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Abstract: In this paper we have presented a PDE mathematical model. The population density depends on 

special location and time.In the equation, the first and the third terms deal with local behavior, whereas the 

second deals with horizontal redistribution. The population growth term follows critical depensation growth 

manner. The growth below its critical mass quantity is negative which shows biologically mate is rare so that 

population growth declines. The critical points origin and the carrying capacity are stable whereasthe critical 

mass quantity is unstable. 

 To solidify the analytical results, numerical simulations are provided for hypothetical set of parametricvalues. 
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I. Introduction 
The crabs population movement can be described as wave solution as explained by the Fisher in his 

equation [2] and the solution switches from the equilibrium state   𝑁∗=0 to the equilibrium state 𝑁∗= 1. 

Originally, the name king crab has been applied to a number of species, including the blue king crab, the 

Hanasaki king crab, the golden and scarlet king crabs, etc. as explained in [2]. As it is explained in [1] 

harvesting helps protect and defend marine reserves from endangered things. The researcher derived the yield 

maximizing spatial harvesting strategy in a specially explicit model in which no reserve are imposed. The model 

is a combination of the Schaefer harvest model(Schaefer 1957), which is at the foundation of many bio-

economic analysis(Clerk 1990), and Fisher equation(Fisher 1937),a fundamental model in spatial 

populationdynamics(Kot2001). 

In a critical depensation model [7], it is possible that the fish population level will be driven to extinction. If the 

depensation exists, fishery managers become upset because fished stocks may not recover after being over 

fished, even when fishing is stopped. The concept of Maximum Sustainable Yield (MSY) in general is required 

to practice the renewable resource management[Clark,1990]. This is not necessarily the best management 

method, because the long-run consumption profile does not coincide with that of utility maximization. The 

resource stock under the maximum sustainable yield(MSY) is not necessarily optimal with respect to production 

due to the positive relationship between productivity in harvesting activities and the resource stock size. In this 

paper we have modified the model [1] replacing the logistic population growth by critical depensation growth 

with carrying capacity K and critical mass quantity K0. The predicted solution of the mathematical model is well 

supported by the numerical simulation. Maximizing the yield crabs population or the fish population is also an 

important issue in this study 

 

II. The critical depensation growth model 
As it is explained well in [6], the population growth model which is written 

to the form  
𝑑𝑁∗

𝑑𝑇∗
= 𝑟𝑁∗  1 −

𝑁∗

𝐾
  

𝑁∗

𝐾0
− 1       (1) 

is strong critical depensation function.  In the growth model (1), 𝑁∗ 𝑇∗  represents the population size, 𝑟 

represents intrinsic growth rate of population, 𝐾 is the carrying capacity of the population environment, 𝐾0 is the 

critical mass quantity and  
𝑑𝑁∗

𝑑𝑇∗
 is population growth rate. Below in Figure 1 the time series plot of the critical 

depensation growth model is plotted. In the figure we observe three equilibrium points 𝑁∗=0, 𝑁∗=𝐾0   and 𝑁∗= 

K. The first and the last critical points are stable whereas the middle is unstable. In Figure 2 we have growth 

curve of the critical depensation model. The curve is plotted for the population size function  𝑁∗ 𝑇∗  versus the 

population growth rate function  
𝑑𝑁∗

𝑑𝑇∗
 . The growth rate is negative in the interval  0,  𝐾0  while it is positive in 

the interval   𝐾0 , 𝐾 . 
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Fig1: Time series plot of critical depensation growth function for 𝑟 = 0.8, 𝐾0 = 4,𝐾 = 10  

 

 
Figure 2: Growth curve of critical depensation growth function for  𝑟 = 0.8, 𝐾0 = 6,𝐾 = 40 
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III. The Extended Mathematical Model 
For the population density 𝑁∗  𝑋∗, 𝑇∗  that depends on the spatial location 𝑋∗and time 𝑇∗, 𝑁∗ is directed by the 

equation 
𝝏𝑵∗

𝝏𝑻∗
= 𝑹𝑵∗  𝟏 −

𝑵∗

𝑲
  

𝑵∗

𝑲𝟎
− 𝟏  + D 

𝝏𝟐𝑵𝟖

𝝏𝑿∗𝟐
 - Q𝑬∗ 𝑿∗  𝑵∗ ,                       (2) 

𝟎 <  𝑿∗ < 𝑳,𝑵∗  𝟎,  𝑻∗ = 𝟎, 𝑵∗  𝑳,  𝑻∗ = 𝟎                                      (3) 

Where 𝐸∗ = 𝐸∗ 𝑋∗  is the effort located at location 𝑋∗. 
The model as interpreted in [1] states that the change per unit time of the population 𝑁∗ at a given location 𝑋∗ 

and time 𝑇∗ is controlled by the critical depensation population growth function, the movement of the 

population by diffusion and a Harvesting term. In the population growth, 𝑅 is intrinsic growth rate of the 

population, 𝐾 is the environmental carrying capacity and 

𝐾0 is the critical mass quantity where  𝐾0 < 𝐾.  In the diffusion term, the diffusion coefficient has dimension  

 𝐷 = 𝑚2/𝑠 , and in the harvesting term the harvesting rate at a given location is proportional to the product of 

the stock size 𝑁∗  and the effort located at that location 𝐸∗ 𝑋∗    where 𝑄 is the proportionality constant known 

as ’catch ability’ coefficient. The location of the habitat length and the boundary condition are parts of the 

model. The model describes a population living in a patch of suitable habitat, of length 𝐿, surrounded by 

unsuitable habitat. 

The equilibrium yield is given by the integral equation [1], 

𝑵∗  𝑿∗, 𝑻∗ =  𝑸𝑬∗𝑳

𝟎
 𝑿∗ 𝑵∗ 𝑿∗ 𝒅𝑿∗             (4) 

𝟎 ≤ 𝑬∗ ≤ 𝑬∗
𝑴𝒂𝒙                                                (5) 

Eq’n  5  is because of limitation on the population effort. 

The equilibrium yield is given by the integral equation [1], 

𝑌∗  𝑁∗, 𝐸∗ =  𝑄
𝐿

0

𝐸∗ 𝑋∗ 𝑁∗  𝑋∗ 𝑑𝑋∗. 

Scaling the mathematical model 

Time Scale: 𝑇∗ =
1

𝑅
𝑡, Population Size Scale: 𝑁∗ = 𝐾𝑁, Length Scale: 𝑋∗ = 𝐿𝑥, Harvesting Effort Scale: 

𝐸∗ = 𝑏(𝑥)
𝑅

𝑄
, The Yield Scale: 𝑌∗ =  𝐾 𝑅𝐷 𝑌. 

Assuming 𝛽 =   
𝐾0

𝐾
, 𝜎 =

𝐷

𝑅𝐿2, the final scaled equation has the form  

 
𝝏𝑵

𝝏𝒕
= 𝑵 𝟏 − 𝑵  

𝑵

𝜷
− 𝟏  + 𝝈 

𝝏𝟐𝑵𝟖

𝝏𝑿𝟐
− 𝒃 𝒙 𝑵, 𝟎 < 𝒙 < 1  ,      (6) 

𝑵  𝟎, 𝒕 = 𝟎, 𝑵  𝟏, 𝒕 = 𝟎                                 (7)             

The scaled equilibrium yield also looks      

𝒀  𝑵, 𝒃 =
𝟏

 𝝈
 𝒃 𝒙 
𝟏

𝟎
𝑵(𝒙)𝒅𝒙,  𝟎 ≤ 𝒃 ≤  𝒃𝒎𝒂𝒙 

Here we observe that the scaled equation contains three dimensionless parameters but the dimensioned equation 

has seven parameters. 

 

 
Fig 3 is the numerical solution of the model where 𝛽 =  0.1,   𝜎 = 0.01, 𝑏 = 0.5. 



Critical Depensation Growth function and Harvesting 

 

DOI: 10.9790/5728-1505033037                                  www.iosrjournals.org                                            33 | Page 

IV. Some Comments About The Optimal Catch Problem 
4.1 The population growth is logistic 

Habitat is one dimensional, 0 ≤ 𝑥 ≤ 1. 

In this case, there is a limit on how large the diffusion coefficient may be. 

With too large diffusion the habitat is empty. The problem consists of maximization of the y 

 

𝒀  𝒃 =  𝒃 𝒙 
𝟏

𝟎
𝑵 𝒙 𝒅𝒙,   

by finding an optimal 𝒃 𝒙  for 𝟎 < 𝑏(𝑥) < 𝒃𝒎𝒂𝒙.  

The full equation is 
𝝏𝑵

𝝏𝒕
= 𝑵 𝟏 − 𝑵  

𝑵

𝜷
− 𝟏  + 𝝈 

𝝏𝟐𝑵𝟖

𝝏𝑿∗𝟐
− 𝒃 𝒙 𝑵, 

with the boundary conditions 

𝑵  𝟎, 𝒕 = 𝟎, 𝑵  𝟏, 𝒕 = 𝟎.      

It is important to observe 𝑁 and 𝑏 are mutually dependent. Our interest deals with the stationary situation where     

𝑵 𝟏 − 𝑵  
𝑵

𝜷
− 𝟏  + 𝝈 

𝝏𝟐𝑵𝟖

𝝏𝑿𝟐
− 𝒃 𝒙 𝑵 = 𝟎,     

𝑵  𝟎,  = 𝟎, 𝑵  𝟏 = 𝟎           

The first and the third terms deal with local behavior, whereas the second deals with horizontal redistribution. 

We notice the special cases 𝜎 → 0 and 𝜎 → ∞. The first one considers a situation with the habitat consisting of 

vertical "cells". The cell walls stop the horizontal diffusion; as a result and we may consider each cell separately,     

𝑵 𝟏 − 𝑵  
𝑵

𝜷
− 𝟏  –𝒃𝑵 = 𝟎.     

The stationary points  

𝑁0 =  
1 − 𝑏 𝑓𝑜𝑟 𝑏 < 1,

0 𝑓𝑜𝑟 𝑏 ≥ 1.
  

Stationery points do not depend on time and transcritical bifurcation occurs 

at 𝑏 = 1. Thus, the local yield is 𝑌 =  1 − b 𝑏.  

The maximal local sustainable yield occurs for 𝑏 =
1

2
  and the maximum 

sustainable yield is 

𝑌𝑚𝑎𝑥 =  1 −
1

2
 

1

2
=

1

4
 . 

4. The population growth is critical depensation 

Habitat is one dimensional, 0 ≤ 𝑥 ≤ 1. 

In this case, there is also a limit on how large the diffusion coefficient may be. 

With too large diffusion the habitat is emptied. The problem also consists 

of maximization of the yield: 

𝒀  𝒃 =  𝒃 𝒙 
𝟏

𝟎
𝑵 𝒙 𝒅𝒙,   

by finding an optimal 𝑏(𝑥) for  𝟎 < 𝑏(𝑥) ≤ 𝒃𝒎𝒂𝒙.  

The full equation is 
𝝏𝑵

𝝏𝒕
= 𝑵 𝟏 − 𝑵  

𝑵

𝜷
− 𝟏  + 𝝈 

𝝏𝟐𝑵𝟖

𝝏𝑿∗𝟐
− 𝒃𝑵, 

with the boundary conditions 

𝑵  𝟎, 𝒕 = 𝟎, 𝑵  𝟏, 𝒕 = 𝟎.      

It is important to observe that 𝑁 and 𝑏 are mutually dependent. Our interest 

deals with the stationary solutions where 

 

 

𝑵 𝟏 − 𝑵  
𝑵

𝜷
− 𝟏  + 𝝈 

𝝏𝟐𝑵𝟖

𝝏𝑿∗𝟐
− 𝒃𝑵 = 𝟎, 

𝑵  𝟎,  = 𝟎, 𝑵  𝟏 = 𝟎.      

The first and the third terms deal with local behavior, whereas the second term deals with horizontal 

redistribution. We notice the special cases 𝜎 → 0 and 𝜎 → ∞.  The first one considers a situation with the 

habitat consisting of vertical "cells". The cell walls stop the horizontal diffusion and we may consider each cell 

separately, 

𝑵 𝟏 − 𝑵  
𝑵

𝜷
− 𝟏  −𝒃𝑵 = 𝟎 . 

Here, 𝑁0 = 0, 𝑁1 =
 𝛽+1 −  𝛽+1 2−4𝛽(1+𝑏)

2
  and 𝑁2 =

 𝛽+1 +  𝛽+1 2−4𝛽(1+𝑏)

2
 are stationary points. The 

equilibrium points 𝑁1  and 𝑁2  exist if    
𝛽+1

2 𝛽
 

2

≥  1 + 𝑏 . 
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The equilibrium  points 𝑁0  and  𝑁2   are stable while 𝑁1 is unstable. The local yield at the equilibrium situation 

is 

𝑌 = 𝑁2𝑏 =  
 𝛽 + 1 +   𝛽 + 1 2 − 4𝛽(1 + 𝑏)

2
 𝑏 

Since 
𝑑𝑌

𝑑𝑏
= 0  give 𝑏 = 0 which is not positive real, the maximum sustainable yield is occurred at the end point, 

𝑏𝑚𝑎𝑥  and hence it follows that the maximum sustainable yield, 𝑌𝑀𝑆𝑌   is 

𝑌𝑀𝑆𝑌 = 𝑏𝑚𝑎𝑥  
 𝛽+1 +  𝛽+1 2−4𝛽(1+𝑏𝑚𝑎𝑥 )

2
 ,  

𝛽+1

2 𝛽
 

2

≥  1 + 𝑏𝑚𝑎𝑥  . 

Furthermore, from the equation 

𝑵 𝟏 − 𝑵  
𝑵

𝜷
− 𝟏  −𝒃𝑵 = 𝟎  

We have  

𝒃 =   𝟏 − 𝑵  
𝑵

𝜷
− 𝟏  

which is a concave function of 𝑁. 

Maximum of the concave function or parabola: From above, we observe immediately that 
𝒅𝒃

𝒅𝑵
= 𝟎 

implies that 

𝑵𝒎𝒂𝒙 =
𝜷+𝟏

𝟐
, 𝒃𝒎𝒂𝒙 =

 𝟏−𝜷 𝟐

𝟒𝜷
. 

The bifurcation point in the 𝑏𝑁- plane is  
 𝟏−𝜷 𝟐

𝟒𝜷
,
𝜷+𝟏

𝟐
   where stability change is observed. The limit behavior 

when 𝜎 → ∞.  is the zero-solution. The bifurcation diagram, plot of 𝑁 over 𝑏, for  𝛽 = 0.1 is as follows, and the 

bifurcation point in this case is  2.205, 0.55 . 
 

  
Figure 4: The bifurcation diagram for 𝛽 = 0.1. 

 

The graph shows the dependency of the equilibrial level of the population on the population mortality. The red 

part of the graph is unstable whereas the green part is stable. 
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4.2.1 Suppose the harvesting term is zero 

In this case the mathematical model has the form 
𝝏𝑵

𝝏𝒕
= 𝑵 𝟏 − 𝑵  

𝑵

𝜷
− 𝟏  +  

𝝏𝟐𝑵𝟖

𝝏𝑿𝟐
,  𝟎 < 𝑥 < 1       (8) 

𝑵  𝟎, 𝒕 = 𝟎, 𝑵  𝟏, 𝒕 = 𝟎.                               (9) 

The numerical solution can be treated here for the case while harvesting term 

is zero. If 𝑁 = 2𝛽, equation (8) becomes Fisher’s equation. 

 

4.2.2 Wave solution 

We can rewrite equation (8) as 
𝝏𝑵

𝝏𝒕
=  

𝟏

𝜷
 𝑵 𝟏 − 𝑵  𝑵 − 𝜷 + 𝝈 

𝝏𝟐𝑵𝟖

𝝏𝑿𝟐
,           (10) 

Equation (10) is the Nagumo(Bi-stable) Equation. We can look traveling wave solution of the form [2] 

𝑢 𝑥, 𝑡 = 𝑢 𝑥 − 𝑐𝑡 = 𝑢(𝑧), 

where 𝑐 =  1 − 2𝛽  
𝝈

2𝜷
  which is the velocity that the density of the population travels. 

Remarks:  

i) The wave advances for 0 <   𝛽 < 0.5 and it retreats for 0.5 <  𝛽 < 1. 

ii) Alternatively 𝑢 𝑥, 𝑡 = 𝑢 𝑥 − 𝑐𝑡 = 𝑢 𝑧 =
1

1−𝑒𝑥𝑝  
𝑧

 𝟐𝝈𝛽
 

, 

4.3  Equilibrium points and stability analysis 

4.3.1 The equilibrium points 

The population is at equilibrium if  
𝜕𝑁

𝜕𝑡
= 0  and this implies 

𝑵 𝟏 − 𝑵  
𝑵

𝜷
− 𝟏  +  𝝈 

𝝏𝟐𝑵𝟖

𝝏𝑿𝟐
, = 𝟎, 𝟎 < 𝑥 < 1           (11) 

𝑵  𝟎 = 𝟎, 𝑵  𝟏 = 𝟎                                                   (12) 

Setting  
𝑑𝑁

𝑑𝑥
= 𝑣 we have the following system of differential equations with 

boundary condition as 

 

 
𝑑𝑁

𝑑𝑥
= 𝑣,                                                             (13) 

𝑑𝑣

𝑑𝑥
=

1

𝝈
𝑁 𝑁 − 1  

𝑁

𝛽
− 1 ,                               (14) 

𝑁 0 = 0,𝑁 1 = 0, 𝑣 0 = 0, 𝑣 1 = 0      (15) 

This ODE system has three phase plane equilibria:  0,0 ,  1,0 , and  𝛽, 0 . 
4.3.2 Local stability analysis 

The Jacobin matrix  𝐽(𝑁, 𝑣) of the system is 

𝐽 𝑁, 𝑣  =   
0 1
𝐴 0

 , 

where 𝐴 =
1

𝝈
 

3

𝛽
𝑛2 − 2  

𝛽+1

𝛽
 𝑛 + 1 .  The Jacobin matrix evaluated at  0, 0  is 

𝐽 0,0  =   
0 1
1

𝜎
0 , 

and hence, the trivial equilibrium point is saddle point which is unstable. 

In similar manner, the Jacobin matrix evaluated at  1, 0   is 

𝐽 1,0  =   
0 1

1−𝛽

𝜎𝛽
0 , 

and hence, the equilibrium point is saddle point which is also unstable. 

The Jacobin matrix evaluated at   𝛽, 0  is  

𝐽 𝛽, 0  =   3
0 1

𝛽

𝜎
− 2𝛽 − 1 0

 , 

and this equilibrium point is a center for the linearized system since the 

expression  (3
𝛽

𝜎
− 2𝛽 − 1) is a positive quantity. For this to be sure more 

we do the following as it is done in [5]. Equation (10) has first integral and 

multiplying (10) through by  𝑁 ′ =
𝑑𝑁

𝑑𝑥
 ,  

𝜎
𝑑2𝑁

𝑑𝑥2 N’ +  
1

𝛽
 𝑁 1 − 𝑁  𝑁 − 𝛽 𝑁 ′ = 0            (16) 
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Integrating this with respect to x produces 
𝜎

2
 𝑁′ 2+

𝑁3

3
 1 + 𝛽 − 𝛽  

𝑁2

2
 −

𝑁4

4
= 𝑐.            (17) 

 

This can be also written as 
𝜎

2
𝑣2 +

𝑁3

3
 1 + 𝛽 − 𝛽  

𝑁2

2
 −

𝑁4

4
= 𝑐.            (18) 

and the label curves are orbits in the phase plane as depicted in Fig5 below. 

 

 
Figure 5: Level curves for 𝛽 = 0.07, 𝜎 = 1.7 

 

V. Result and discussion 
The scaled equation contains three dimensionless parameters whereas the dimensioned equation has 

seven parameters. The population growth termis critical depensation growth function. The growth below its 

critical mass quantity is negative which shows sexual mate is small so that population growth declines. The 

critical points origin and the carrying capacity are stable while the critical mass quantity is unstable. To solidify 

the analyticalresults, numerical simulations are provided for hypothetical set of parametric values. Some of the 

comments observed on the optimal catch problem are: 

i) The population growth is logistic: The first and the third terms deal with local behavior, whereas the second 

deals with horizontal redistribution. We observed two special cases 𝜎 → 0  and  𝜎 → ∞. The first one 

considers a situation with the habitat consisting of vertical "cells". The cell walls stop the horizontal 

diffusion and in this case, we found out the stationary points are 

𝑁0 =  
1 − 𝑏 𝑓𝑜𝑟 𝑏 < 1,

0 𝑓𝑜𝑟 𝑏 ≥ 1.
  

I identified the transcritical bifurcation occurs at 𝑏 = 1 the maximal local sustainable yield 

occurs for 𝑏 =
1

2
 and the maximum sustainable yield is 

                                                                      𝑌𝑚𝑎𝑥 =  1 −
1

2
 

1

2
=

1

4
 . 

The limit behavior when 𝜎 → ∞,  i.e.,  the diffusion is high and the habitat 

is emptied, is the zero solution. 

ii) The population growth is critical depensation: 
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Similarly, if 𝜎 → 0,   the first one considers a situation with the habitat consisting of vertical "cells". Hence, I 

found out stationary points 

𝑁0 = 0, 𝑁1 =
 𝛽+1 −  𝛽+1 2−4𝛽(1+𝑏)

2
  and 𝑁2 =

 𝛽+1 +  𝛽+1 2−4𝛽(1+𝑏)

2
. 

The stationery points 𝑁0 and 𝑁1 are stable while 𝑁3 is unstable.The maximum 

sustainable yield in the equilibrium situation is found as 𝑌𝑀𝑆𝑌 = 𝑏𝑚𝑎𝑥  
 𝛽+1 +  𝛽+1 2−4𝛽(1+𝑏𝑚𝑎𝑥 )

2
 ,  

𝛽+1

2 𝛽
 

2

≥

 1 + 𝑏𝑚𝑎𝑥  .As depicted, Fig 3 is the numerical solution of the mathematical model for 𝛽 =  0.1,   𝜎 = 0.01, 𝑏 =
0.5 and Fig 4 shows the dependency of the equilibrial level of the population on the population mortality. I also 

considered the case harvesting term is zero and I found out the traveling wave solution, and 

I justified the axial equilibrium point  𝛽, 0  is really a center, as Fig5 justifies this fact. 

 

VI. Conclusion 
Here, in this paper, the PDE mathematical model equation contain: the population growth term, 

diffusion term and the harvesting term. If the diffusion term 𝜎 → 0 we have a situation with the habitat 

consisting of vertical "cells". Accordingly the stationary points and the maximum sustainable yield are found. It 

is also verified the dependency of the equilibria on the control parameter 𝑏. The research also did the qualitative 

analysis of the model equation for different cases, especially traveling wave solution is found if the harvesting 

term is zero 
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