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Abstract: In this research work, we formulated a mathematical model for the transmission dynamics of 

tuberculosis, a case study of Ika Christian Hospital, Ankpa L.G.A, Kogi State, Nigeria. The model which adopts 

a standard incidence formulation incorporates treatment and vaccination as control strategies.The Disease 

Free Equilibrium (DFE) statewas determined, which was shown to be locally asymptotically stable. The basic 

reproduction number of the model was determined using the next generation matrix approach. The Endemic 

Equilibrium (EE) state of the model wasalsoestablished and proved to be locally asymptotically stable using the 

trace and determinant method. The numerical solution of the basic reproduction number of the model shows 

thatthe disease tuberculosis, will be reduced or eliminated with time from the population as the value was less 

than one (1). Simulations of the model using the data we obtained from Ika Christian Hospital shows that the 

disease will be eradicated from the population with time by using vaccination and treatment as control 

intervention strategies. 
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I. Introduction 

Tuberculosis [TB] is an infectious disease which is caused by mycobacterium tuberculosis bacteria 

[1].It affects the lungs and virtually other parts of human body, it can also affect any age group. 

Tuberculosis is an airborne disease that can be transmitted via the respiratory route. Most infections do 

not have symptoms in which case is called latent tuberculosis [1].Some proportion of the latent tuberculosis 

infections progress to active tuberculosis cases which is deadly if not treated. The symptoms includes chronic 

cough with blood containing sputum fever, night sweet and weight loss [1].When people who have active 

tuberculosis cough, spit, speak, sing or sneeze they propel and expel tuberculosis germs [2] which can infect 

human in contact. HIV / AIDS Patient and those that smoke are always at risk in contacting tuberculosis [1]. 

Diagnosis of active tuberculosis is based on chest x -ray as well as microscopic examination and 

culture of bodily fluid [3].Diagnosis can be done at most 2 hours and the test is presently recommended by the 

World Health Organization as the first diagnostic test in all person with the symptoms of tuberculosis [3]. 

The diseases tuberculosis can be prevented by screening of  those at high risk, early detection of cases 

treatment and vaccination with Bacillus Calmelte – Guerin (BCG) vaccine,[4] [5], [6]. 

The group of people mostly affected with TB are medical health workers, social gathering, those 

attending to TB patient, transits with active TB patient. 

Treatment of tuberculosis infection involves the use of multiple antibiotics over a prolong period of 

time (1). Antibiotics resistance is a growing problem with increasing rates of multiple drug resistant tuberculosis 

(MDR-TB) and extensively drug – resistant tuberculosis (XDR- TB) [1]. 

In treating tuberculosis (TB), it is important that patient are provided with adequate support, 

information and supervision by a trained or qualified  health personnelon the need to take treatment serious 

without such support treatment adherence may be difficult. Most of tuberculosis cases can be cured when the 

drugs are given and taken properly. 

Nidhi et al [7] proposed a mathematical model to study the dynamics of tuberculosis by. It was 

assumed that the rate at which the number of latently infected individual moves to recovery class (R) and again 

from recovery class to latent class is not equal. The possibility of existence of endemic equilibrium state was 

discussed and examined. 
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In 2013, Ibrahim et al [8] presented a mathematical model for the epidemiology of tuberculosis with 

estimate of the basic reproduction number. The basic reproduction number was determined and the disease free 

equilibrium state of the model was shown to be globally asymptotically stable if Ro≤ 1.Simulation of the model 

showed that a continuous vaccination would result in a more stable disease free equilibrium state.  

Furthermore, Koriko & Yusuf [9] developed a model based on the SIRS model, the model equations 

were presented graphically, and simulation analysis result showed that the population dynamics for tuberculosis 

depends on the number of actively infected people in the population at the initial time. The authors showed that 

the disease free equilibrium was stabled why the endemic equilibrium state may not be stable depending on the 

various values of the model parameters. 

The aim of this present research work is to develop a mathematical model of the transmission of dynamic of 

tuberculosis and its control in a heterogeneous population, a case study of Ika Christian Hospital, in Akpa Local 

Government of Kogi State, Nigeria. 

The specific objectives of the work are as follows: 

(i) To developa mathematical model for the transmission dynamics of tuberculosis. 

(ii) To incorporate control strategies that can help eradicating the pandemic disease. 

(iii) To conduct sensitivity analysis of the model to know the parameters to be targeted by the medical 

personnels. 

(iv) To come up with recommendations that can help in controlling disease. 

This study is significant as humanity will always entertain any contribution for the prevention, cure and even 

eradication of the disease in human history. The knowledge will be welcomed in the medical world, policy 

maker will also use the acquired knowledge from this work on the need for tuberculosis vaccine, its treatment 

and the isolation of those with tuberculosis cases for the control of the disease, tuberculosis. The research work 

will also add to the existing or current literatures in tuberculosis. 

 

(1.1) BRIEF HISTORY OF IKA CHRISTIAN HOSPITAL 

Ika Christian Hospital is a private owned hospital located in Ankpa Local Government Area of Kogi 

State, Nigeria, It was established in 1961 by a Canadian missionary, Raymon Dibble, but the facility is currently 

managed by his granddaughter, Mrs. Lois Wheeler, a nurse, after the demise of her father, Spencer Dibble who 

was a bible translator. Raymond acquired the land for the hospital in 1952 but had been in Nigeria as a Christian 

missionary since 1952. The hospital recruits and trains her own personnel in different medical fields to serve her 

purpose. 

The motivation for the establishment of the hospital is for physical and spiritual healing. The aim is to 

win souls by treating their illnesses through preaching the gospel of Jesus Christ. The hospital is known for 

treatment of tuberculosis cases. Patient comes from all parts of the country as -information of her efficiency in 

handling the disease spreads.  

 

II. Model Assumptions 
(1) The population is assumed to be homogeneous 

(2) We assumed that the population of the Susceptible class is been recruited by birth and emigration 

(3)We assumed that all age group can be infected with tuberculosis 

(4) We assumed that a proportion of the susceptible class are vaccinated 

(5) We assumed that some of the susceptible class are illiterate and may not want to go for vaccination because 

of myths 

(6) That the infected class also present themselves for treatment 

(7) Asymptomatic class, that is, suspected cases are quarantined. 

(8) Symptomatic class, that is, those who have developed clinical symptoms are isolated 

(9) Some infected people do not want to rely on orthodox medicine 

(10) We assume that all compartments may die naturally 

(11) That there is disease induced death in the infected classes 

 

2.1 MODEL FORMULATION & DESCRIPTION 

We formulated our model based on the standard SEIR model where the population was divided into 

nine (9) compartments comprises of the Susceptible class(S),  Exposed class(E), Vaccinated class(V), Infected 

class(I),Infected but treated class )( TI , Infected but not treated class )( NI ,Quarantined class(Q), Isolated 

class( J ) and the Removed class(R). A deterministic model of the form QJRISEVII NT  was formulated 

based on the stated assumptions. 

The Susceptible class (S) was recruited by birth and by emigration (undetected entry of individuals into the 

community) at the levels of    and    respectively. The class increases by the incoming of the recovered 
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individuals into the population at the rate of    and also by the rate at which the vaccinated becomes 

susceptible again due to vaccine failure at the rate of ( 1 ). It  reduces at the rate at which people are exposed 

at the level of    and also by the rate at which some proportion of the population are vaccinated at the level of 

  .The class finally reduces by natural death at the rate of   . 

The Exposed class (E) increases due to the incoming of the susceptible individuals that have exposed 

themselves to tuberculosis but have not yet developed clinical symptoms at the rate of   .The population 

reduces due to the rate at which the exposed becomes infected with active tuberculosis and moved to the 

infected class at the rate of    and also by the rate at which they are quarantined at the rate of   , The class 

finally reduces naturally by death at the rate of   . 

The Quarantined class (Q) , the class is generated at the rate at which the  exposed are quarantined at 

the level of   , we assumed that all quarantined individuals are  asymptomatically infective who will go on to 

develop symptoms and then moved to the isolated class at the rate of  1 . The class reduces naturally by death 

at the rate of   . 

The vaccinated class is recruited with the proportion of those vaccinated from the Susceptible class at 

the level of   . The class reduces by the rate at which some individuals who are vaccinated becomes  

susceptible again due to vaccine failure  at the rate of  1 and also by the rate at which some vaccinated 

cases recover due to the vaccine efficacy at the rate of   .The class finally reduces by natural death at the rate 

of   . 

The Isolated class  J  is recruited by the incoming of those infected with active TB at the level of 

 2  and also by the incoming of those that have been quarantined and now developed symptoms and then 

moved to the isolated class at the rate of  1 . The class reduces by disease induced death and by natural death 

at the rates of    and respectively. 

The Infected class (I) increases only through the incoming of the exposed individuals at the rate of  
.The population reduces due to the isolation of some proportion of the infected individuals  at the rate of  2

.The class was  reduced by the rate at which a proportion of the infected are treated at the rate of  21   and 

moved to the Infected but treated class, some infected individuals who refused to go for treatment also reduces 

the population of the infected class as they moved to the Infected but non -treated class at the rate of   . The 

class reduces due to death caused by the disease at the rate of    and naturally at the rate of   . 

The infected but treated class  TI  population increases by the incoming of the Isolated class who are 

taken for treatment at the rate of  3  and also by the incoming of the infected population that accept to go for 

treatment at the rate of  21  . The class reduces at the rate by which some recovered due to treatment and 

moved to the Recovered class at the rate of   . The population further reduces by disease induced death rate at 

the rate of    and natural death at the rate of   . 

The Infected but non-treated class  NI  population increases due to the incoming of the infected 

individuals who refused to go for treatment at the rate of    but reduces due to disease induced death rate at 

the rate of    and natural death at the rate of   . 

The Removed class (R) increases by the incoming of those that responded to treatment and therefore 

recover at the rate of   . The class also increases due to the incoming of those vaccinated against the disease 

and become free due to the effectiveness of the vaccine and therefore moved to the Recovered class at the rate 

of   . The population finally decreases due to natural death at the rate of   . 
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2.2 MODEL FLOW DIAGRAM 
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Figure 1.0 Model flow diagram 
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2.4 MODEL VARIABLES AND PARAMETERS  

Table 1: Variable used and descriptions 
S/N VARIABLES DESCRIPTIONS 

1 S Susceptible class 

2 E Exposed class 

3 I Active tuberculosis infected class 

4 V Vaccinated class 

5 Q Quarantine class 

6 J  The isolated class 

7 
TI  

Infected but treated class 

8 
NI  

Infected but non-treated class 

9 R Removed class 

 

Table 2: Parameters used and descriptions 
S/N PARAMETERS DESCRIPTION 

1   
Recruitment rate through birth 

2   
Recruitment rate through emigration 

3   Contact rate of the susceptible and the infected 

4   
Rate at which the Exposed class becomes infected 

5   
Rate at which the Susceptible are vaccinated 

6 )1(   
Rate at which the Vaccinated becomes exposed due to vaccine failure 

7   Rate at which the Vaccinated recovers due to the vaccine efficiency 

8   Rate at which the exposed are quarantined 

9 
1  

Rate at which the quarantined are isolated after showing symptoms of TB 

10 
2  

Rate at which the infected are isolated 

11 
3  

Rate at which the isolated are taken for treatment 

12 )1( 2  
Rate at which the infected go for treatment 

13   Rate at which the infected but treated recovers 

14   Rate at which the Infected refuses to go for treatment 

15   Natural death rate for all the classes 

16   
Disease induced death rate for the infectious class 

17   Rate at which the recovered becomes susceptible again. 

18   Force of infection 

19 
1  

Contact rate between the Susceptible and the infected 

20 
2  

Contact rate between the Susceptible and the infected but on treatment  

21 
3  

Contact rate between the Susceptible and the infected but not on treatment 

22 
4  

Contact rate between the Susceptible and the exposed 

23 
5  

Contact rate between the Susceptible and the Quarantined class 

24 
6  

Contact rate between the Susceptible and the Isolated class 

25 
1  

Modification parameter for transmission between the Susceptible and Infected 

but on treatment class 

26 
2  

Modification parameter for transmission between the Susceptible and the non-
treated infected class 

27 
3  

Modification parameter for transmission between the Susceptible and Exposed 

class 

28 
4  

Modification parameter for transmission between the Susceptible and 
Quarantined class 

29 
5  

Modification parameter for transmission between the Susceptible and Isolated 

class 
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III.  Model Analysis 
3.1INVARIANT REGION 

Theorem 1: 

 The solutions of the model are feasible for all 0t , if they enter the invariant region, .9
 R  

Proof: 

We shall first show that all the feasible solutions are uniformly bounded in a proper subset of the region, 

.9
 R  

We let 
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2.143.2 POSITIVITYOF SOLUTION 
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3.3DISEASE FREE EQUILIBRIUM (DFE) 

At the disease free equilibrium, there is no infection and as such 0 JQIIIE NT at the point 

0
dt

dJ

dt

dQ

dt

dI

dt

dI

dt

dI

dt

dE NT
.The DFE state is represented by: 
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3.4ENDEMIC DISEASE EQUILIBRIUM (EE) 

At the endemic disease equilibrium, infection exist and as such we let 

*********     ,    ,    ,    ,    ,    ,    ,    , RRJJQQIIIIIIVVEESS NNTT   

From equation (2.1) to (2.9) we have thus 
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3.5THE BASIC REPRODUCTION NUMBER (R0) 

It is the expected number of secondary infection produced when one infected individual is introduce completely 

into a susceptible population. Deikmann and Heesterbeek (2000). The computation if R0 involves the product of 

infection rate and duration of infection. 

To compute the basic reproduction number, we consider the state variable of those compartments responsible 

for the spread of the virus, these compartments are:  ,    ,    ,    ,    ,    , JQIIIE NT  

The transmission model consist of the system of equation  )()()( xVxFxF iii  where 

 )()()( xVxVxV iii


 . 

The basic reproduction number is given by )( 1

0

 FVR  where )(A  is the spectral radius of the matrix A 

which is the dominant non-negative Eigen value of F and V are MM  matrix which represents the infectious 

classes as earlier stated. 
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3.6LOCAL STABILITY ANALYSIS OF THE DISEASE FREE EQUILIBRIUM 

We investigate the local stability of the disease free equilibrium point of the model, first we linearize the model 

by computing its Jacobian matrix (J) at the disease free equilibrium point. 
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Using Routh-Hurwitz theorem which stated that an equilibrium state will be asymptotically stable if and only if 

all the eigen values of the characteristics equation have negative real parts. 

We can therefore conclude that, the disease free equilibrium state of our model is locally asymptotically stable. 

 

3.7LOCAL STABILITY ANALYSIS OF THE ENDEMIC EQUILIBRIUM POINT 

Using the method developed by Nthiri-et-al (2016), they stated that “The endemic equilibrium is locally 

asymptotically stable provided the determinant (J
*
) is greater than zero and the trace of (J

*
) is less than zero”. 

Trace of (J
*
) is defined as the sum of the major diagonal element of the Jacobian points. 
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VI.   Simulations 
The model is now simulated using the values of the variables and parameters we got from Ika Christian 

Hospital, Ankpa, Kogi State(unless otherwise stated). The values are tabulated in table (3.0)& (4.0) respectively 

below: 

 

Table (3.0): Nominal values of Variables .Source: Ika Christian Hospital, Ankpa. 2018 
S/N VARIABLES NORMINAL VALUE REFERENCES 

1 S 5000 Ika General Hospital 

2 E 1000 Ika General Hospital 

3 I 171 Ika General Hospital 

4 V 2000 Ika General Hospital 

5 Q 560 Ika General Hospital 

6 J  153 Ika General Hospital 

7 
TI  

136 Ika General Hospital 

8 
NI  

18 Ika General Hospital 

9 R 10 Ika General Hospital 

 

Table (4.0): Nominal values of Parameters .Source: Ika Christian Hospital, Ankpa. 2018 
S/N PARAMETERS  NOMINAL VALUE REFERENCES 

1   
0.984 Ika General Hospital 

2   
0.016 Ika General Hospital 

4   
0.0337 Ika General Hospital 

5   
0.394 Ika General Hospital 

7   0.0098 Ika General Hospital 

8   0.110 Ika General Hospital 

9 
1  

0.020 Ika General Hospital 

10 
2  

0.030 Ika General Hospital 

11 
3  

0.0268 Ika General Hospital 

13   0.0268 Ika General Hospital 

14   0.0035 Ika General Hospital 

15   0.01425 Ika General Hospital 

16   
0.0028 Ika General Hospital 

17   0.009 Ika General Hospital 

19 
1  

0.0005 Assumed 

20 
2  

0.0004 Assumed 

21 
3  

0.0002 Assumed 

22 
4  

0.0006 Assumed 

23 
5  

0.0001 Assumed 

24 
6  

0.0003 Assumed 

25 
1  

0.0001 Assumed 

26 
2  

0.0001 Assumed 

27 
3  

0.0001 Assumed 

28 
4  

0.0001 Assumed 

29 
5  

0.0001 Assumed 
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(4.1) NUMERICAL VALUE OF THE BASIC REPRODUCTION NUMBER 
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After substituting the above numerical values into the expression for the basic reproduction number we have 
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(4.2) MODEL GRAPHS 

 
Figure: 2.0 Graph showing variation of the total population 
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Figure: 3.0 Graph showing variation of the susceptible population: The population of the susceptible class 

reduces because of the control measures. 

 

 
Figure: 4.0 Graph showing variation of the Exposed population 

 

The Exposed class rises significantly and drop drastically, it is due to the reduction of contacts that exist 

between the Exposed and the Infected. 
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Figure: 5.0 Graph showing variation of the vaccinated population. 

 

The Exposed class rises significantly and drop drastically, the increment was due to the acceptance of the 

population of the Susceptible to go for vaccination. The seriousness of the Susceptible to go for vaccination 

reduces the class after sometimes.  

 

 
Figure: 6.0 Graph showing variation of the infected population: The population of the infected class reduces 

because of the acceptance of the infected to go for treatment. 
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Figure: 7.0 Graph showing variation of the Infected but treated population: 

 

The Infected but treated class rises significantly and drop drastically, the increment was due to the acceptance of 

the population of the Infected to go for treatment.  

 

 
Figure: 8.0 Graph showing variation of the Infected but not treated population 

 

The population reduces  due to the fact that many accepted to go for treatment and as such reduces the 

population of the infected but not treated. 
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Figure: 9.0 Graph showing variation of the Quarantined population: The population increases because many 

suspected cases were discovered. 

 

 
Figure: 10 Graph showing variation of the isolated population: The population increases because many 

confirmed cases were discovered. 
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Figure: 11 Graph showing variation of the Removed population: The population increases because many 

recovered due to treatment, those that are successfully vaccinated are removed. 

 

 
Figure: 12 Graph showing effects of vaccination rate on the susceptible class: The graph shows that, as the 

vaccination rate increases, it reduces the population of the susceptible class. 
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Figure: 13 Graph showing effects of treatment rate on the infected class: The graph shows as the treatment rate 

increases, it reduces the population of the infected class. 

 

V.   Discussion & Conclusion 
In this paper, we developed a deterministic model for the transmission dynamics of Tuberculosis and its control, 

a case study of Ika Christian Hospital, Ankpa L.G.A, Kogi State, Nigeria. The model which adopts a standard 

incidence formulation incorporates treatment and vaccination as control strategies. 

Some of the key findings of the study are as follows: 

(1) The Disease Free Equilibrium state of the model is shown to be locally asymptotically stable. 

(2) Local stability analysis of the Endemic Equilibrium state of the model was shown to be asymptotically 

stable using the trace and determinant method. 

(3) The Basic Reproduction Number of the model was less than one (1), which shows that the disease can be 

wiped out from the population with the control measures. 

(4) Increasing the vaccination rate decreases the population of the Susceptible population 

(5) Increasing the treatment rate reduces the population of the infected population 
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