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I. Introduction 
Suppose that we are given a point, P, in the interior of a convex quadrilateral, Q, in the xy  plane. Is 

there an ellipse, E₀, inscribed in Q and which also passes through P ? If yes, how many such ellipses ? By 

inscribed in Q we mean that E₀ lies in Q and is tangent to each side of Q. Looked at in a dynamic sense: Imagine 

a particle constrained to travel along the path of an ellipse inscribed in Q, so that the particle bounces off of each 

side of Q along its path. Of course there are infinitely many such paths. Can we also specify a point in Q that the 

particle must pass through ? If yes, is such a path then unique ? We show below(Theorem 1) that the path is 

unique when P lies on one of the diagonals of Q(but does not equal their intersection point), while there are two 

such paths if P does not lie on one of the diagonals of Q. If P equals the intersection point of the diagonals of Q, 

then no ellipse inscribed in Q passes through P. Finally, there is a unique ellipse inscribed in Q which is tangent 

at a given point on the boundary of Q, assuming, of course, that that point is not one of the vertices of Q. For a 

paper somewhat similar to this one, but involving ellipses inscribed in triangles, see [4]. 

 

II. Main Result 

Theorem 1: Let Q be a convex quadrilateral in the xy plane, let  int Q denote the interior of Q, and let ∂(Q) 

denote the boundary of Q.   Let D and D₁ ₂denote the diagonals of Q and let IP denote their point of 

intersection. Let ( , )P x y  be a point in    .Q int Q Q   

(i) If   ,  P int Q P D D  ₁ ₂, then there are exactly two ellipses inscribed in Q which pass through P. 

(ii) If  P int Q and 1 2  P D D  , but P IP , then there is exactly one ellipse inscribed in Q which 

passes through P. 

(iii) There is no ellipse inscribed in Q which passes through IP. 

(iv) If  P Q , but P is not one of the vertices of Q, then there is exactly one ellipse inscribed in Q which 

passes through P(and is thus tangent to Q at one of its sides). 

Figures 1 and 2 below illustrate Theorem 1(i) and (ii), respectively. 
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Figure 1 

 
Figure 2 

By Theorem 1 we have the following:  

Corollary: If two ellipses inscribed in a convex quadrilateral intersect at a point, then that point of intersection 

cannot lie on either diagonal of the quadrilateral. 
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III. Preliminary Results 
A problem, often referred to in the literature as Newton's problem, was to determine the locus of 

centers of ellipses inscribed in a convex quadrilateral, Q, in the xy plane. Chakerian [1] gives a partial solution 

of Newton's problem using orthogonal projection, which is the solution actually given by Newton. 

Newton’s Theorem:Let 1M  and 2M  be the midpoints of the diagonals of a convex quadrilateral, Q. 

If 0E  is an ellipse inscribed in Q, then the center of 0E  must lie on the open line segment, Z, connecting 1M  

and 2M . 

The figure below illustrates Newton's Theorem, which we use to help with deriving the general 

equation of an ellipse inscribed in Q(see Proposition 1). 

 
We now state the following result about when a quadratic equation in x and y yields a nondegenerate ellipse. 

Lemma 1: The equation
2 2 0Ax Bxy Cy Dx Ey F      , with , 0A C  , is the equation of an ellipse 

if and only if 0   and 0  , where
24AC B    and 

2 2CD AE BDE F       

Remark: The condition 0   implies that the equation defines a curve and not just a single point or the empty 

set. The condition 0  implies that the equation defines an ellipse [2]. 

We shall prove Theorem 1 below when Q is not a parallelogram. We leave the details when Q is a parallelogram 

for the reader. Let Q be a convex quadrilateral with vertices 1 2 3, , ,A A A  and 4A , starting with 1A  lower left 

corner and going clockwise. Then there is an affine transformation which sends 1 2, ,A A  and 4A to the points

(0,0),(0,1),  and (1,0) , respectively. It then follows that 3 ( , )A s t for some , 0s t  ; Thus it suffices to 

consider the quadrilateral, ,s tQ , with vertices (0,0),(0,1), ( , )s t , and (1,0) .` 

 

Since ,s tQ  is convex, 1s t  ; Also, if Q has a pair of parallel vertical sides, first rotate counterclockwise by
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90
, yielding a quadrilateral with parallel horizontal sides. Since we are assuming that Q is not a parallelogram, 

we may then also assume that ,s tQ does not have parallel vertical sides and thus 1s  . The midpoints of the 

diagonals of ,s tQ  are 1

1 1
,

2 2
M

 
  
 

 and  2

1 1
,

2 2
M s t

 
  
 

, and the line through 1M  and 2M has equation 

 
2 ( 1)

( )
2( 1)

s t x t
y L x

s

  
 


 

Any point on the open line segment connecting 1M and 2M has the form ( , ( )),h L h h I 
1

2
 and 

1

2
s .  

Now suppose that 0E is an ellipse inscribed in ,s tQ . How does one find the equation of 0E and the points of 

tangency of 0E  with ,s tQ ? We sketch the derivation of the equation and points of tangency now.First, since 0E  

has center ( , ( ),h L h h I by Newton's Theorem, one may write the equation of 0E in the form 

 𝑥 − ℎ 2 + 𝐵 𝑥 − ℎ  𝑦 − 𝐿 ℎ  + 𝐶 𝑦 − 𝐿 ℎ  
2

+ 𝐹 = 0.               (1) 

Throughout we let J denote the open interval (0,1) ; Now suppose that 0E  is tangent to ,s tQ at the points 

,0( )P  and  0, ,vP v where ,v J  ;Differentiating(1)with respectto x andplugging in   vP and P

yields 

 
( )

2

BL h
h            (2) 

 ( ) .
2

Bh
v L h

C
   

Plugging in   vP and P  into (1) yields 

       ² ² 0h BL h h C L h F        and 

     ² ² 0h Bh v L h C v L h F      ; By (2) we have  
2

² 4
4

h
F B C

C
   and 

 
2 ( )

² 4
4

L h
F B C  ; Using both expressions for F gives 

𝐶 =
ℎ2

𝐿2(ℎ)
.                          3  

Now by (2) again, 

𝐵 =
2( − ℎ)

𝐿(ℎ)
.                (4) 

 

(2), (3), and (4) then imply that 

𝑣 =
 𝐿(ℎ)

ℎ
.                        (5) 

Substituting (3) and (4) into  
2

² 4
4

h
F B C

C
  yields   ² 2F h   ; (1) then becomes 

  
 

 
    

 
  

2 ²
² ² ² 2 0

²

h h
x h x h y L h y L h h

L h L h


 


         .  (6)         

Finally, we want to find h in terms of  , which makes the final equation simpler than expressing everything in 

terms of h. One way to do this is to use the following well-known Theorem of Marden [5]. 
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Marden’s Theorem: Let  
t t t

F z
z z z z z z

  
  

₁ ₂ ₃

₁ ₂ ₃
, 

3

1

1k

k

t


 , and let 1Z  and 2Z denote the zeros 

of  .  , ,F z Let L L L₁ ₂ ₃be the line segments connecting &  , &  ,   &  ,z z z z and z z₂ ₃ ₁ ₃ ₁ ₂respectively.If

1 2 3 0t t t  , then 1Z  and 2Z are the foci of an ellipse, 0E , which is tangent to 1 2, ,L L and 3L  at the points

2 3, ,  ₁ , where 
2 3 3 2 1 3 3 1

2 3 1 3

,
t z t z t z t z

t t t t
 

 
 

 
₁ ₂ , and 

1 2 2 1
3

1 2

t z t z

t t





= , respectively. 

Using    0,1 , , ,A A s t ₂ ₃ and 5 0, ,
1

t
A

s
 



 
 
 

and applying Marden's Theorem to the triangle 

2 3 5A A A , one can show that E₀ is tangent to ,s tQ at the point
2

,0
2( 1)

s h

t h s t

 
 

   
. 

 

Many of the details of this can be found in [3]. Hence
2

2( 1)

s h

t h s t





  
, which implies that 

 
 

 

1

2 1 1

t s s
h

t





 


 
                                                                                (7) 

Substituting for h in (6) using (7) and simplifying gives 

     ² ² 4 ² 1 2 2 2t x t t t s t st xy         

      ² ² 2 ² 2 ² ² 0, .t s s y t x t t s s y t J                      (8) 

Now we use Lemma 1 to show that (8) gives the equation of an ellipse. First,Δ simplifies to 

       16 ² 1 1 1 1 0t t s t         since ,  , 0,J s t   and 1s t  ;Similarly, δ simplifies 

to   ² 0( 1 1 ²)² s t      ; Note that by (7), any ellipse with equation given by (8) has center

 , ( )h L h C 
 

 

1 1
,

2 1 1 2 ( 1) 1

t s s t

t t



 

  
 

    
; This leads to the following result, some of which we 

have already proven. 

Proposition 1: (i) 0E  is an ellipse inscribed in ,s tQ if and only if the general equation of 0E is given by (8) for 

some J  . Furthermore, (8) provides a one-to-one correspondence between ellipses inscribed in ,s tQ and 

points J  . 

(ii) If 0E  is an ellipse given by (8) for some J  , then 0E  is tangent to the four sides of ,s tQ at the points



Dynamics of ellipses inscribed in quadrilaterals 

DOI: 10.9790/5728-1505041118                                        www.iosrjournals.org                                      16 | Page 

 
0,

t

t s s






 
 




 
₁ ,

 

  

  
   2

11 ²
,

1 1

t s ts

t s t s t s t s




  










 






   
,

 

   
3

1 (1 )
,

2 1 2 1

s t t

s t s t

 


 


  










    

, and 4 ( ,0)  , going clockwise and starting with the leftmost 

side. 

Proof: First, the derivation given above proves that if 0E  is an ellipse inscribed in ,s tQ , then the general 

equation of 0E  is given by (8) for some J  . Now it is clear geometrically that if 1E  and 2E  are distinct 

ellipses with the same center and which are each inscribed in a convex quadrilateral, Q, then Q must be a 

parallelogram. Chakerian mentions this in [1], but no proof is cited or given. One way to prove this is as 

follows:By using nonsingular affine transformations, one may assume that 1E  is the unit circle and that 2E  has 

major and minor axes parallel to the x and y axes. We leave the rest of the details to the reader. Since ,s tQ is not 

a parallelogram, there is a one-to-one correspondence between ellipses inscribed in ,s tQ and points J  and 

completes theproof of (i). Second, if 0E  is an ellipse with equation given by (8), then using basic calculus 

techniques it is easy to show that 0E  is inscribed in ,s tQ and is tangent to the four sides of ,s tQ at 4 ₁ , 

which proves (ii). 

 

Lemma 2: Let  

       , 1 ² 4 1 ,g x y ys y t t t xy                (9) 

     , , : , 0, 1, 1 .s t G s t s t s t s       

Then  , 0g x y  for any    ,, s tx y int Q . 

Proof: Suppose that    ,, s tx y int Q .  

Since  1ys y t   is a linear function of y which is positive at 0y   (yields 0t  ) and at 1y   (yields 

0s  ), 

  1 0, .ys y t y J               (10) 

Hence  , 0g x y  if 1t  . Assume now that 1s   and 1t  : By completing the square we have 

2

( , )

( )

g x y

s t




 
2

1
2 1

s

t xt
y

s t t

   
    

  
+  4 ² 1t t x

4

( 1)

( )

t x s t

s t

  


. Using similar reasoning, 

  1 0, .t x s t x J      

Hence  , 0g x y  if 1s  and 1t  . Finally, assume that 1s   and 1t  :
( , )g x y

x




  4 1 0ty t   , 

which implies that g has no critical points in  , ,s tint Q S S ₁ ₂ 

where     , : 0 ,0S x y x s y L x    ₁ ₂ ,     , : 1,0S x y s x y L x    ₂ ₃ , and  

  
1

1  ,
t

L x x
s


 ₂              (11) 

 
   1 .

1

t
L x x

s
 


₃

 

We now check g on  ,s tQ .  ,0  ² 0,g x t      , ² 1 ² / ²;( ) ( )g x L x s t s t x s   ₂ Since x s



Dynamics of ellipses inscribed in quadrilaterals 

DOI: 10.9790/5728-1505041118                                        www.iosrjournals.org                                      17 | Page 

for  , ,x y S ₁ 

       ² 1 ² 1  1 0,s t s t x s t s t s st s t           and hence nonzero. Thus 

  0( ),g x L x ₂ ;        , ² 2 1 ² / 1 ²;g x L x t s t x t s     ₃ Since 2 0s t   and s x  for 

( ),x y S ₂,       2 1 2 1  1 1 0,s t x t s t s t s s t              and hence nonzero. Thus

  , 0;g x L x ₃ Finally,     0, 1 ² 0g y ys y t    by (10). 

Proof of Theorem 1:For fixed , , ,x y s t , one can rewrite the left hand side of (8) as the following polynomial 

in  :   2

2 1 0 ,p p p p     where  , ,p g x y₂

   2 2 2 ² 2 2 ² ,p t s t xy sy s t sty t x      ₁  0 ²,p sy tx   and  ,g x y is from Lemma 2. 

Evaluating p at the endpoints of Jyields 

    0  ² 0,p sy tx              (12) 

    1  ² 1 ² 0.p t x y     

Now a simple computation yields, in simplified form, the discriminant of p: 

 2 0² 4p p p₁                       (13) 

        16 1 ² .s s t xy y L x y L x   ₂ ₃  

Also, 0 0( )p   , where 
1

0

22

p

p
   . Another simple computation yields 0( )p  

2

1 2 0

2

4

4

p p p

p


 , which 

implies, by (13), that 

 0( )p  
       

2

4 1 ²s s t xy y L x y L x

p

  ₂ ₃
.          (14) 

We now assume throughout that 1s   and thus 
1 1

,
2 2

I s
 

  
 

. The case 1s  follows similarly and we omit 

the details. Suppose that  ,x y   , ,s tint Q S S ₁ ₂where     , : 0 1,0S x y x y L x    ₁ ₂ , L₂ 

and L₃given in (11). By (14), 0( ) 0p   . Summarizing: 

  ,x y   ,s tint Q  and 0 0( )p   implies that 0( ) 0p   .   (15) 

For given    ,, s tx y int QP  , by Proposition 1(i), the number of distinct ellipses inscribed in ,s tQ which 

pass through P equals the number of distinct roots of   0p   in J. To prove (i), suppose that P D D ₁ ₂. 

Then 1 0 ,x y sy tx     which implies, by (12), that (0) 0 and (1) 0.p p  By (15),  p  has two 

distinct roots in J. To prove (ii), suppose that ,P D D ₁ ₂but .P IP Then either 1 0x y   or 

0,sy tx  butnot both, which implies, by (12), that (0) 0 and (1) 0,p p  or (0) 0 and (1) 0.p p   

By (15),  p   has one root in J. Finally, to prove(iii),if ,P IP  then by (12),  p  vanishes at both 

endpoints of J, which implies that p has no roots in J. The proof of (iv) follows from the proof of Proposition 

1(ii) and we leave the details to the reader. 

Examples: (1) 
1 3 1 3

,  , ,  and .
2 4 3 4

s t x y     Then 
1 3

,
3 4

P
 

  
 

 , ,s tint Q P D D ₁ ₂. By 

Theorem 1(i), there are exactly two ellipses, 1 2 and ,E E inscribed in ,s tQ and which pass through P;

 256   33 ² 36 4,p      which has roots
6 8

3 .
11 33

J  Letting 
6 8

3
11 33

    in (8) yields 

the equation of 1E : 
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      27 1  099 152 3 ² 16 1477 444 3 ² 24 1117 1062 3x y xy        + 

    36  524 3 1065 48 773 398 3x y       

  36  481 272 3 .     

Letting 
6 8

3
11 33

   in (8) yields the equation of 2E : 

      27 1  099 152 3 ² 16 1477 444 3 ² 24 1117 1062 3x y xy          

    36  1065 524 3 48 773 398 3x y      

  36  481 272 3 .     

(2) 
1 1

4,  2, ,  and .
2 4

s t x y     Then
1 1

,
2 4

P
 

  
 

,D D ₁ ₂
2 1

, .
3 3

P IP
 

   
 

By Theorem 1(ii), 

there is exactly one ellipse, 0E , inscribed in ,s tQ which passes through P; 

      1 / 4 29 28 ,p     which has roots
28

0 and ;
29

 Letting 
28

29
  in (8) yields the equation of 0E

: 15979 ² 17100 ² 27588 30856  31920 16240 1344.x y xy x y       
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