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I. Introduction 
In 1922 French mathematician  S. Banach, introduced a result which was also called as   Banach 

contractive theorem or Principle, which is stated as follows; 

The study of fixed point theory plays an important role in applications of many branches of 

mathematics. Finding a fixed point of contractive mappings becomes the center of strong research activity. 

There are some researchers who have worked about the fixed point of contractive mappings see [1,20] an 

important result regarding a contraction mapping, known as the Banach contraction principle generalized the 

famous Banach contraction principle in metric spaces. They replace an ordered Banach space for the real 

numbers and proved some fixed point theorems  of contractive  mappings in  metric space. 

 

Banach contraction principle plays an important role for solving non linear problems. Kannan [6] used 

the Banach contractive principle for analyzing new type of contractive condition.In 2002,Branciare [3] 

introduced  the concept of integral type contractive mapping  to generalized the concept of Banach contraction 

principle.In 2010,F.Khojasteh et al.[7] used the Branciare integral type contractive mapping for the cone metric 

space and proved some fixed point theorems 

 

In 2002, Branciari [3] introduced the notion of integral type contractive mappings in complete metric 

spaces and study the existence of fixed points for mappings which are defined on complete metric space 

satisfying integral type C
*

- Valued contraction. . Many researchers studies various contractions and a lot of 

fixed point theorems are proved in different spaces; see [1,12-17,18,19,20,21,22,23,24,25]. 

 

In this paper we presented some fixed point theorems of Integral type C
*

- Valued contractive 

mappings .Moreover, we present suitable example that support our main result. 

In this section  we introduce the integral type C
*
 - valued contractive mapping for the   C

*
 - algebra 

valued metric spaces and prove some fixed point theorems. 

 

II. Preliminaries 
Here we introduced  some basic definitions, notations and results of C

*
 - algebra  

1. A * lga ebra  𝒜 is a complex algebra with linear involution * such that y
**

= y and (yz)
*
 = z

*
y

*
, for any 

y,z   𝒜. 

2.If * -algebra  together with complete sub multiplicative norm satisfying ||y
*
|| =|| y|| for all y𝒜,  then *  -

algebra is  said to be a Banach  * -algebra.  

3.A C∗-algebra is a Banach*- algebra such that ||y*y||= || y||
2
 for all y𝒜.  
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4.An element of 𝒜 is called positive element, if 𝒜+ = 
*{ /y y y 𝒜}  and ( ) ,y R   where ( )y  is 

the spectrum of an element y𝒜 ,i.e ( )y  ={ :R I y    is not invertible}  There is a natural partial 

ordering on 𝒜+  given by y z  if and only if y-z 𝒜+. 

Definition 2.1.Suppose that X be a nonempty set, and the mapping :d X X 𝔸 is satisfying  the  following 

conditions: 

1. d(y, z) ≥ 0 for all y, z ∈ X and d(y, z) = 0 ⇔ y = z; 

2. d(y, z) = d(z, y) for all y, z ∈ X; 

3. d(y, z) ≤ d(y, x)+ d(x, z) for all x, y, z ∈ X. 

Then d is C∗-algebra valued metric on X, and (X , 𝔸, d) is C∗-algebra valued metric space. 

It is clear that C∗-algebra valued metric spaces is the generalization of the metric space by substituting  

𝔸 instead of ℝ. 

 

Definition 2.2 

Let (X , 𝔸, d) is C∗-algebra valued metric space and let {yn} be a sequence in X. If 

I). for any 0 ,there is N such that for all n>N , || d( yn,y) || then the sequence { yn} is said to be convergent, 

and we denote it as limn ny y   

 II). for  any 0 ,there is N such that for all n>N , || d( ym,yn) || then the sequence { yn} is said to be 

Cauchy sequence. 

III). C∗-algebra valued metric space is said to be complete if every Cauchy sequence in X with respect to A is 

convergent. 

 

Theorem 2.3 Let (X,d) be a complete metric space,  1,0  and XXf : ,then f  is said to be a 

contractive mapping such that for all y,z X , ),(),( zydfzfyd   then f has a unique fixed point. 

Recently in 2014,Z.Ma et al.[9] established the notion of C
*
 - algebra valued metric spaces,and proved some 

fixed point theorems for contractive and expansive mappings.For more details and basic definitions of C
*
 - 

algebra we refer [2,4,5,8,11]. 

 

Example 2.4.Let X = R and A = M2(R). Define d( y,z) = 
| 2 | 0

0 | 2 |

y z

y z

 
 

 
 for all y,z R and  

0.   

It is essay to verify that d is a C∗-algebra valued metric  space and (X , M2(ℝ), d) is complete C∗-algebra 

valued  metric spaces.  

 

Example:2.5 

Let Y=[0,1], 𝔾 = ℝ
2

 and p >1 be a constant.Take 𝕂 = { 𝑢, 𝑣 𝔾: 𝑢, 𝑣 0 }. We define  

:d Y Y 𝔾 as ( , ) (| | ,| | ).p pd u v u v u v    Then (Y,d) is a complete C∗- valued metric space 

 

Suppose :H Y Y  as 

  

 
21 1

2 4
Hu u u     for all     u Y  and ( ) 1k   where kℝ 

in fact 
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( , )

0

d Hu Hv

 𝑑𝕂 = 
(| | ,| | )

0

p pu v u v


 

 𝑑𝕂 

 

                       =

1 1 1 1
| ( ) ( )( )| , ( ) ( )( )|
2 4 2 4

0

p pu v u v u v u v u v u v


 

        
  𝑑𝕂 

                       =

1 1 1 1
| | | ( )| ,| | | ( )|

2 4 2 4

0

p p p pu v u v u v u v


 

      
  𝑑𝕂 

     
( , )

0

1

2

p p
u v u v

p


 

  𝑑𝕂 

                         
( , )

0

1

2

d u v

p
  𝑑𝕂 

Hence  0 Y  is the unique fixed of  H. 

Definition 2.6.Let (X , 𝔸, d) be a C∗-valued metric spaces. A mapping f from X into X is said to be a C∗-valued 

contractive if there exists an c ∈ 𝔸 with ||c|| < 1 such that d( f y, f z) ≤ c∗d(y, z)c,  

  y, z ∈ X. 

Branciari in 2002, introduced the general integral type contraction which stated as follows. 

 

Let   be the class of all mappings   from ℝ+ into ℝ+    which is Lebesgue integrable, summable on each 

compact subset of  ℝ+ ,non negative and for each   > 0,   
0



   (z)dz > 0. 

 

Lemma2.7: Let (X , d) be a complete metric space,   ∈ (0, 1) and let h : X → X be a mapping such that for 

each y, z ∈ X ,                        

( ( ), ( )) ( , )

,

0 0

d f x f y d x y

p pd d  
 

  
 

     (A) 

where   from ℝ+     into ℝ+     is a Lebesgue-integrable mapping which is summable (i.e., with 

 

 finite integral) on  each compact subset of ℝ+     nonnegative and such that for each   > 0 

0
( ) 0z dz



  .Then h has a unique fixed point y   X such that for each y   X, 

lim .n

n h y y    

 

Motivated by the work of Z. Ma et al. [9] and Branciari[3], we introduce the following definition. 

 

Definition 2.8. Let (X , 𝔸, d) be a C∗-valued metric space. A mapping h : X → X  is  said  to  be a 

  integral  C∗-valued contraction mapping on X if there exists an c   𝔸 with || c||< 1 such that 

                        

( ( ), ( )) ( , )

*

,

0 0

d f x f y d x y

p pd c d 
 

  
 

    

for all y,z X and .
  

Now we define a subclass of integral type C∗-valued contraction which we will use in our main 

 result. We call this class a sub additive integral type C∗-contraction.Let    be the set of all 

 mappings . 
 
satisfying the following:  
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0 0 0

( ) ( ) ( ) , , 0

a b a b

z dz z dz z dz a b  


     
   

3. Main Theorem:  

Let (X , 𝔸, d) be complete C∗-algebra valued metric space, if there exists c ∈ 𝔸 with  

||c|| < 1 and f : X → X be a integral C∗-valued contractive mapping such that for all  

x, y ∈ X , 

                        

( ( ), ( )) ( , )

,

0 0

d f x f y d x y

p pd d  
 

  
 

 
   (3.1)

 

For some  0,1 , then f has a unique fixed point in X. 

Proof: Let x 1 .x P choose 1 ( )n nx f x  we have  

1, 1
( ) ( ( ), ( ))

0 0

n n n n
d x x d f x f x

p pd d 
 

   

  

                 

1( , )

0

n nd x x

pd 



    (3.2) 

 

                                   

2 1( , )

1

0

d x x

n

pd    

  Since (0,1)    

 

thus      

1( , )

0

lim 0
n nd x x

n pd


  .                                                                (3.3) 

If 1lim ( , ) 0n n nd x x     and this is a contradiction,so 1lim ( , ) 0n n nd x x    

 

 We now show that ( )nx  is a Cauchy sequence. Due to this,we show that  

,lim ( ( ), ( )) 0m n m nd f x f x  . 

 

 By triangle inequality  

1 1 2 1( ( ), ( )) ( ( ), ( )) ( ( ), ( )) ........... ( ( ), ( ))

0 0

m n n n n n m md f x f x d f x f x d f x f x d f x f x

p pd d 
     

   

 

 Fixed point theory and applications and by sub- additivity of   we get  

 

1 1( ( ), ( )) ( ( ), ( )) ( ( ), ( ))

0 0 0
........

m n n n m md f x f x d f x f x d f x f x

p p pd d d  
 

      

          
2 1 2 1( , ) ( , )

1 1

0 0
( ........ ) 0.

1

n
d x x d x x

n n m

p pd d


    


      
   
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Thus  

       ,lim ( ( ), ( )) 0m n n md f x f x   

 

This means that { }n n Nx   is a Cauchy sequence and since X is a complete cone metric space, thus { }n n Nx   is 

convergent to 0 .x X Finally, since 
1 0 0 0( , ( )) ( ( ), ( )) ( , )

0 0 0

n n nd x f x d f x f x d x x

p p pd d d  


    , 

 

Thus   1 0lim ( , ( )) 0n nd x f x   . This means that 0 0( ) .f x x  If 0 0,x y  are two distinct  

fixed points of f then 
0 0 0 0 0 0( , ) ( ( ), ( )) ( , )

0 0 0

d x y d f x f y d x y

p p pd d d         

which is a contradiction.  Thus  f has a unique fixed point 0x X . 

 

Corollary3.1: Let (X,d) be a complete 
*C -algebra valued metric space and f has the property that is for all  

0 P  there exist 0   such that  

( , )d x y     implies   ( , )d fx fy   for all x,y X. Then f has unique fixed point. 

 

Corollary3.2: Let (X,d) be a complete 
*C -algebra valued metric space and f be a mapping on X.Suppose that 

there exist a function   from P into itself satisfying the following: 

1. (0) 0   and ( ) 0t   for all t>>0 

2.   is non-decreasing and continuous function.Moreover its inverse is continuous  

3. For all 0 P   there exists 0   for all x,y X 

       ( ( , ))d x y    implies ( ( , ))d fx fy   

4. For all x,y  X    ( ) ( ) ( )x y x y     . Then f has unique fixed point.  

  

Remark3.3: This theorem is the generalization of the 
*C -algebra valued  contractive 

                            mapping, by setting ( ) 1z   

( ( ), ( )) ( , )
*

0 0
( ) ( ( ), ( )) ( , ) ( )

d f x f y d x y

z dz d f x f y c d x y c z dz      

      Example3.4: Let X=[0, 1] be any non empty set and d be metric space defined as 

 

           ( , ) || || ,d x y x y I  and define    : , : 0, 0,h X X      by  

 

                                                                        

1

1
( )

1
0

z
ifz

qz m
h z

ifz
m

 
  

  
 
  

 and                      (3.4) 

                                                                     

1
2

(1 log ) , 0( )

0, 0

tt t if tt

ift


 

   
  



                      (3.5)

 

For all mℕ and q be any positive integer. As we know that  (A) is equivalent to  
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1 1

|| ( , )|| || ( , )|||| ( , ) || || |||| ( , ) || ,d fx fy d x yd fx fy c d x y x y X                       (3.6) 

Now our next target is to show that (3.6) is satisfied for 
1

|| || 1.
2

c c   For this let us consider  

1 1
&

1
x y

m m
 


 for mℕ,then we have  

1

1 1 1
|| ||

|| ( , )|| 11 1
|| ( , ) || || ||

1

d fx fy m p m pd fx fy
m p m p


   

  
         

                                    

( 1 )( )

1

( 1 )( )

m p m p

m p m p

  

 
  

   
                                              (3.7) 

Now R.H.S of (3.6) implies that, 
1

1 1 1
|| ||

|| ( , )|| 1
1 1

|| ( , ) || || ||
1

d x y m md x y
m m


 


 

 

 

 

     

( 1)

1

( 1)

m m

m m



 
  

 
                   (3.8) 

Putting value of (3.7), (3.8) in (3.6) then we get  
( 1 )( ) ( 1)

1 1
|| ||

( 1 )( ) ( 1)

m p m p m m

c
m p m p m m

   

   
   

      
               (3.9) 

Therefore (3.9) is true for 
1

|| || 1,
2

c    so h is an integral 
*C -valued contraction with contraction constant   

1
|| || 1,

2
c   thus all the condition of  Main theorem is satisfied and 

f  has a unique fixed point 0. 

 

III. Conclusion 

The idea of an integral type  
*C - algebra valued contraction is not only the extension of                          

*C - algebra valued contraction, but it develops the inequality (3.1). Where as the notion of Additive of 
*C - 

algebra and  sub additive 
*C - algebra valued contraction extends the idea of 

*C - algebra valued contraction 

but it slightly generalizes the inequality (3.1) 
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