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Abstract In the paper, we give characterizations of semi-states on residuated lattices, and discuss relations 

between Rl -morphism and semi-states on residuated lattices. Then we discuss the relations between maps 

defined by a frame. Finally, Using conanical frame on residuated lattices, we discuss the relations between state 

operator and the binary relation of Rl -morphisms. 
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I. Introduction 
It is well known that non-classical logic has become   a formal and useful tool for computer science to 

deal with uncertain information and fuzzy information. Var- ious logical algebras have been proposed as the 

semanti- cal systems of non-classical logic systems. Among these logical algebras, residuated lattices are very 

basic and important algebraic structures. Residuated lattices (cf. Ward M. (1939)) constitute the semantics of 

Höhle’s MonoidalLogic (ML) (cf.Hohle U. 1995), which are the basis for the majority of formal fuzzy logics. 

Apart from their logical interest, residuated lattices have interesting algebraic properties and include two important 

classes of  algebras:  BL-algebras  (introduced  by  Hájek  (1998) as the algebraic counterpart of his Basic Logic) 

and MV -algebras (introduced by Chang (1958) to prove the completeness theorem for L- ukasiewicz calculus). 

This paper is organized as follows: In Section 2, we review some basic definitions and results about 

residu- ated lattices, dyadic numbers and MV-terms and frame and Galois connections. In Section 3, we introduce 

the notion of semi-states on residuated lattices and inves- tigate some related properties of semi-states. Also, we 

characterize arbitrary meets of Rl -morphisms as semi- states. In Section 4, we focus on a conanical frame of state 

residuated lattice (L, τ ). 

 

II. Preliminaries 
 

2.1 Residuated lattices and states 

In this section, we summarize some definitions and re- sults about residuated lattices and lattices, which 

will be used in the following sections of the paper. 

 

First, we recall some definitions and properties about residuated lattices. 

 

Deftnition 2.1 (Zhou XN, Li QG, Wang GJ 2007)(Ad- joint pair) Let P be a poset. Then the two binary oper- 

ations ⊗ and → on P are adjoint each other with the following properties: 

(1) ⊗ : P × P → P is isotone. 

(2) →: P × P → P is antitone in the first variable and isotone in the second variable. 

(3) x ⊗ y ≤ z if and only if x ≤ y → z, 

for all x, y, z ∈ P. And we call (⊗, →) an adjoint pair on P. 

 

Deftnition 2.2(Zhou XN, Li QG, Wang GJ 2007)(Resid- uated lattice) A structure (L; ≤, ⊗, →, 0, 1) is called a 

residuated lattice if the following conditions are satis- 

fied: 

(1) (L, ≤) is a bounded lattice, 0 is the smallest element and 1 is the greatest of L, respectively. 

(2) (L, ⊗, 1) is a commutative monoid; 
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(3) (⊗, →, 1) is anjoint pair on L. 

Morphisms of residuated lattices(shortly RL-morphisms) are defined as usual, ie., they are functions which pre- 

serve the binary operations ∧, ∨, ⊗ and →, the unary operation ¬ and the constants 0 and 1. 

Deftnition 2.3 (Pei DW, 2004)(Involution residu- ated lattice) Let L = (L; ≤, ⊗, →, 0, 1) be a residuated lattice. 

Define on L the unary operation, ¬ : L → L, such that ¬x = x → 0, for each x ∈ L. The we call L an involution 

residuated lattice if ¬¬x = x, for each x ∈ L. 

Proposition 2.4 (Hajek, 1998; Turunen, 1999) In any residuated lattice (L, ∧, ∨, ⊗, →, 0, 1), the following properties 

hold: 

(1) 1 → x = x, x → 1 = 1, 

(2) x ≤ y if and only if x → y = 1, 

(3) x ⊗ ¬x = 0, x ⊗ y = 0 if and only if x ≤ ¬y, 

(4) If x ≤ y, then y → z ≤ x → z, z → x ≤ z → y and 

x ⊗ z ≤ y ⊗ z, (5) x ⊗ (x → y) ≤ y, 

(6) x ⊗ y ≤ x ∧ y, x ≤ y → x, 

(7) x → (y → z) = (x ⊗ y) → z = y → (x → z), (8) ¬0 = 1, ¬1 = 0, x ≤ ¬¬x, ¬¬¬x = ¬x, 

(9) x ⊗ (y → z) ≤ y → (x ⊗ z) ≤ (x ⊗ y) → (x ⊗ z), 

(10) x ⊗ (y ∨ z) = (x ⊗ y) ∨ (x ⊗ z), 

(11) x ∨(y ⊗ z) ≥ (x ∨ y) ⊗(x ∨ z), hence x ∨ y
n
 ≥ (x ∨ y)

n
 and x

m
 ∨ y

n
 ≥ (x ∨ y)

mn
 for any natural numbers m, n, 

(12) x → (x ∧ y) = x → y, 

(13) x ⊗ y = x ⊗ (x → x ⊗ y), 

(14) x ≤ (y → x ⊗ y). 

for any x, y, z ∈ L. 

 

Proposition 2.5(Pei DW, 2004) Let (L, ∧, ∨, ⊗, → 

, 0, 1) be a involution residuated lattice, then the follow- 

ing conditions hold: 

(1) a → ¬b = b → ¬a, ¬a → b = ¬b → a; (2) a ⊗ b = ¬(a → ¬b); 

(3) a → b = ¬(a ⊗ ¬b); 

(4) ¬a → (a → b) = 1; 

(5) ¬ ∧i∈I ai = ∨i∈I ¬ai; where a, b, ai ∈ L(∀i ∈ I). 

Next, we recall the notions of states on residuated lattices. For more details about these concepts, we refer the 

readers to (Ciungu, 2008). 

 

In a residuated lattice L, we say that two elements x, y ∈ L are said to be orthogonal and we write x ⊥ y, if ¬¬x ≤ 

¬y. It is easy to check that x ⊥ y iff x ≤ ¬y 

 

and iff x ⊗ y = 0. It is clear that x ⊥ y iff y ⊥ x, and x ⊥ 0 for each x ∈ L. 

For two orthogonal elements x, y in L, we define the partial addition x + y := ¬y → ¬¬x(= ¬x → ¬¬y). 

 

Deftnition 2.7 (Ciungu L.C., 2008) Let (L, ∧, ∨, ⊗, → 

, 0, 1) be a residuated lattice. A Bosbach state on L is a function s : L −→ [0, 1] such that the following con- ditions 

hold: 

(1) s(0) = 0, s(1) = 1, 

(2) s(x) + s(x → y) = s(y) + s(y → x) for all x, y ∈ L. 

Deftnition 2.8 (Ciungu L.C. 2008) Let (L, ∧, ∨, ⊗, → 

, 0, 1)  be a residuated lattice. A Riec̆an state  on L is a function s : L −→ [0, 1] such that the following condi- tions 

hold: 

(1) s(1) = 1, 

(2) s(x + y) = s(x) + s(y) whenever x ⊥ y. 
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Deftnition 2.9(He P.F., 2015) Let (L, ∧, ∨, ⊗, → 

, 0, 1) be a residuated lattice. A mapping τ : L → L is called a state operator on L if it satisfies the following 

conditions: 

(L1) τ (0) = 0; 

(L2) x → y = 1 implies τ (x) → τ (y) = 1; (L3) τ (x → y) = τ (x) → τ (x ∧ y); 

(L4) τ (x ⊗ y) = τ (x) ⊗ τ (x → (x ⊗ y)); 

(L5) τ (τ (x) ⊗ τ (y)) = τ (x) ⊗ τ (y); 

(L6) τ (τ (x) → τ (y)) = τ (x) → τ (y); 

(L7) τ (τ (x) ∨ τ (y)) = τ (x) ∨ τ (y); 

(L8) τ (τ (x) ∧ τ (y)) = τ (x) ∧ τ (y), for any x, y ∈ L. 

The pair (L, τ ) is said to be a state residuated lat- tice, or more precisely, a residuated lattice with inter- nal state. We 

say that a state operator τ is contractive (transitive) if τ (x) ≤ x(τ (x) ≤ τ (τ (x))) for all x ∈ L. A state operator τ that is 

both contractive and transi- 

tive is called a conucleus. 

 

2.2 Dyadic numbers and MV-terms 

 

 
 

Corollary 2.10(Teheux B. 2009)Let L be the Gödel structure, x ∈ [0, 1] and r ∈ (0, 1) ∩ D. Then there is a term tr in 

TD such that tr(x) = 1 if and only if r ≤ x. 

Lemma 2.11 Let L be a linearly ordered residuated lattice, s : L −→ [0, 1] be a RL− morphism, x ∈ L such that s(x) = 0. 

Then x ⊗ x = 0. 

 

Proof Assume that x ≥ ¬x. Then 0 = ¬s(x) ⊗ s(x) = s(¬x ⊗ x) ≥ s(¬x ⊗ ¬x) = ¬s(x) ⊗ ¬s(x) = 1 which is absurd. 

Therefore x < ¬x, then x ⊗ x = 0. 

Proposition 2.12 Let L be a linearly ordered resid- uated lattice, s : L −→ [0, 1]  be a RL− morphism, x ∈ L. Then 

s(x) =  1  if and only if tr(x)  =  0  for  all r ∈ (0, 1) ∩ D. 

 

Proof Assume that x ƒ= 0 since s(1) = 1 and tr(1) = 1 for all r ∈ (0, 1) ∩D. Note that s(tr(x)) = tr(s(x)) since s is 

an RL− morphism. Then s(x) = 0 iff r > s(x) for all r ∈ (0, 1) ∩ D iff tr(s(x)) = 0 for all r ∈ (0, 1) ∩ D if s(tr(x)) 

= 0 for all r ∈ (0, 1) ∩ D. 

Now suppose that tr(x) = 0 for all r ∈ (0, 1) ∩ D. Then s(tr(0)) = 0 for all r ∈ (0, 1) ∩ D and by above 

considerations we have that s(x) = 0. 

Conversely, let s(x) = 0 and r ∈ (0, 1) ∩ D. Then tr(x) = t(x) ⊗ t(x) such that t(x) is some term from clone TD 

constructed entirely from the operations (−)⊗ (−) and (−) → (−). Therefore s(t(x))  =  t(s(x))  =  t(0) = 0. By 

Lemma 2.11 we get tr(x) = t(x)⊗t(x) = 0. 
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2.3  Frame and Galois connections 

 

In what follows, we review some notions and results about frames which will be necessary in the following. 

 

By a frame it is meant a triple (S, T, R) where S, T are non-void sets and R ⊆ S × T . If S = T , we will write 

briefly (T, R) for the frame (T, T, R) and we say that (T, R) is a time frame. The relation sRt expresses a 

relationship “s to be before t”  and  “t to  be  after s”. Having an involution residuated lattice (L, ≤, ⊗, → 

, 0, 1) and a non-void set T , we can produce the direct 

power L
T
 , ie. the base set of L

T
 is the set of all functions from T to L and ⊗, ¬ are defined pointwise. 

Let (A, ≤) and (B, ≤) be two ordered sets. A map- ping f : A → B is called residuated if there exists a mapping g : 

B → A such that f (a) ≤ b if and only 

 

if a ≤ g(b) for all a ∈ A, b ∈ B. In this situation, we say that f and g form a residuated pair or that the  pair (f, g) 

is called a (monotone)Galois connection. In a Galois connection (f, g), f is called the left adjoint of g or a lower 

adjoint of g. Dually, g is called the right adjoint of f or an upper adjoint of f , see (cf. Gierz G. (2003)). 

We note in particular that if f has a right adjoint then its right adjoint is unique. Similarly, if g has a left adjoint 

then its left adjoint is unique. 

 

Lemma 2.13 Let (A; ≤) and (B; ≤) be ordered sets. Let f : A → B and g : B → A be mappings. The following 

conditions are equivalent: 

(1) (f, g) is a Galois connection. 

(2) f and g are monotone, idA ≤ g ◦ f and f ◦ g ≤ idA. 

(3) g(b) = sup{x ∈ A | f (x) ≤ b} and f (a) = inf {y ∈ 

B | a ≤ g(y)} for all a ∈ A and b ∈ B. 

In the above case, g is determined uniquely by f and, similarly, f is determined uniquely by g. Moreover, f 

preserves all existing joins in (A; ≤) and g preserves all existing joins in (B; ≤). If, in addition, both (A; ≤ 

) and (B; ≤) are complete ordered sets we have the converse, i.e. if f preserves all joins in (A; ≤) then f has an 

upper adjoint g given by the condition g(b) = sup{x ∈ A | f (x)  ≤ b},  for  all  b ∈ B.  Similarly,  if  g preserves 

all meets in (A; ≤) then g has a lower adjoint f given by the condition f (a) = inf {y ∈ B | a ≤ g(y)}, for all b ∈ B. 

 

III. Semi-states on residuated lattices 

Deftnition 3.1 Let (L, ∧, ∨, ⊗, →, 0, 1) be a residuated lattice. A map s : L −→ [0, 1] is called 

(1) a semi-state on L if (i) s(1) = 1, 

(ii) x ≤ y implies s(x) ≤ s(y), 

(iii) s(x) = 1 and s(y) = 1 implies s(x ⊗ y) = 1, 

(iv) s(x) ⊗ s(x) = s(x ⊗ x), 

(v) s(x) → s(x) = s(x → x). 

(2) a strong semi-state on L if it is a semi-state such 

that 

(vi) s(x) ⊗ s(y) ≤ s(x ⊗ y), 

(vii) s(x) → s(y) ≤ s(x → y), 

(viii) s(x ∧ y) = s(x) ∧ s(y), 

(ix) s(x
n
) = s(x)

n
 for all n ∈ N, wherever x

n
 = x

n−
1 ⊗ x for n ≥ 1. 

Note that any RL-morphism into a unit interval is a strong semi-state. 

 

Lemma 3.2 Let L be a residuated lattice, s : L −→ 

[0, 1] is a semi-state on L. Then for all x, y ∈ L, s(x) = 
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. 

D 

 

1 and s(y) = 1 implies there is z ≤ x and z ≤ y such that s(z) = 1. 

 

Proof Let x, y ∈ L such that s(x) = 1 and s(y) = 1. Since x, y ≤ 1, so from Proposition 2.4(6) we get that z = x ⊗ y ≤ 

x, y, by Definition 3.1(iii) we have s(z) = 1. 

Proposition 3.3 Let L be a residuated lattice, S 

a non-empty set of semi-states( strong semi-states) on 

L. Then the point-wise meet t = S : L → [0, 1] is a semi-states( strong semi-states) on L. 

 

Proof The proof is a straightforward checking of condi- tions (i) − (v)((i) − (ix)). 

Proposition 3.4 Let L be a residuated lattice, s, t be semi-states on L. Then t ≤ s iff t(x) = 1 implies s(x) = 1 for all x 

∈ L. 

Proof Assume that t(x) = 1 implies s(x) = 1 for all x ∈ L is valid and that there is y ∈ L such that s(y) < t(y). 

Thus there is a dyadic number r ∈ (0, 1) ∩ D such that s(y) < r < t(y). By Corollary 2.10, there is a term tr in 

TD such that tr(s(y)) < 1 and tr(t(y)) = 1. It follows that s(tr(y)) = tr(s(y)) < 1 and t(tr(y)) = tr(t(y)) = 

1. So by the last condition, we have s(tr(y)) = 1, this contradict with s(tr(y)) < 1. Therefore t ≤ s. 

Deftnition 3.5(Botur M. 2015). Let P , Q be bounded posets and let S be a set of order-preserving maps from P to 

Q. Then 

(i) S is called order determining if ((∀s ∈ S)s(a) ≤ 

s(b)) =⇒ a ≤ b for any elements a, b ∈ P ; 

(ii) S is called strongly order determining if ((∀s ∈ S)s(a) = 1 =⇒ s(b) = 1) =⇒ a ≤ b for any  elements  a, b 

∈ P . 

Proposition 3.6 Let L be a residuated lattice, S be a semi-state on L and S
D
 = {s ◦ tr | s ∈ S, r ∈ (0, 1)∩D}. Then 

the following conditions are equivalent. 

(1) S is strongly order determining, 

(2)(( ∀s ∈ S, r ∈ (0, 1) ∩ D)s(a) ≥ r =⇒ s(b) ≥ r) =⇒ 

a ≤ b for any elements a, b ∈ L, 

(3) S is order determining. 

Proof (1) =⇒ (2) Suppose that S
D
 is strongly order determining, so for all s ∈ S, r ∈ (0, 1) ∩ D, tr(s(a)) = s(tr(a)) 

= 1 =⇒ tr(s(b)) = s(tr(b)) = 1, it follows that tr(a)  ≤  tr(b).  And  by  Corollary  2.10,  it  follows  that (s(a) ≥ r 

=⇒ s(b) ≥ r) =⇒ a ≤ b. 

(2) =⇒ (3) Suppose that (2) holds. Choose a, b ∈ L such that, for all s ∈ S, s(a) ≤ s(b). Let r ∈ (0, 1) ∩ D, s(a) ≥ 

r. Then s(b) ≥ r. This yields by (2) that a ≤ b. 

(3) =⇒ (1) Suppose that S is order determining and that there are a, b ∈ L, a ¢ b such that for all s ∈ S, r ∈ (0, 1) 

∩ D,  s(tr(a))  =  1  =⇒ s(tr(b))  =  1.  Since  S 

 

is order determining, so that there is t ∈ S such that t(a) > t(b). Thus there is a dyadic number r ∈ (0, 1)∩D such 

that t(b) < r < t(a). By Corollary 2.10, there is     a term tr in TD such that tr(t(a)) = t(tr(a)) = 1 and tr(t(b))  <  1.  

By  t, s  ∈  S  and  t(tr(a))  =  1,  we  have 1 = t(tr(b)) = tr(t(b)) < 1. This a contradiction. Thus a ≤ b. 

 

Proposition 3.7 Let L be a residuated lattice, s : L → [0, 1] a RL-morphism on L. If s(0) = 0, then s is a Riec̆ state. 

 

Proof If s(0) = 0, and s is a RL-morphism, then s(1) = s(0 → x)  =  s(0)  →  s(x)  =  0  →  s(x)  =  1.  s(x +  y) = 

s(¬x → ¬¬y) = s(¬x) → s(¬¬y) = ¬s(x) → 

¬¬s(y) = s(x) + s(y). 

 

IV.  The representation of state residuated lattice 
In this section, we introduce the frame of state opera- tors in a state residuated lattice and investigate some 

related properties of such frame. Also, we give the rep- resentation theorem of state residuated lattice. 

 

Deftnition 4.1 Let (L, τ ) be a state residuated lat- tice, and denote by T the set of all RL− morphisms from L to the 

Gödel structure. We define a frame (T, Rτ ) by sRτ t if and only if s(τ (x)) ≤ t(x) for all x ∈ L, We call (T, Rτ ) a 

conanical frame. 
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Lemma 4.2 Let (L, τ ) be a state residuated lattice, s, t ∈ T . Then sRτ t if and only if s(τ (x)) = 1 =⇒ t(x) = 1 for all x 

∈ L. 

Proof Assume first sRτ t. Then 1 = s(τ (x)) ≤ t(x). Now, assume that s(τ (x)) = 1 =⇒ t(x) = 1 forall x ∈ L and 

there is x ∈ L such that t(x) < s(τ (x)). It follows that there is a dyadic number r ∈ (0, 1) ∩ D such that t(x) < r 

< s(τ (x)). By Corollary 2.10, we obtain that t(tr(x)) = tr(t(x)) < 1 = tr(s(τ (x))) = s(tr(τ (x))) ≤ 

s(τ (tr(x))). Therefore s(τ (tr(x))) = 1 yields t(tr(x)) = 

1, a contradiction. 

 

Lemma 4.3 Let (L, τ ) be a state residuated lattice. 

Then 

(i) If τ is contractive then Rτ is reflexive; (ii)If τ is transitive then Rτ is transitive. 

Proof (i) If τ (x) ≤ x, then s(τ (x)) ≤ s(x) for all x ∈ L 

and all s ∈ T . Hence sRτ s. 

(ii) Let s, t, u ∈ T , sRτ t and tRτ u. Let x ∈ L, then 

s(τ (x)) ≤ s(τ (τ (x)) ≤ t(τ (x)) ≤ u(x), hence sRτ u. 

 

Theorem 4.4 Let (L1, τ1) and (L2, τ2) be state residuated lattices, f : L1 → L2 and g : L2 → L1 
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