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Abstract: One of the most elusive unsolved problems of today is Riemann hypothesis. For long mathematicians 

have struggled to prove this problem,and also tried to devise an elementary version of the problem, proof of 

which indirectly proves Riemann hypothesis. In 2002 J. C. Lagarias published such an elementary version of the 

hypothesis which has been widely accepted as an elementary equivalent of Riemann hypothesis. This article 

attempts to prove Lagarias’s condition which consequently proves Riemann hypothesis. 
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I. Introduction 
In mathematics, the Riemann hypothesis

[1]
is a conjecture that the Riemann zeta function has its zeros 

only at the negative even integers and complex numbers with real part 
1

2
. Many consider it to be the most 

important unsolved problem in pure mathematics.
 [2]

It is of great interest in number theory because it implies 

results about the distribution of prime numbers. It was proposed by Bernhard Riemann (1859), after whom it is 

named. German mathematician G.F.B. Riemann (1826 - 1866) observed that the frequency of prime numbers is 

very closely related to the behavior of an elaborate function 

    ζ(s) = 1 + 1/2
s
 + 1/3

s
 + 1/4

s
 + ... 

called the Riemann Zeta function. The Riemann hypothesis asserts that all interesting solutions of the equation 

    ζ(s) = 0 

lie on a certain vertical straight line. 

This has been checked for the first 10,000,000,000,000 solutions. A proof that it is true for every interesting 

solution would shed light on many of the mysteries surrounding the distribution of prime numbers.
 [3] 

 

II. Equivalents of Riemann hypothesis:
 

In 1984 Guy Robin has showedthat , 

σ(n)= 𝑒𝛾𝑛 𝑙𝑜𝑔𝑙𝑜𝑔(𝑛)    for all n≥5041 

The problem is a necessary and sufficient condition for the Riemann hypothesis. Here γ=0.57721  is the Euler–

Mascheroni constant and σ(n)is the sum of divisors of the positive integer n, given by 

σ(n)= 𝑑𝑑│𝑛  

Building on this, Jeffrey Lagariasshowed the equivalence of the Riemann hypothesis to a condition on harmonic 

sums
[4] [5]

, namely  

σ(n)≤Hn+ 𝑒𝐻𝑛   lnHn 

Here, Hnis the n-th harmonic number equal to the sum of the reciprocals of the first n positive integers  

Hn= 
𝑛
𝑘=1

1

𝑘
.  

 

III. Proof of Lagarias’s relation: 
Proof: The proposition to prove is that, 

σ(n)≤𝐻𝑛+ 𝑒𝐻𝑛 In𝐻𝑛  

When,nth harmonic number
[6]

, 

𝐻𝑛=1 +
1

2
+

1

3
+ ⋯

1

𝑛
 

σ(n)= 1+f1+f2+f3…. ….n 

Where f1, f2, f3…. …. are factors of n 

We see, 

σ(4)= 1+2+4 



Proving Riemann Hypothesis by Lagarias’s Equivalent  

DOI: 10.9790/5728-1505040510                                  www.iosrjournals.org                                            6 | Page 

       =4(
1

4
+

1

2
+ 1) 

       =4 (1 +
1

2
+

1

4
) 

σ(6)= 1+2+3+6 

       =6(
1

6
+

1

3
+

1

2
+ 1) 

       =6 (1 +
1

2
+

1

3
+

1

6
) 

 

So, 

σ(n)= 1+f1+f2+f3…. ….n 

=𝑛(
1

𝑛
…+

1

𝑓3
+

1

𝑓2
+

1

𝑓1
+ 1) 

=𝑛(1 +
1

𝑓1
+

1

𝑓2
+

1

𝑓3
…+

1

𝑛
) 

If     𝐻𝜎 𝑛 =1 +
1

𝑓1
+

1

𝑓2
+

1

𝑓3
…+

1

𝑛
let its complementary to harmonic  series is 𝐻′𝜎 𝑛 so that, 

𝐻𝜎 𝑛 + 𝐻′𝜎 𝑛  = 𝐻𝑛  

For example, 

𝐻𝜎 4 + 𝐻′𝜎  4  =(1 +
1

2
+

1

4
)+(

1

3
) = 1 +

1

2
+

1

3
+

1

4
= H4 

𝐻𝜎 6 + 𝐻′𝜎  6  =(1 +
1

2
+

1

3
+

1

6
)+(

1

4
+

1

5
) = 1 +

1

2
+

1

3
+

1

4
+

1

5
+

1

6
= H6 

𝐻𝜎 15  + 𝐻′𝜎  15  =(1 +
1

3
+

1

5
+

1

15
)+(

1

2
+

1

4
+

1

6
+

1

7
+

1

8
+

1

9
+

1

10
+

1

11
+

1

12
+

1

13
+

1

14
) = 1 +

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+

1

9
+

1

10
+

1

11
+

1

12
+

1

13
+

1

14
+

1

15
= H15 

So,  σ(n)= 1+f1+f2+f3…. ….n 

=𝑛(1 +
1

𝑓1
+

1

𝑓2
+

1

𝑓3
…+

1

𝑛
) 

        = 𝑛𝐻𝜎 𝑛  = 𝑛 (𝐻𝑛 − 𝐻′𝜎  𝑛 )= n 𝐻𝑛 (1−
𝐻′𝜎  𝑛 

𝐻𝑛
). 

It is quite evident from a number as little as 15 that for larger numbers, n>>>1, there would be 

𝐻′𝜎  𝑛 >>>𝐻𝜎 𝑛 for most n  with several factors, more so when n is a prime. 

e.g. 𝐻𝜎 𝑝 = 1 +
1

𝑝
    and  𝐻′𝜎 𝑝 = 1 +

1

2
+

1

3
+

1

4
…+

1

𝑝−1
 

𝐻′𝜎  𝑛 >𝐻𝜎 𝑛 is true even in case of n=larger primorials, as primes are sparse then. 

Reverse is true in case of n=smaller primorialor,n= smaller factorial; in these cases 𝐻′𝜎 𝑛 <𝐻𝜎  𝑛 . 

e.g. 2!=4 and 𝐻𝜎 4 = 1 +
1

2
+

1

4
    and  𝐻′𝜎 4 =

1

3
 

       3!=6 and 𝐻𝜎 6 = 1 +
1

2
+

1

3
+

1

6
   and  𝐻′𝜎 6 =

1

4
+

1

5
   here, 𝐻′𝜎 𝑛 <𝐻𝜎  𝑛 . 

But even for the next bigger factorial numbers, 

       4!=24 and 𝐻𝜎 24 = 1 +
1

2
+

1

3
+

1

6
+

1

8
+

1

12
+

1

24
  and  𝐻′𝜎  24 =

1

4
+

1

5
+

1

7
+

1

9
+

1

10
+

1

11
+

1

13
+

1

14
+

1

15
+

1

16
+

1

17
+

1

18
+

1

19
+

1

20
+

1

21
+

1

22
+

1

23
 

       5!=120 and 𝐻𝜎 120 = 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

8
+

1

12
+

1

20
+

1

24
+

1

30
+

1

60
+

1

120
and  𝐻′𝜎 120 =

1

7
+

1

9
+

1

10
+

1

11
+

1

13
+

1

14
+

1

15
+

1

16
+

1

17
+

1

18
+

1

19
+

1

21
+

1

22
+

1

23
+

1

25
+

1

26
+

1

27
+

1

28
+

1

29
+

1

31
+

1

32
+

1

33
+

1

34
+

1

35
+

1

36
+

1

37
+

1

38
+

1

39
+

1

40
+

1

41
+

1

42
+

1

43
+

1

44
+

1

45
+

1

46
………+

1

59
+

1

61
……… . +

1

114
+

1

115
+

1

116
+

1

117
+

1

118
+

1

119
. 

It is becoming 𝐻′𝜎 𝑛 >𝐻𝜎 𝑛 whenn is large enough andn=m! and (n,m)∈ ℤ+ 

When n=𝑎𝑚and (n,a,m)∈ ℤ+ 

𝐻𝜎 𝑛 = 1 +
1

𝑎
+

1

𝑎2 +
1

𝑎3 ……+
1

𝑎𝑚
and  𝐻′𝜎 𝑛 =

1

𝑎+1
+

1

𝑎+2
+

1

𝑎+3
……+

1

𝑎2−1
+

1

𝑎2+1
+

1

𝑎2+2
+

1

𝑎2+3
……+

1

𝑎3−1
……+

1

𝑎𝑚−1
. 

It is becoming 𝐻′𝜎 𝑛 >𝐻𝜎 𝑛 when n is large enough and n=𝑎𝑚and (n,a,m)∈ ℤ+ 

As it has been proposed, 

σ(n)≤𝐻𝑛+ 𝑒𝐻𝑛 In𝐻𝑛  

or,  n 𝐻𝑛 (1−
𝐻′𝜎  𝑛 

𝐻𝑛
)≤𝐻𝑛+ 𝑒𝐻𝑛 In𝐻𝑛  

or,  n 𝐻𝑛 (1−
𝐻′𝜎  𝑛 

𝐻𝑛
) −𝐻𝑛≤𝑒𝐻𝑛 In𝐻𝑛  

or,  n 𝐻𝑛 (1−
𝐻′𝜎  𝑛 

𝐻𝑛
−

1

𝑛
)≤𝑒𝐻𝑛 In𝐻𝑛  

or,  𝐻𝑛 (1−
𝐻′𝜎  𝑛 

𝐻𝑛
−

1

𝑛
)≤ 

1

𝑛
𝑒𝐻𝑛 In𝐻𝑛  
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or,  𝐻𝑛 (1−
𝐻′𝜎  𝑛 

𝐻𝑛
−

1

𝑛
)≤ 𝑒𝐻𝑛 In𝐻𝑛

1

𝑛  

Let, 𝐻𝑛=𝑒𝑥   when x is a positive real number. 

So, 𝐻𝑛 (1−
𝐻′𝜎  𝑛 

𝐻𝑛
−

1

𝑛
)≤ 𝑒𝐻𝑛 In(𝑒𝑥)

1

𝑛  

or,𝐻𝑛 (1−
𝐻′𝜎  𝑛 

𝐻𝑛
−

1

𝑛
)≤ 𝑒𝐻𝑛 In𝑒

𝑥

𝑛  

So, 𝐻𝑛 (1−
𝐻′𝜎  𝑛 

𝐻𝑛
−

1

𝑛
)≤ 𝑒𝐻𝑛

𝑥

𝑛
 

We know, 𝑒1 = 𝑒 = 2.7182818284590452353602874713527 … > 1, 

𝑒2 =7.389056098930650227230427460575… > 2, 𝑒3 =20.085536923187667740928529654582…> 3, 

thus,𝑒𝑥 > 𝑥     and   𝑒𝐻𝑛 > 𝐻𝑛  ,and when n>>1 then, 𝑒𝐻𝑛 >> 𝐻𝑛and𝑒𝑥 >> 𝑥 

Again,H1=
1

1
= 1,  H2 =1 +

1

2
< 2, H3 =1 +

1

2
+

1

3
< 3, thus 𝐻𝑛  =1 +

1

2
+

1

3
+ ⋯

1

𝑛
< 𝑛 

So, 𝐻𝑛=𝑒𝑥 < 𝑛     and, 𝑥 ≪ 𝑛     or, 
𝑥

𝑛
≪ 1 so,  0 <

𝑥

𝑛
≪ 1 

Quite clearly, for most numbers ,(1−
𝐻′𝜎  𝑛 

𝐻𝑛
−

1

𝑛
)≪ 1, and even for factorials and small primorials,  

(1−
𝐻′𝜎  𝑛 

𝐻𝑛
−

1

𝑛
)< 1 

For a larger number,whichare not factorial or small primorialhaving a few or several factors, when  

𝐻′𝜎  𝑛 >>>Hσ(n), 

 1= 
𝐻𝑛

𝐻𝑛
=

𝐻′𝜎  𝑛 +𝐻𝜎  𝑛 

𝐻𝑛
→

𝐻′𝜎  𝑛 

𝐻𝑛
 

Conversely, 
𝐻′𝜎  𝑛 

𝐻𝑛
 → 1  and (1−

𝐻′𝜎  𝑛 

𝐻𝑛
) → 0  when n>>>1 or, more precisely, when n→∞, 

1

𝑛
 → 0. 

So, for most numbers ,(1−
𝐻′𝜎  𝑛 

𝐻𝑛
−

1

𝑛
)≪ 1 

So, in the equation,𝐻𝑛 (1−
𝐻′𝜎  𝑛 

𝐻𝑛
−

1

𝑛
)≤ 𝑒𝐻𝑛

𝑥

𝑛
it has been proved that, 

𝑒𝐻𝑛 >> 𝐻𝑛or, 𝐻𝑛 ≪ 𝑒𝐻𝑛  that means 𝑥 ≪ 𝑒𝑥 . 

(1−
𝐻′𝜎  𝑛 

𝐻𝑛
−

1

𝑛
)< 1 on the left hand side, 0 <

𝑥

𝑛
< 1   on the right hand side. 

So, when n has a few or several factors, 

𝐻𝑛 (1−
𝐻′𝜎  𝑛 

𝐻𝑛
−

1

𝑛
)≤ 𝑒𝐻𝑛

𝑥

𝑛
 . 

Now, to get a more general picture, we further modify the relation, by placingHn=𝑒
𝑥 , as per our assumption, 

𝐻𝑛 (1−
𝐻′𝜎  𝑛 

𝐻𝑛
−

1

𝑛
)≤ 𝑒𝐻𝑛

𝑥

𝑛
 

or,𝑒𝑥  (1−
𝐻′𝜎  𝑛 

𝐻𝑛
−

1

𝑛
)≤ 𝑒𝑒

𝑥 𝑥

𝑛
 

or, ln⁡[𝑒𝑥  (1−
𝐻′𝜎  𝑛 )

𝐻𝑛
−

1

𝑛
)] ≤ ln⁡[𝑒𝑒

𝑥 𝑥

𝑛
] 

or,  𝑥 + ln  1 −
𝐻′𝜎  𝑛 

𝐻𝑛
−

1

𝑛
 ≤ 𝑒𝑥 + ln

𝑥

𝑛
 

Here, 𝑥 < 𝑒𝑥and for larger numbers 𝑥 ≪ 𝑒𝑥  

We got,  1 −
𝐻′𝜎  𝑛 

𝐻𝑛
−

1

𝑛
 < 1  and    

𝑥

𝑛
< 1 

Then, ln  1 −
𝐻′𝜎  𝑛 

𝐻𝑛
−

1

𝑛
 < 1  and    ln

𝑥

𝑛
< 1 

As n>>𝐻𝑛≥𝐻′𝜎 𝑛 > 1  so, 
𝐻′𝜎  𝑛 

𝐻𝑛
>

1

𝑛
. Also,ln  1 −

𝐻′𝜎  𝑛 

𝐻𝑛
−

1

𝑛
  will vary more, more negative in case of large 

n and 1 − (
𝐻′𝜎  𝑛 

𝐻𝑛
+

1

𝑛
) → 0with a few factors reducing the left hand side of our given relation, less so in case 

of n with many factors compared to its value and 1 − (
𝐻′𝜎  𝑛 

𝐻𝑛
+

1

𝑛
) → 1as in case of factorials,in any way 

subtracting from the left hand side, ln  1 −
𝐻′𝜎  𝑛 

𝐻𝑛
−

1

𝑛
 = ln  1 − (

𝐻′𝜎  𝑛 

𝐻𝑛
+

1

𝑛
) will always be negative.  

On the right hand side, 𝑒𝑥 + ln
𝑥

𝑛
=𝐻𝑛 +  ln𝑥 − ln 𝑛=(𝐻𝑛 − ln𝑛) + ln𝑥 

We know, lim𝑛→∞ (𝐻𝑛 − ln𝑛) → 𝛾so, 𝐻𝑛 − ln𝑛 = 𝛾 + 𝑘 

Here, Euler–Mascheroni constant, 𝛾=𝐻𝑛 − ln𝑛 −
1

2𝑛
+

1

12𝑛2 −
1

120𝑛4 …… ..=𝐻𝑛 − ln𝑛 − 𝑘. 

𝑘 =
1

2𝑛
−

1

12𝑛2 +
1

120𝑛4 …… .. , and 𝛾∼0.57721  .
[6]

 

Therefore, both (𝐻𝑛 − ln 𝑛)  and ln𝑥is positive 

So,  𝑥 + ln  1 −
𝐻′𝜎  𝑛 

𝐻𝑛
−

1

𝑛
 ≤ 𝑒𝑥 + ln

𝑥

𝑛
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So,  𝑥 + ln  1 − (
𝐻′𝜎  𝑛 

𝐻𝑛
+

1

𝑛
) ≤ 𝑒𝑥 + ln

𝑥

𝑛
(step J) 

There could be several situations, 

1) When n is a prime, 𝑝𝑛or a number with a few or several factors,𝐻′𝜎 𝑛 ≫ 𝐻𝜎 𝑛  , 𝐻′𝜎  𝑛 → 𝐻𝑛  and 

 1 − (
𝐻′𝜎  𝑛 

𝐻𝑛
+

1

𝑛
)   is a very small fraction, and  1 − (

𝐻′𝜎  𝑛 

𝐻𝑛
+

1

𝑛
) → 0   when 𝑛 → ∞ . 

2) When n is a smallprimorial,𝑝𝑛# or a small factorial, m!,𝐻𝜎 𝑛 ≫ 𝐻′𝜎 𝑛  , 𝐻𝜎  𝑛 → 𝐻𝑛 , and  1 −

(𝐻′𝜎𝑛𝐻𝑛+1𝑛)  is a bigger fraction, and 1−(𝐻′𝜎𝑛𝐻𝑛+1𝑛)→1. 

3) When n is a larger primorial, 𝑝𝑛# or a larger factorial, m!, or a power of an integer n=𝑎𝑚or a larger 

integer with a significant number of factors,𝐻𝜎 𝑛 > 𝐻′𝜎  𝑛  ,  

and  1 − (
𝐻′𝜎  𝑛 

𝐻𝑛
+

1

𝑛
) is between 0 and 1. 

4) Our quasi-theoretical situation when𝐻𝜎 𝑛 = 𝐻𝑛  and 𝐻′𝜎  𝑛 = 0. Only actual example is when n=2, 

then, 𝐻𝜎 𝑛 = 1 +
1

2
= 𝐻𝑛  , 𝐻′𝜎 𝑛 = 0. In this case,  1 − (

𝐻′𝜎  𝑛 

𝐻𝑛
+

1

𝑛
) =  1 −

1

𝑛
  and when, 

theoretically,𝑛 → ∞ then,  1 − (
𝐻′𝜎  𝑛 

𝐻𝑛
+

1

𝑛
) = 1 .  This is the situation when the left hand side of our relation 

(step J) takes the greatest value, and our relation (step J) is least likely to be true. We will try to prove that our 

relation (step J) is true even in this case, consequently, it will be true for all other cases. 

Here, 𝑥 < 𝑒𝑥  , and except for a few initial numbers,  𝑥 ≪ 𝑒𝑥 . 

For situation 1), 1 − (
𝐻′𝜎  𝑛 

𝐻𝑛
+

1

𝑛
)   is a very small fraction, and  1 − (

𝐻′𝜎  𝑛 

𝐻𝑛
+

1

𝑛
) →

1

𝑛
→ 0   when 𝑛 → ∞ 

and 1 − (
𝐻′𝜎  𝑛 

𝐻𝑛
+

1

𝑛
) ≤

𝑥

𝑛
, then, 

𝑥 + ln  1 − (
𝐻′𝜎 𝑛 

𝐻𝑛

+
1

𝑛
) ≤ 𝑒𝑥 + ln

𝑥

𝑛
 

For situation 4), when the left hand side takes highest value, 

𝑥 + ln  1 −
1

𝑛
 ≤ 𝑒𝑥 + ln

𝑥

𝑛
 

or, 𝑥 + ln  
𝑛−1

𝑛
 ≤ 𝑒𝑥 + ln

𝑥

𝑛
 

or, 𝑥 + ln  
𝑛−1

𝑛
 − ln

𝑥

𝑛
≤ 𝑒𝑥  

or,𝑥 + ln  
𝑛−1

𝑛
 + ln

𝑛

𝑥
≤ 𝑒𝑥  

Now we see the first few harmonic numbers and examples of values of terms of the relation above (Table 1). 

Table 1(some inaccuracies likely due to rounding up the figures) 
n 𝐻𝑛=𝑒𝑥  𝑥 = ln𝑒𝑥 = ln𝐻𝑛  𝑛 − 1

𝑛
 ln  

𝑛 − 1

𝑛
  

𝑛

𝑥
 ln

𝑛

𝑥
 ln𝑛 

1 1 0 0 -∞ ∞  0 

2 1.5 ∼0.40547 0.5 -0.693147 4.9325 1.5958 0.6931 

3 ∼1.83333 ∼0.60613 0.666666 -0.405465 4.9494 1.5992  

4 ∼2.08333 ∼0.73396 0.75 -0.287682    

5 ∼2.28333 ∼0.82563 ∼0.85714 -0.154154    

6 2.45 ∼0.89608      

7 ∼2.59286 ∼0.95276      

8 ∼2.71786 ∼0.99984      

9 ∼2.82897 ∼1.03991      

10 ∼2.92897 ∼1.07465 0.9 -0.10536 9.30535 2.2305 2.3025 

⋮ ⋮ ⋮      

20 ∼3.59774 ∼1.28031 0.95 -0.0512932 15.6212 2.7486 2.9957 

⋮ ⋮ ⋮      

30 ∼3.99499 ∼1.38504      

⋮ ⋮ ⋮      

40 ∼4.27854 ∼1.45361      

⋮ ⋮ ⋮      

50 ∼4.49921 ∼1.50390      

⋮ ⋮ ⋮      

130 ∼5.44859 ∼1.69536      

⋮ ⋮ ⋮      

150 ∼5.59118 ∼1.72119      

⋮ ⋮ ⋮      

200 ∼5.87803 ∼1.77122      

⋮ ⋮ ⋮      

250 ∼6.10068 ∼1.80840      

⋮ ⋮ ⋮      
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300 ∼6.28266 ∼1.83779      

⋮ ⋮ ⋮      

400 ∼6.56993 ∼1.88250      

⋮ ⋮ ⋮      

500 ∼6.79282 ∼1.91587   260.978 5.5644 6.2146 

⋮ ⋮ ⋮      

900 ∼7.38017 ∼1.99880 ∼0.9988 -0.0011206    

⋮ ⋮ ⋮      

925 ∼7.40755 ∼2.00250      

⋮ ⋮ ⋮      

10000 ∼9.78761 ∼2.28112 0.9999 -0.0001 4383.81 8.3856 9.21034 

⋮ ⋮ ⋮      

1000000 ∼14.3927 ∼2.66672 0.999999 -0.000001 374992.5 12.834 13.8155 

⋮ ⋮ ⋮      

1000000000 ∼21.3004 ∼3.05872 0.999999999 -

9.99999972

22×10−10  

326934142.3

8635 

19.605269

3 

20.7232658

37 

We can further simplify the relation, 

or, 𝑥 + ln  
𝑛−1

𝑛
 − ln

𝑥

𝑛
≤ 𝑒𝑥  

or, 𝑥 + ln  
𝑛−1

𝑛
⋅
𝑛

𝑥
 ≤ 𝑒𝑥  

or, 𝑥 + ln
 𝑛−1 

𝑥
≤ 𝑒𝑥  

or, 
𝑥

𝑒𝑥
+

1

𝑒𝑥
ln

 𝑛−1 

𝑥
≤ 1                                    (step L) 

Here, 𝑥 ≪ 𝑒𝑥   and ln
 𝑛−1 

𝑥
< ln

𝑛

𝑥
< ln𝑛 < 𝑒𝑥 = 𝐻𝑛  

So,
𝑥

𝑒𝑥
≪ 1  and 

1

𝑒𝑥
ln

 𝑛−1 

𝑥
<

1

𝑒𝑥
ln

𝑛

𝑥
<

1

𝑒𝑥
ln 𝑛 < 1 . 

In the (step L) of the relation, with the increase in n , and consequently, x, there would be more and more 

significant changes in  
𝑥

𝑒𝑥
 and 

1

𝑒𝑥
  reducing the value of left hand side by division by larger and increasingly 

larger denominator (exponential divisor)compared to numerator, while the value of ln
 𝑛−1 

𝑥
  will not change 

much compared to 𝑒𝑥( as 𝑒𝑥will change exponentially), will remain close to ln 𝑛 , always less than 𝑒𝑥 , and  
1

𝑒𝑥
ln

 𝑛−1 

𝑥
 always less than 1. So, the (step L) is more and more likely to be true for larger and larger numbers, 

as it represents Lagarias’s equivalent of Riemann hypothesis which has been tested and proved for the first 

10000000000000 solutions, the (step L) is true.  

So, the condition, 
𝒙

𝒆𝒙
+

𝟏

𝒆𝒙
𝐥𝐧

 𝒏−𝟏 

𝒙
≤ 𝟏is true. 

It may look more convincing to some if we rewrite (step L) as, 
𝑥

𝑒𝑥
+

1

𝑒𝑥
ln 𝑛 − 1 −

1

𝑒𝑥
ln𝑥 ≤ 1    or, 

𝑥−ln𝑥

𝑒𝑥
+

1

𝑒𝑥
ln 𝑛 − 1 ≤ 1 

Here, 
𝑥−ln𝑥

𝑒𝑥
  will be increasingly and exceedingly small fraction when n increases, and as 

1

𝑒𝑥
ln 𝑛 < 1  so, 

1

𝑒𝑥
ln 𝑛 − 1 < 1 and its change would be negligible even after medium-large n, compared to the change in 

𝑥−ln𝑥

𝑒𝑥
  . 

(e.g.whenn=10000 then ln 10000 = 9.2103403719761827360719658187375 and  

ln 9999 = 9.2102403669758493777366323187232 divide each of them by 𝑒𝑥 = 𝐻𝑛 = 𝐻10000 =∼9.78761, 

and difference would be very small one, get smaller and smaller and smaller, here 

1.0217509722328365692288517247827×10−5 and 
1

𝑒𝑥
ln 𝑛 − 1  in this case would be 

0.94101015130106832799188283132687 and 
𝑥−ln𝑥

𝑒𝑥
  would be 0.14880583202400649822138463507075 then 

𝑥−ln𝑥

𝑒𝑥
+

1

𝑒𝑥
ln 𝑛 − 1 =1.0898159833250748262132674663976, apart from any inaccuracy for rounding up the 

figure we should bear in mind that we are calculating it with that form of the relation when the left hand side 

takes the highest value, and the relation is least likely to be true; even then, like prime number theorem, the 

relation would be true for higher values of n, as we see when n=1000000000 then with values taken from the 

table1, 
𝑥−ln𝑥

𝑒𝑥
+

1

𝑒𝑥
ln 𝑛 − 1 = 0.09111206701289313200293330861134 + 0.97290500816634481773402955305186 

=1.0640170751792379497369628616632,  

when n=1000000000000000then, 
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𝑥−ln𝑥

𝑒𝑥
+

1

𝑒𝑥
ln 𝑛 − 1 = 0.98106535988932156658865977456679+0.07174429771529358473266707576945=   

1.0528096576046151513213268503362, the value is decreasing on the proposed lesser side of the relation, and 

will be true for very large values of n, and certainly when n→∞) 

So, Lagarias’s equivalent of Riemann hypothesis is true even when the left hand side takes the greatest value. 

So, σ(n)≤𝑯𝒏+ 𝒆𝑯𝒏In𝑯𝒏is truewhen n→∞. 

Consequently, Riemann hypothesis, which has been proved for the first 10000000000000 solutions, is true for 

all zeros beyond it, for values towards infinity. ■ 
 

IV. Conclusion 
Riemann hypothesis is one of the most elusive unsolved problems of today. For long mathematicians 

have tried to prove this problem. There has been effort to devise an elementary version of the problem proof of 

which indirectly proves Riemann hypothesis. J. C. Lagarias in 2002 published such an elementary version of the 

hypothesis which has been widely accepted as an elementary equivalent of Riemann hypothesis. In this article 

there has been an effort to prove Lagarias’s condition which consequently proves Riemann hypothesis. 
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