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. Introduction

It is well known that non-classical logic has become a formal and useful tool for computer science to
deal with uncertain information and fuzzy information. Var- ious logical algebras have been proposed as the
semanti- cal systems of non-classical logic systems. Among these logical algebras, residuated lattices are very
basic and important algebraic structures. Residuated lattices (cf. Ward M. (1939)) constitute the semantics of
Hohle’s MonoidalLogic (ML) (cf.Hohle U. 1995), which are the basis for the majority of formal fuzzy logics.
Apart from their logical interest, residuated lattices have interesting algebraic properties and include two important
classes of algebras: BL-algebras (introduced by Hajek (1998) as the algebraic counterpart of his Basic Logic)
and MV -algebras (introduced by Chang (1958) to prove the completeness theorem for Lukasiewicz calculus).

This paper is organized as follows: In Section 2, we review some basic definitions and results about
residu- ated lattices, dyadic numbers and MV-terms and frame and Galois connections. In Section 3, we introduce
the notion of semi-states on residuated lattices and inves- tigate some related properties of semi-states. Also, we
characterize arbitrary meets of RlI-morphisms as semi- states. In Section 4, we focus on a conanical frame of state
residuated lattice (L, 7).

1. Preliminaries

2.1 Residuated lattices and states
In this section, we summarize some definitions and re- sults about residuated lattices and lattices, which
will be used in the following sections of the paper.

First, werecall some definitionsand properties about residuated lattices.

Deftnition 2.1 (Zhou XN, Li QG, Wang GJ 2007)(Ad- joint pair) Let P be a poset. Then the two binary oper-
ations ® and — on P are adjoint each other with the following properties:

(1) ® : P x P — P isisotone.
(2) —: P xP — P isantitone in the first variable and isotone in the second variable.

(3) x®y<zifandonlyifx<y —z,
forall x,y,z € P. And we call (®,—) an adjoint pair on P.

Deftnition 2.2(Zhou XN, Li QG, Wang GJ 2007)(Resid- uated lattice) A structure (L; <, ®, —, 0, 1) is called a
residuated lattice if the following conditions are satis-

fied:
(1) (L,<) isabounded lattice, 0 isthe smallestelement and 1 is the greatest of L, respectively.
(2) (L, ®, 1) is a commutative monoid;
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(3) (®, —, 1) is anjoint pair on L.

Morphisms of residuated lattices(shortly RL-morphisms) are defined as usual, ie., they are functions which pre-
serve the binary operations A, Vv, ® and —, the unary operation - and the constants 0 and 1.

Deftnition 2.3 (Pei DW, 2004)(Involution residu- ated lattice) Let L = (L; <, ®, —, 0, 1) be a residuated lattice.
Define on L the unary operation, = : L — L, such that -x = x — 0, for each x € L. The we call L an involution
residuatedlatticeif--x=x,foreachx L.

Proposition 2.4 (Hajek, 1998; Turunen, 1999) In any residuated lattice (L, A, V, ®,—, 0, 1), the following properties
hold:

D1-ox=x,x—>1=1,

(2) x<yifandonlyifx -y=1,

(3) x®-x=0,x®y=0 if and only if x<-y,
(4) If x<y,theny -z<x—2z,z—>x<z—yand

X®zZ<y®z,(5) x ® (x = y) <y,

B)X®Y<XAY,XSYy—X,
Mx—>Y—-2)=x®Yy)—>z=y—>(X—12),(8)-0=1,-1=0, X <X, ==X = =X,
@xe(y—-2)<y—-Kxe)<kxey) —(x®2),

1) x®(YV)=xe®Yy)V X2,

(11) XV (y®2) > (xVy) ® (x V), hence xvVy" > (xvy)" and x™ v y" > (x vV y)™ for any natural numbers m,n,
(12)x—> (x Ay) =x =,

(I)XQYy=X®(X—X®Y),

) x<(y—=x®Yy).

forany x,y,z € L.

Proposition 2.5(Pei DW, 2004) Let(L,A,V,®,—

,0,1) beainvolution residuated lattice, then the follow-

ing conditions hold:

(1)a—-b=b—-a,~a—b=-b—a;(2) a®b=-(a— -b);

(3)a—b==(a®-b);

(4) a— (a—b)=1;

(5) = Ajer aj = Vieraj; where a,b,a; € L(Vi € 1).

Next, we recall the notions of states on residuated lattices. For more details about these concepts, we refer the
readers to (Ciungu, 2008).

In a residuated lattice L, we say that two elements X,y € L are said to be orthogonal and we write x Ly, if -=x <
—y. Itis easy to check that x L y iff x < -y

and iff x ® y=0. Itisclear thatx L yiffy L x,and x L O foreachx € L.
For two orthogonal elements x,y in L, we define the partial addition x+y := =y — ==X(= =X — =y).

Deftnition 2.7 (Ciungu L.C., 2008) Let (L, A, V, ®, —

,0,1) be a residuated lattice. A Bosbach state on L is a function s : L — [0, 1] such that the following con- ditions
hold:

(1) s(0)=0,s(1) =1,

(2) s(x) +s(x —y) =s(y) +s(y —» x) forall x,y € L.

Deftnition 2.8 (Ciungu L.C. 2008) Let (L, A, V, ®, —

,0,1) be a residuated lattice. A Rietan state on L is a function s : L — [0, 1] such that the following condi- tions
hold:

(1) s(1) =1,

(2) s(x +y) =s(x) + s(y) whenever x L.
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Deftnition 2.9(He P.F., 2015) Let (L, A, V, ®, —

,0,1) be a residuated lattice. A mapping 7 : L — L is called a state operator on L ifitsatisfies the following
conditions:

(L1) z (0) = 0;

(L2) x >y =Llimpliest(X) >t (y)=1; (L)t (x—>y)=t(X) > (X AY);

(LY)rxey)=t(X) @ (x> (X®Y));

(L) t(r(x) ® z(y)) =7(X) ® 7 (y);

(LB) 7 (r (x) = 7 (¥)) =7 (X) = = (y);

LNzE@®)Vey)=t() V)

(L8) z(z(X) Az(y)) = z(X) A z(y), forany x,y €L.

The pair (L, 7) is said to be a state residuated lat- tice, or more precisely, a residuated lattice with inter- nal state. We

say that a state operator 7 is contractive (transitive) if T (x) < X(z (X) < 7 (z (x))) for all x € L. A state operator z that is
both contractive and transi-
tive is called a conucleus.

2.2 Dyadic numbers and MV-terms

The content of this part summarizes the basic results
about certain MV — terms form (Tehenux B. 2009) in
the setting of residuated lattices.

The set I of dyvadic numbers is the set of the ra-
tional numbers that can be written as a finite sum of
powers of 2. We denote by fp(xr) and fy({x) the terms
xr — x and r & > respectively. and by Th the clone gen-
erated by fo(xr) and f(x).

An example of residuated lattice is the real unit in-

terval L = [0, 1] equipped with the operations. For all
_ . 1, z<y

z,y € L,z®y = min{zr,ytandr =+ y = o

Yy, otherwise

We refer to it as the Godel structure,

Corollary 2.10(Teheux B. 2009)Let L he the Godel structure, x € [0, 1] and r € (0,1) N D. Then there is a term¢t, in
Tp suchthatt,(x) = 1 ifand only if r <x.

Lemma 2.11 LetL bea linearly ordered residuated lattice, s : L — [0, 1] be a RL—morphism, x € L such that s(x) = 0.
Thenx ® x =0.

Proof Assume that x > —x. Then 0 = =s(X) ® $(X) = S(=X ® X) > s(=X ® =X) = =s(X) ® =5(x) = 1 which is absurd.
Therefore x < =x, then x ® x = 0.

Proposition 2.12 Let L be a linearly ordered resid- uated lattice, s : L — [0, 1] be a RL— morphism, x € L. Then
s(x) = 1 ifand only ift,(x) = 0 for all r € (0,1) N D.

Proof Assume that x f= 0 since s(1) = 1 and t,(1) = Hfor all r € (0, 1) ND. Note that s(t.(x)) = t,(s(x)) since s is
an RL—morphism. Then s(x) = 0 iff r > s(x) for all r € (0, 1) N D iff t,(s(x)) = 0 for all r € (0, 1) N D if s(t.(x))
=0forallr € (0,1) ND.

Now suppose that t(x) = 0 for all r € (0, 1) N D. Then s(t(0)) = 0 for all r € (0, 1) N D and by above
considerations we have that s(x) = 0.

Conversely, let s(x) =0 and r € (0, 1) N D. Then t(x) = t(x) ® t(x) such that t(x) is some term from clone Tp
constructed entirely from the operations (=)® (=) and (=) — (-). Therefore s(t(x)) = t(s(x)) = t(0) = 0. By
Lemma 2.11 we get t.(x) = t(x)®t(x) = 0.
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2.3 Frame and Galois connections

In what follows, we review some notions and results about frames which will be necessary in the following.

By a frame it is meant a triple (S, T, R) where S, T are non-void setsand R € S x T . If S =T, we will write
briefly (T, R) for the frame (T, T, R) and we say that (T, R) is a time frame. The relation sRt expresses a

relationship ““s to be before t” and “tto be after s”. Having an involution residuated lattice (L,<, ®,—
, 0, 1) and a non-void set T, we can produce the direct

power L', ie. the base set of L is the set of all functions from T to L and ®, - are defined pointwise.
Let (A, <) and (B, <) be two ordered sets. A map- ping f : A — B is called residuated if there exists a mapping g :
B — Asuch that f (a) <b if and only

if a<g(b) for all a € A, b € B. In this situation, we say that f and g form a residuated pair or that the pair (f, g)
is called a (monotone)Galois connection. In a Galois connection (f, g), f is called the left adjoint of g or a lower
adjoint of g. Dually, g is called the right adjoint of f or an upper adjoint of f , see (cf. Gierz G. (2003)).

We note in particular that if f has a right adjoint then its right adjoint is unique. Similarly, if g has a left adjoint
then its left adjoint is unique.

Lemma 2.13 Let (A; <) and (B; <) be ordered sets. Letf : A — B and g : B — A be mappings. The following
conditions are equivalent:

(1) (f, g) is a Galois connection.

(2) f and g are monotone, id, <ge-f and fog <id,.

(3) g(b) = sup{x € A|f(x) <b} and f(a) = inf{y €

Bla<g(y)}forallac Aandb € B.

In the above case, g is determined uniquely by f and, similarly, f is determined uniquely by g. Moreover, f
preserves all existing joins in (A; <) and g preserves all existing joins in (B; <). If, in addition, both (A; <

) and (B; <) are complete ordered sets we have the converse, i.e. if f preserves all joins in (A; <) then f has an
upper adjoint g given by the condition g(b) = sup{x € A | f(x) <b}, for all b € B. Similarly, if g preserves

all meets in (A; <) then g has a lower adjoint f given by the condition f(a) = inf{y € B|a<g(y)}, forallb € B.

1. Semi-states on residuated lattices

Deftnition 3.1 Let(L,A,V,®,—,0,1) bearesiduated lattice. Amap s : L — [0, 1] iscalled
(1) asemi-state onLif (i) s(1) = 1,

(ii) x <y implies s(x) <s(y),

(iit)  s(x)=1ands(y)=1impliess(x ® y) = 1,

(iv)  s(X) ® s(X) = s(x ®x),

(V) s(x) — s(x) = s(x — Xx).

(2) a strong semi-state on L if it is a semi-state such

that

(i) s(x) ®s(y) <s(x®y),

(vii)  s(x) > s(y) <s(x —y),

(viii)  s(x Ay) =s(x) As(y),

(ix) s(x") = s(x)" forall n € N, wherever x" = x""1 ® x forn> 1.
Note that any RL-morphism into a unit interval is a strong semi-state.

Lemma 3.2 LetL bearesiduated lattice,s: L—
[0,1] isasemi-stateonL. Thenforall x,y €L, s(x) =
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1 and s(y) = 1 implies there isz <x and z <y such that s(z) = 1.

Proof Let x, y € L such that s(x) = 1 and s(y) = 1. Since x, y < 1, so from Proposition 2.4(6) we getthatz =x®y <
X,Y, by Definition 3.1(iii) we have s(z) = 1.
Proposition 3.3 Let L be a residuated lattice,S

anon-empty set of semi-states( strong semi-states) on
L. Then the point-wise meett =S : L — [0, 1] is a semi-states( strong semi-states) on L.

Proof The proof is a straightforward checking of condi- tions (i) — (v)((i) — (ix)).
Proposition 3.4 LetL be a residuated lattice, s, t be semi-states on L. Then t <s iff t(x) = 1 implies s(x) = 1 for all x

eL.
Proof Assume that t(x) = 1 implies s(x) = 1 for all x € L is valid and that there is y € L such that s(y) < t(y).

Thus there is a dyadic number r € (0,1) N D such that s(y) < r < t(y). By Corollary 2.10, there is a term t; in
Tp such that t,(s(y)) <1 and t,(t(y)) = 1. It follows that s(t,(y)) = t,(s(y)) < 1 and t(t,(y)) = t.(t(y)) =

1. So by the last condition, we have s(t,(y)) = 1, this contradict with s(t,(y)) < 1. Therefore t <s.
Deftnition 3.5(Botur M. 2015). Let P, Qbe bounded posets and let S be a set of order-preserving maps from P to
Q. Then

@) S is called order determining if (Vs € S)s(a) <

s(b)) == a<bforanyelementsa,b € P;

(ii) S is called strongly order determining if (Vs € S)s(a) = 1 ==s(b) = 1) == a <b for any elements a, b
eP.

Proposition 3.6 Let L be a residuated lattice, S be a semi-state on L and S° = {s ° t, | s € S, r € (0,1)ND}. Then
thefollowing conditionsareequivalent.
(1) S is strongly order determining,

b A((VseS,re(0,1) ND)s(a) =r==s(b) =r) ==

a<bforanyelementsa,b €L,
(3) S is order determining.

Proof (1) == (2) Suppose that S® is strongly order determining, so for all s € S, r € (0,1) N D, t.(s(a)) = s(t-(a))
=1 = t.(s(b)) = s(t-(b)) = 1, it follows that t,(a) < t.(b). And by Corollary 2.10, it follows that (s(a) >r
==s(b)>r)==a<h.

(2) == (3) Suppose that (2) holds. Choose a, b € L such that, for all s € S, s(a) <s(b). Letr € (0,1) N D, s(a) >
r. Then s(b) > r. This yields by (2) thata <b.

(3) == (1) Suppose that S is order determining and that thereare a, b € L,a ¢ bsuch that foralls € S, r € (0,1)
ND, s(t-(a)) = 1 == s(t (b)) = 1. Since S

is order determining, so that there is t € S such that t(a) > t(b). Thus there is a dyadic number r € (0, 1)ND such
that t(b) < r < t(a). By Corollary 2.10, there is  a term t, in Tp such that t,(t(a)) = t(t.(a)) = 1 and t,(t(b)) < 1.

By t,s € S and t(t (a)) = 1, we have 1 = t(t, (b)) = t.(t(b)) < 1. This a contradiction. Thusa <b.
Proposition 3.7 Let L be a residuated lattice,s: L —[0,1] a RL-morphism on L. If s(0) =0, then s is a Riet state.

Proof If s(0) = 0, and s is a RL-morphism, then s(1) =s(0 —» x) = s(0) — s(x) = 0 — s(x) = 1. s(x+ y) =
(=X — —y) = 5(=X) — S(=y) = =5(x) —
=m5(y) = s(X) + s(y).

V. The representation of state residuated lattice

In this section, we introduce the frame of state opera- tors in a state residuated lattice and investigate some
related properties of such frame. Also, we give the rep- resentation theorem of state residuated lattice.

Deftnition 4.1 Let(L,z) beastate residuated lat- tice, and denote by T the set of all RL— morphisms from L to the

Gidel structure. We define a frame (T, R,) by sR.t if and only if s(z(x)) <t(x) for all x e L, We call (T, R, ) a
conanical frame.
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Lemma 4.2 Let(L,7) beastate residuated lattice, s, t € T. Then sR, tif and only if s(z (x)) = 1 ==t(x) = 1 for all x

€ L.

Proof Assume first SR, t. Then 1 = s(z (X)) < t(x). Now, assume that s(z(x)) = 1 == t(x) = 1 forall x € L and

there is x € L such that t(x) < s(z(x)). It follows that there is a dyadic number r € (0,1) N Dsuch that t(x) <r
< s(z (x)). By Corollary 2.10, we obtain that t(t,(x)) = t.(t(x)) < 1 = t,(s(z(X))) = s(t:(z(X))) <

S(z (t:(x))). Therefore s(z (t.(x))) = 1 yields t(t;(x)) =

1, a contradiction.

Lemma 4.3 Let (L, 7) be a state residuated lattice.

Then
(M)

If r is contractive then R, is reflexive; (ii)lf t is transitive then R, istransitive.

Proof (i) If 7 (x) <x, then s(z (x)) <s(x) forall x € L
and all s € T . Hence sR,s.

(in)

Let s,t,u € T, sR,t and tR,u. Let x € L, then

s(z (x)) < s(z (z (X)) < t(z (X)) < u(x), hence sR, u.

Theorem 4.4 Let (L1, 71) and (L2, z2) be state residuated lattices, f: L1 —L2andg:L2 — L1
be mappings such that ( f, g) is a Galois T—connection.
Let T.,.5 be sets of all order determining semi-states on
Lo and L4, respectively.

Further, let (5,7, H,) be a frame such that the re-

lation R, € 5 x T is defined by

sHgt if and only if s({g(x)) < t(z) from and = € L».
Then g is order determining semi-state via the canon-

ical Galois connection (P, G*) between complete resid-
uated lattices G5 and GT induced by the frame (S, T, R,)
and the Gédel structure G, G* : [0,1]7 — [0, 1]%.

Proof Assume that x € L, and s € 5. Then f}‘fl (g(x))(s) =
s(g(x)) < t(x) for all ¢ € T such that (s.t) € R,. It fol-
lows that '.r'fl (glxz)) =< G~ {e";':,_{:r}]. Note that s o g is a
semi-state on L. Clearly, sog(l) = s(g(l1)) = s(1) = 1,
so g is order determining semi-state, so by Lemma 3.2,
assume that s(g(r)) = =(g(y)). Then there is an element

z e

Ly, 2 =< g(x), 2z < g(y). Since g is a right adjoint

to the map f : Ly — Lo, then f(z) < x, f(z) < w.
It follows that s(f(z)) = 1. By Proposition 3.3 we get

that

sog=A{t:La —[0,1] |t is a semi—state,t = sog}
= A{t €T | (s,t) € Rg}. This means that i;?_"__(g{;r}] =
G*(if , (x)).
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