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I.  Introduction

Given a metric space (a set and a scheme for assigning distances between elements of the set), an
isometry is a transformation which maps elements to the same or another metric space such that the distance
between the image elements in the new metric space is equal to the distance between the elements in the original
metric space. In a two-dimensional or three-dimensional Euclidian space, two geometric figures are congruent if
they are related by an isometry, the isometry that relates them is either a rigid motion (translation or rotation), or
composition of a rigid motion and a reflection.

In this paper, we study new notions of distance called Metric space. A metric space is a set X with
function of two variables which measures the distance between two points. Hausdorff distance, named after
Felix Hausdorff, gives the largest length out of the set of all distances between each point of a set to the closest
point of a second set. Given any metric space, we find that the Hausdorff distance defines a metric on the space
of all nonempty, compact subsets of the metric space.

Early days, in 1953 Beckman worked on isometry of Euclidean spaces. In 1993, Huttenlocher came to
knew an application of Hausdorff distance as image comparison. The biologist Yau has studied DNA sequence
representation without degeneracy in 2003. Further, in 2008 Yau and his group studied a protein map
and its applications. Recently, Kun Tian and group worked on two dimensional Yau-Hausdorff distance
with applications on comparison of DNA and protein sequences in 2015. Based on above observations, in this
paper we worked for comparison of two DNA’s structure and if they are isometrically isomorphic then we
conclude that they have same structure.

Il.  Preliminaries
The concepts in this section should be familiar to anyone who has taken a course in real
analysis. Therefore, we expect the reader to be familiar with the following definitions when applied to
the metricspace(R,d),whered(x,y)=|x—y|.However, withtheexclusionofsomeexamples,forthe majority of
this paper we will be working in a general metric space. Thus our definitions will be given with
respect to any metric space(X, d).

Deftnition 2.1. Metric space (X, d) consists of a set X and a function d : X XX — R that satisfies the
following four properties.

(1) d(x,y) >0 forall x,y €X.
(2) d(x,y) =0ifandonly ifx = y.
(3) d(x,y)=d(y,x)forallx,yeX.
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(4) d(x,y)<d(x,z)+d(z,y)forallx,y,zEX.
The function d, which gives the distance between two points in X, is called a metric.

Definition 2.2. Let v € X and let v = 0. Open ball centered at v with radius v is defined by
By(v,r)={r e X :d(z,v) < r}.

Definition 2.3. A set £ C X is Bounded in (X, d) if there exist ¥ € X and M > 0 such that
E C By(z, M).

Definition 2.4. A sei K C X is Totally bounded if for each € = 0 there is a finite subset {z; : 1 <
T

i <n} of K such that K C | ] Ba(x;.€).
i=1

For the following definitions, let {xn} be a sequence in a metric space (X, d).

Definition 2.5. The sequence {xyn} converges to x € X if for each € = 0 there exists a positive
integer N such that d{zy,,z) < €, for all n = N. We say {x,} converges if there exisis a point

x & X such that {zn} converges to x.

Definition 2.6. The sequence {xn} is a Cauchy sequence if for each € = 0 there erists a positive

integer N such that d(z,, vy) < € for allm,n = N.

Definition 2.7. A metric space (X, d) is complete if every Cauchy sequence in (X, d) converges to
a point in X .

Definition 2.8. A set K C X is sequentially compact in (X.d) if each sequence in K has a

subsequence that converges to a point in K.

Definition 2.9. Norm ||.|| on a linear space X is a mapping X to R satisfying

(1) |lz|| = 0 for all x € X.

(2) ||z|| = 0 if and only if x = 0.

(3) || Az|| = |A|||lz|| for all A e R and z € X.

(4) (Triangle inequality) |z + y|| < ||z| + ||| for all 2,y € X.

A normed linear space (X, |.]|) is a linear space X equipped with a norm ||.||.
Definition 2.10. A complete normed linear space is called o Banach space.

Corollary 2.1. [6] Let {zn} and {yn} be sequences in a metric space (X, d). If {zn} converges to
xr and {y,} converges to y, then {d(x,,y,)} converges to d(x,y).

Corollary 2.2, [6] If {2} ic a sequence in a metric space (X, d) with the property that d( 2., 2p1) <

% for all i, then {zp} is a Cauchy seguence.

Lemma 2.1. Let (X, d) be a metric space and let A be a closed subset of X. If {a,} converges to

r and a, € A for all n, then z € A.

DOI: 10.9790/5728-1506020714 www.iosrjournals.org 8| Page



Isometrically Isomorphism between Two Banach Spaces Measured By Hausdorff Distance

Corollary 2.2. [6] If {21} is o sequence in a metric space (X, d) with the property that d( 2, 2p 1) <
% for all Iz, then {z.} is a Cauchy sequence.

Lemma 2.1. Let (X.d) be a metric space and lei A be a closed subset of X. If {a,} converges to
x and an € A for all n, then x € A.

Proof. Suppose {a,} is a sequence that converges to x and a, € A for all n. There are two cases
to consider. If there exists a positive integer n such that a, = x, then it is clear x € A. If there
does not exist a positive integer n such that a, = x, then x is a limit point of A by Theorem .49

in [6]. Since A is closed, z € A. O

Definition 2.11. Two normed spaces X and Y are called isomorphic if there is a linear bijection T :
X Y &T-1:Y = X such that bothT and T~ are continuous. T is called an isomorphism (i.e.,

an isomorphism between normed spaces is a homeomorphism thai preserves the linear structure).

Definition 2.12. An injection f: X — Y (i.e., one-to-one) between two normed spaces X and Y
is called an norm-preserving if (x € X) || f(z)| = ||z||. If the image of [ is ¥ then the fwo spaces

are called isometric and [ is called an isometry.

Definition 2.13. Let (X.||.||x) and (Y,||.|lv) be normed linear vector spaces. A surjection T :

X — Y is called an Isometrically Isomorphic between X and Y if |Tz|y = ||| x., Wre X,

Definition 2.14. The two norms ||| aend ||.||" on the same linear space is said to be equivalent
if the idenfity mapping under normed linear space X is topological isomorphism of (X, ||.||]) onio
-0
I11.  Construction of the Hausdorff Metric

We now define the Hausdorff metric on the set of all nonempty, compact subsets of a metric
space. Let (X,d) be a complete metric space and let &£ be the collection of all nonempty compact
subsets of X. Note that s is closed under finite union and nonempty intersection. For x € X and
A, B € K, define

riz, B)=inf{d(z.b): b c B} ard plAB)=sup{r(a,B):ac A}.

Note that r is nonnegative and exists by the completeness axiom, since d{a, ) = 0 by the definition
of a metric space. Since r exists and is nonnegative, then both p(A, B) and p(B, A) exist and are
nonnegative. In addition, we define the Hausdorff distance between sets A and B in k as

hiA, B) = max{p(A, B),p(B, A)}.
Before proving that i defines a metric on the set k, let us consider a few examples to get a grasp on
how these distances work. Consider the following example of closed interval sets in (R, d), where
d(r,y) = |z —y|
Example 1. Let A = [0, 10] and let B = [12,21].
We find that r({z, B) is going to be the infimum of the set of distances from each a € A to the closest
point in B. As an erample of one of these distances, consider a = 2. Then r(2, B) = inf{d(2.b) :
be By = d(2,12) = 10. We can note that for each a € A, the closest point in B that gives the
smallest distance will always be b = 12. Therefore, we find that p(A,b) = sup{d(a,12) : a € A}.
The point a = 0 in A mazimizes this distance. Therefore p(A, B) =d(0,12) = |12 — 0| = 12.
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Now that we have gained a knowledge on how r, p, and h work in a few special cases, we refer
some basic properties of » and p.

IV.  Hausdorff Metric Space
Normed linear space is a Hausdorff metric space equipped with the metric d(x,y) = ||z — y||.
A metric in a linear space defines a norm if it satisfies translational invariant (d(r — 2,y — 2) =
d(x.y)) and homogeneity (d(Az,0) = Ad(x,0)). Given a complete metric space (X,d), we have
now construction of new metric space (K, k) from the nonempty, compact subsets of X using the
Hausdorff distance. The following theorem shows Hausdorff distance defines a metric on k.

Theorem 4.2. [8] The set & with the Housdorff distance h define a meiric space (k,h).

Proof. To prove that (K, h) is a metric space, we need to verify the following four properties.

(1) h(A.B)=0forall A, B e k.

(2) h(A, B)=0if and only if 4 = B.

(3) WA, B)=h(B.A) forall A, B < x.

(4) (A, B) < h(A,C)+ h(C,B) for all A, B,C k.

To prove the first property, since p(A. B) and p(B, A) are nonnegative, it follows that h(A, B) = 0
for all A, B € k.

For the second property, suppose 4 = B. Therefore A € B and B C A . By Property (2)
of Theorem we find that p(A, B) and p(B.A) = 0, and thus (A4, B) = 0. Now suppose
h(A, B) = 0. This implies p(A, B) = p(B.A) = 0. We see that A C B and B C A and it follows
that A = B.

The third property can be proved from the syvmmetry of the definition since

h(A,B) = max{p(A,B),p(B,A)}
— maz{p(B. A), p(A, B)}
= hi(B.,A).
The final property follows from the definition of p and i and from property (8) of Theorem
We find that
p(A.B) < p(A.C)+p(C.B).
Similarly,
B, A) = p(B,C)+p(C,A).
Therefore, h(A, B) = max{p(A, B),p(B, A)} < A, C)+ h(C, B). O

Therefore we know that h defines a metric on £. Hence it defines Hausdorff metric space (s, ).

In the next section, we will look at example of what this metric space might look like, and then

one may proceed to prove if the metric space (X, d) is complete, then the metric space (k, k) which
is induced by Hausdorff distance is also complete,
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Example 2. Let (R, dy) be the complete metric space, where dy is the discreie metric,

0, when x=uy.
do(x,y) =
1, when x#vy.
Since K is the set of all nonempty, compact subsets of (R,dp), we find that k is the set of all
nonempty finite subsets of R. The infinite sets are not in & because they are not totally bounded

and are thus not compact. Furthermore, we may notice that

. 0., when xe B.
r(z, B) = inf{do(x,b) : b € B} = do(,y) =
1, when z¢&B.

Therefore,
0. when ae B.
p(A, B)=sup{r(a,B):ac A} =
1. when a¢ B.

So it follows that
0, when A= B.
1, when AZ# B.

Therefore we have a metric space with the set & of the diserete subsets of R with the Hausdorff

h(A. B) =

metric as the discrete metric. [t is easy to verify that our newly created space is not totally bounded.

However, we know all discrete metric spaces are complete, so (K, h) is complete. Therefore, the space

(k,h) of finite sets with the discrete metric is an example of our Hausdorff induced metric space

(k. h).

To illustrate our notion of completeness, now briefly consider a sequence of nonempity compact
sets that converges to the unit cirele in R?. This is an example a converging Cauchy sequence in

the Hausdorff induced meiric space that converges to a set also in the space.
5. ProvING THAT THE HAUSDORFF METRIC SPACE (k, h) 18 COMPLETE

As previously stated, to be a complete metric space, every Cauchy sequence in (&, k) must
converge to a point in &. Therefore, in order to prove that the metric space (s, h) is complete, we
will choose an arbitrary Cauchy sequence {Ap} in & and show that it converges to some A € K.
define A to be the set of all points # € X such that there is a sequence {z,} that converges to =
and satisfies x,, € A, for all n. We will eventually show that the set A is an appropriate candidate.
However, we mmst begin with some important theorems regarding A. Given a set A £ & and a
positive number e, we define the set A +¢e by {x € X :r(z, A) < £}. We need to show that this set
is closed for all possible choices of A and e. To do this, we will begin by choosing an arbitrary limit

point of the set, A + ¢, and then showing that it is contained in the set.

Proposition 1. A+ ¢ iz cloged for all possible choices of A € K and € = (.

However, the following theorem gives us an alternative way of proving convergence.

Theorem 5.3. [8] Suppose that A, B € k and that € > 0. Then h(A, B) < € if and only if A C B+e
and B C A+ e
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Extension Lemma: Let {4y} be a Cauchy sequence in & and let {n;} be an increasing sequence
of positive integers. If {x,, } is a Cauchy sequence in X for which z,,, = 4,, for all k, then there
exists a Cauchy sequence {y,} in X such that y, € A,, for all n and y,, = x,, for all k.

The following lemma makes use of the extension lemma to guarantee that A is closed and
nonempty. We will need this fact in proving that A is in K, since we must show that A4 is a
nonempty, compact subset of K. This lemma gives us that A is closed and nonempty. Since closed
and totally bounded sets are compact, it remains to show that A is totally bounded.

Lemma 5.2. [6] Let {An} be a sequence in & and let A be the set of all points x € X such that
there is a sequence {Tn} that converges to x and satisfies Tn € An for allm. If {An} is a Cauchy

sequence, then the set A is elosed and nonempty.

With the previous lemma, to prove A € g, it only remains to show that A is totally bounded.
The following lemma will allow us to do so.
Lemma 5.3. [6] Let {Dyn} be a sequence of totally bounded sets in X and let A be any subset of X.
If for each € > 0, there ervists a positive integer N such that A C Dy + ¢, then A is totally bounded.

It gives the foundation to prove complete metric space (X, d), we constructed the metric space
(k,h) from the nonempty compact subsets of X using the Hausdorff metric. After examining
important theorems and results, we can now state that

Theorem 5.4. [8] If (X,d) is complete, then (k, h) is complete.

FProof. Let {An} be a Cauchy sequence in &, and define A to be the set of all points € X such
that there is a sequence {x,} that converges to x and satisfies x, € Ay for all n. We must prove

that A € k and {A,} converges to A.

By Lemma the set A is closed and nonempty. Let € = 0. Since {4y} is Cauchy sequence
then there exists a positive integer N such that h(A,, A,,) < € for all mn = N. A, € A, + ¢ for
all m > n > N. Let a £ A, then we want to show a £ A, + €. Fix n > N, by definition of the set
A, there exists a sequence {z;} such that x; € A; for all ¢ and {z;} converges to a. By Proposition
1 we know that A, + ¢ is closed. Since x; € A, + € for each i, then it follows that a € A,, +e. This

shows that A € A, +¢. By Lemma [5.3] the set A is totally bounded. Additionally, we know A is
complete, since it is a closed subset of a complete metric space. Since A is nonempty. complete and

totally bounded, then A is compact and thus A £ k.

Let € > 0, to show that {A,} converges to A £ k, we need to show that there exists a positive
integer N such that h(A,, A) < € for all n = N. To do this, we know that A € A, + ¢ and
A, € A+ e From the first part of our proof, we know there exists N such that A C A, + ¢ for all

n=N.
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To prove Ay € A+ € let € = 0. Since {A,} is a Cauchy sequence, we can choose a positive
integer N such that k(A 4,) < % for all m,n = N. Since {A4,} is a Cauchy sequence in K,
there exists a strictly increasing sequence {n;} of positive integers such that ny > N and such that
h(Am, An) < €27 for all m,n > n;.

We can use property (3) of Theorem to get the following:

3
2?
€ €

sinee Ap, C Ap, + T 3 Tny € Any 2 d(Tny, ITny) < T
€

Since A, C Ay, +%: 3 2y, € A, 3 d(y, Tn,) <

R

sinee Ap, C Ap, + %, d Tpy € Apy 2d(Thy, Ty ) < =

by continuing this process we are able to obtain a sequence {ay, } such that for all positive integers
i then x,, € A, and d(x, 7, 1) < €271, By Corollary 2.2, we find z,,, is a Cauchy sequence,

g0 by the extension lemnma the limit of the sequence a is in A. Additionally we find that

d(ye i'n,-] = d(y:-'fm) + d(;rﬂ.l-. Iﬂg] + d(I‘RQemﬂq}) +--+ d(-'fn,-_ni'n.-]

< S48 8 S
- 2 4 8 2t '

Since d(y, zn,) < € for all 4, it follows that d(y,a) < € and therefore y € A + €. Thus we know that
there exists N such that A, € A + ¢, so it follows that h(A,, A) < e for all n > N and thus {A4,}

converges to A € k. Therefore, if (X, d) is complete, then (K, i) is complete. O

6. [SOMETRICALLY [SOMORPHIC BANACH SPACES

Theorem 6.5. [15] Let X and Y be two normed linear space over field F and T : X — Y be a
linear operator and T is onto, then T is topologically isomorphism if and only if there exists ky = 0
and ky = 0 such that ky||z| < | T2 < kallz| for all x € X.

Theorem 6.6. [15] Every Hausdorff metric space is isometric to dense subset of a complete metrie

space.

Theorem 6.7. Two Banach spaces are isometrically isomorphic if Hausdorff distance between them

TMEASUTES ZETO.

Proof. Let X and Y be two normed linear space over field F and T : X — Y he a linear operator

then T is said to be bounded if and only if T maps bounded set in X into bounded set in Y (by
definition [2.16]).

Further, T is topologically isomorphism if and only if 3 ki and k2 = 0 2 ki||z|| < |[Tz| < kaz||
for all # € X (Theorem [6.5]).
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Two norms ||.|| and |.|" are equivalent if the identity mapping Iy : (X, ].|) — (X,].]|") is

topologically isomorphic then by definition { it follows

= killzll < [Ixz|" < ko||z]|
= ki||z| < ||z’ < kafjz| Vre X.
Hence, by the completion theorem(Theorem , Hausdorff distance measures zero. O

Conclusion

In molecular biology the Hausdorff distance has been successfully applied to protein structure
alipnment. A protein backbone consists of amino acids linked by peptide bonds. It can be modeled
as a polygonal chain in 3 with the amino acids modeled as vertices and peptide bonds as edges.
A natural distance measure for aligning, i.e., matching protein backbones is the Hausdorff dis-
tance. The Hausdorff distance measures the similarity of polygonal curves based on the distances
hetween vertices and taking into account the order of the vertices given by the edges. Protein
structure alignment by matching under the Hausdorff distance has been successfully applied to
protein data(DNA).

In this paper, we are interested in the theoretical complexity of shape matching of DNA. Accord-
ing to our result {(Theorem q) without loss of generality, we considered each DNA as Banach
and as distance measures zero between two DNA structures then they are identical and hence
we analyzed the complexity of the decision and computation problem for the Hausdorff distance

between DNA's structure.
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