡 + 𝓍 𝑡 − 𝓎 𝑡 − 𝓍 𝑡 𝓎 𝑡 

𝓍 𝑡 𝓎 𝑡 − 𝓍 𝑡 − 𝓎 𝑡 + 1
  

≤  𝑠𝑖𝑛𝑡  𝓍 𝑡 − 𝓎(𝑡)  
≤ 𝛼 𝑡  𝓍 𝑡 − 𝓎(𝑡)  
≤  𝛼  𝓍 𝑡 − 𝓎(𝑡)  

Since 𝛼 𝑡 = 𝑠𝑖𝑛4𝑡   say which is continuous and bounded on  ℝ+ has bound  𝛼 . 

(ℋ2)Take 𝑕 𝑡 =
1

𝑡
 , it is continuous on ℝ+ . 

Implies 𝑔 𝑡, 𝓍 𝑡  ≤ 𝑕 𝑡  that is  
1

𝑡 1+𝓍 𝑡  
≤

1

𝑡
 

Implies 𝑔 is caratheodory satisfy above condition. 

(ℋ3) The function 
𝓍 𝑡 

𝑓 𝑡,𝓍 𝑡  
 is again caratheodory function with continuous function 𝕡 𝑡 : ℝ+ → ℝ such that 

𝕡 𝑡 =
1

𝑠𝑖𝑛4𝑡
 and satisfying 

𝓍 𝑡 

𝑓 𝑡,𝓍 𝑡  
≤ 𝕡 𝑡  

It follows that all the conditions (ℋ1) − (ℋ3) satisfied. 

Thus by theorem (2.3) above problem has a solution on ℝ+. 

 

III. Conclusions 
In this paper we have studied the existence of solution of fractional order nonlinear quadratic 

differential equation. The result has been obtained by using hybrid fixed point theorem for two operators in 

Banach space due to Dhage. The main result is well illustrated with the help of example. 
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