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I. Introduction 
This work is a continuation with extensions of some analytical as well as computational treatments in 

some of our works [1] (where the Mehta-Dyson Polynomials were introduced [2, 3, 4, 5]). From one hand, we 

consider a spin ½ lattice model  with 2N particles on a circle C1;on the other hand we consider  a truncation of the 

expansion of the Riemann  ξ function and  its properties at the same level 2N;i.e. a relative partition function 

associated to;for the relation between the two partition functions we extend some of our previous contributions 

in a series of works centered about  the Lee-Yang  theorem on the zeros  of some spin ½ models in an external 

magnetic  field  z=e-2h, and some on the partition functions related to the truncation of the ξ function in the variable 

z=1-1/s with the properties of the Li-Keiper coefficients and their tiny oscillations.  

Concerning exactly solvable model in Statistical Mechanics the reader may consult [6] and [7] (the last 

especially for the spin model with long range interaction); for general results on the Riemann Equivalences and 

related problems the reader may consult [8].For important works related to the Li-Keiper coefficients of interest 

here we refer to   [9,10,11,12,13] and many others. More References are given  in [2, 5]. 

 

II. Ferromagnetic models and Polynomial truncations of the  Riemann ξ function 
2.1 The partition functions  of a  ferromagnetic spin ½ model defined  on a circle, with two-body long range 

interaction of strength K,  K = β·J = (1/kT)·J, where T is the absolute temperature, k the  Boltzmann constant and 

J the interaction between two  spins(the same here for all couples of spins variable σi , σj) and in presence of a 

magnetic field H (a one body interaction) β·H = h (up to an immaterial factor in X = e(-2K) and in z=e(-2h))is given  

by [3] : 

 

𝑍(𝑧, 𝑋) = ∑ (
2 ∙ 𝑁

𝑖
) ∙𝑁

𝑖=1 𝑋𝑖(2𝑁−𝑖) ∙ (𝑧𝑖 + 𝑧2𝑁−𝑖)                                    (1) 

 

Eq.(1) is the partition function for a system of 2N interacting spin ½  variables on the circle (N=1,2,...) where the 

two-body interaction strength is here K, independent of the position of the spin  variables. 

For later use we will be concerned with only two of the terms in the summation above, i.e. the term i=1 and i=N 

given by: 

 

i =1                         (
2 ∙ 𝑁

1
) ∙ 𝑋(2𝑁−1) ∙ 𝑧1                                    (2) 

 

             i =N                           (
2 ∙ 𝑁

𝑁
) ∙ 𝑋(𝑁∙𝑁) ∙ 𝑧𝑁                                  (3) 
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2.2  The polynomial truncation of the ξ function  of order 2N in the variable z→1-1/s, i.e. s = 1/(1-z) where s is 

the usual complex variable  s=σ +i·t (the critical line being  ½ +i.t,  t ϵ R ), obtained  from   

 

𝑙𝑜𝑔 (ξ (
1

1−𝑧
)) = 𝑙𝑜𝑔 (

1

2
) + ∑ (

λ(i)

i
) ∙ 𝑧𝑖  ∞

𝑖=1                                          (4) 

 

(λ(i) be the i-th Li-Keiper coefficient), is given  by 

 

ξ∗(𝑧, {λ𝑖}, 𝑁) = ∑ ψ
𝑖

∙ (𝑧𝑖 + 𝑧2𝑁−𝑖)𝑁
𝑖=0                                                 (5) 

 

with ψ𝑖  = ∑ (
2 ∙ 𝑁

𝑁 − 𝑘
) ∙ (−1)𝑘 ∙ φ𝑘

𝑖
𝑘=0

 

where 

2 ∙ 𝑒[2∙𝑁∙𝑙𝑜𝑔(1+𝑧)+∑ (
λ(i)

𝑖
)∙𝑧𝑖𝑁′

𝑖=1 ] = ∑ φ𝑖 ∙ 𝑧𝑗 + ⋯𝑁
𝑗=0                                  (6) 

 

Notice that the factor 2 compensate e(log(1/2)) and in Eq.(6)the term log(1-z)2N was added [ 3 ] ( to obtain the 

truncation)and that  z was then changed in -z  . (Notice that φ0 = 1). 

Thus, with the definition: ξ *(z, {λi},N)  =Z2N  (z, { λi},N) we have for N=1,   Z2  = 1·(1+z2) – 2·φ1 = 1+z2 -2·z·λ1  

( φ1 =  λ1 ) where  λ1  =  (1+γ/2 - log(4·) /2 ) = 0.0230957... is the first Li-Keiper coefficient and so on. Also for 

N>1. 

Notice that in the approach, in order to have the same “accumulation point” as in the Ising model  (z=1) i.e. z=e(-

2·h)  at h=0 (zero  field)  the  change of z in -z was introduced so that 

 

z → (-1)· (( σ-1)2  +t2)/( σ)2  +t2) )1/2·ei·(arctan(t/( σ-1))-arctan(t/ σ)) 

 

i.e. on the critical line  z = -e(-2·i·arctan(2t))→1 for  t→ ∞ as in the Ising model  where the phase  transition take 

place at h= 0,i.e.z=1. 

 

III. Comparison between the  partition functions  of the two systems, spin model and truncation  

(especially  for i=1 and i =N). 
 

The first Equation for  i =1 is given by: 

 

                              2·N- λ1   = 2·N·X2·N-1  = 2·N·exp(-2·K·(2·N-1))                             (7) 

 

and for small K we have: 

 

                                         λ1   =    2·N·(2·N-1)·2·K    =  φ1                                                       (8) 

 

In fact we  know that  φ1   = 1·λ1   since  e( λ1· z) ~ 1 + λ1·z +... =φ0 +  φ1·z  +... from the definition. 

For  φ2  we  then have: 

 

(
2 ∙ 𝑁

2
) ∙ 𝑋2∙(2𝑁−2) = (

2 ∙ 𝑁
2

) − (
2 ∙ 𝑁

1
) ∙ φ1 + (

2 ∙ 𝑁
0

) ∙ φ2                 (9) 

 

and, with Eq.(8) we obtain   (X2.(2N-2)  ~1-2.K.2.(2N-2)). Then 

 

                      - (2N-2)· λ1    =   -2·N·λ1   +   φ2 

 i.e.  

φ2 =  2· φ1 =  2.λ1      for every N.       

 

Additionally,  with  the definition  φ2 =(1/2)·(λ1
2 + λ2  )  we have 

                      λ2'  =  4·λ1 -  λ1
2 .   

 

Now, for our truncation  of the order N (the degree of the Polynomial = 2·N!) , for i=N, all  φ's of index from i = 

0 to i =N appear: the Equation of interest for i= N - from above-  is given by: 

 

∑ (
2 ∙ 𝑁

𝑁 − 𝐾
) ∙ (−1)𝐾 ∙ φ𝑘

𝑁
𝐾=0 =  𝑋𝑁∙𝑁 ∙ (

2 ∙ 𝑁
𝑁

)                                  (10) 
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and for small K we have: 

∑ (
2 ∙ 𝑁

𝑁 − 𝐾
) ∙ (−1)𝐾 ∙ φ𝐾

𝑁

𝐾=0

=  (
2 ∙ 𝑁

𝑁
) ∙ (1 − 𝑁2 ∙ 2 ∙ 𝐾) 

Then: 

 

∑ (
2 ∙ 𝑁

𝑁 − 𝐾
) ∙ (−1)𝐾 ∙ φ𝐾

𝑁−1

𝐾=1

+ (−1)𝑁 ∙ φ𝑁 =  − (
2 ∙ 𝑁

𝑁
) ∙ (𝑁2 ∙ 2 ∙ 𝐾) 

     (11) 

 

using Eq.(8) for K in Eq.(12) we obtain: 

∑ (
2 ∙ 𝑁

𝑁 − 𝑘
) ∙ (−1)𝑘 ∙ φ𝑘

𝑁−1

𝑘=1

+ (−1)𝑁 ∙ φ𝑁 = 

=  − (
2 ∙ 𝑁

𝑁
) ∙ (

𝑁

(2∙𝑁−1)∙2
) ∙ λ1                       (12) 

The equality  φn = n·λ1    was checked  for n=2,3, 4,5 in [3]. We now show that  

 φn = n·λ1   holds for all n  by induction. 

 

 

Mathematical Induction  

From above,   φ1  = 1·λ1. 

We now suppose that  φk = k. λ1 for k=1..N-1.then  from Eq.(12) :    

 

∑ (
2 ∙ 𝑁

𝑁 − 𝑘
) ∙ (−1)𝑘 ∙ 𝑘 ∙ λ1

𝑁−1
𝑘=1 + (−1)𝑁 ∙ φ𝑁 =  − (

2 ∙ 𝑁
𝑁

) ∙ (
𝑁

(2∙𝑁−1)∙2
) ∙ λ1  (13) 

 

Now indicating with A(N-1, λ1) the first term in Eq.(13) we have: 

A(N-1,λ1) +(-1)N·φN = − (
2 ∙ 𝑁

𝑁
) ∙ (

𝑁

(2∙𝑁−1)∙2
) ∙ λ1(14) 

 

If  N is  even,  φN  = − (
2 ∙ 𝑁

𝑁
) ∙ (

𝑁

(2∙𝑁−1)∙2
) ∙ λ1 -  A(N-1,λ1 )    (15) 

If N is  odd    φN  =  -(− (
2 ∙ 𝑁

𝑁
) ∙ (

𝑁

(2∙𝑁−1)∙2
) ∙ λ1+A(N-1,λ1 ))  (16) 

 

Below, the plots of the right hand side of Equations (15) and (16) together with the plots of the functions y = n 

and y = - n (we have divided the terms  of the Equations Eq.(15) and (16) by λ1). 

 

 
Fig. 1. Plots of the functions which give φn /λ1 (in red),y=n (in green) and y=-n (in maroon). 
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Moreover we have: 

 

∑ (
2 ∙ 𝑁

𝑁 − 𝑘
) ∙ (−1)𝑘 ∙ 𝑘 ∙ λ1

𝑁

𝑘=1

=  − (
2 ∙ 𝑁

𝑁
) ∙ (

𝑁

(2 ∙ 𝑁 − 1) ∙ 2
) ∙ λ1  

 

(17) 

We have thus proven that in the small K limit where K is the reciprocal of the temperature in the spin model i.e. 

X = e(-2β·J/k·T) = e(-2·K)~ 1-2·K we have: 

 

φn= n·λ1   for all positive n.                                                                     (18) 

 

Since for n=0 we have  φ0 = 1 then : 

 

𝑒
(∑

λ𝑛∙𝑧𝑛

𝑛
∞
𝑛=1 )

= ∑ φ𝑛 ∙ 𝑧𝑛 = 1 + λ1

∞

𝑛=0

∙ (1𝑧 + 2𝑧2 + 3𝑧3 + ⋯ ) = 

 

= 1 + λ1 ∙ (∑ 𝑛 ∙ 𝑧𝑛

∞

𝑛=0

) = 1 +
λ1 ∙ 𝑧

(1 − 𝑧)2
= 1 + λ1 ∙ 𝐾(𝑧) 

(19) 

where now K(z)  = z/(1-z)2 is the Koebe function of argument z [5]. 

We notice that a perturbation around the K function entered  in one of our  recent work in  another approach to 

the study of the tiny fluctuations  in the Li-Keiper coefficients [4].In the above limit we have that 

 

∑
λ𝑛∙𝑧𝑛

𝑛
= 𝑙𝑜𝑔(1 + λ1 ∙ 𝐾(𝑧)) = 𝑙𝑜𝑔 (

(1−𝑧)2+λ1∙𝑧

(1−𝑧)2 )∞
𝑛=1 = 

= f(z):= 𝑙𝑜𝑔 (
(𝑧−𝑧1) ∙(𝑧−𝑧2)

(1−𝑧)2 )                                                                              (20) 

 

where z1 and  z2   are the solutions of  the Equation  z2 -z·(2- λ1  )+ 1= 0, i.e.   z1= eiφ   and z2 = e-iφ. 

It should be recalled  that the partition function of the smallest spin½ system on the circle with an even number 

of spin sites 2·N, i.e.  N=1,that is that of two spin variables,  Z2 (X) = Z2(e-2K,, e-2h), with X= e-2K and with  the  

magnetic spin variable  z = e-2h, is given by: Z2 = z2 +2·X·z  +1    which,  after the change  z→-z   as  described 

in [3], i.e.  z2 -2·X·z  +1, gives X= e-2·K = (1-(λ1)/2)  and 2·λ1 = (½)·(λ2 + + λ1
2)   i.e.  λ2 = 4· λ1 -λ1 

2.  

Then, the derivative of f(z) is: 

                  f '(z) =  d/dz(f(z)) = 2/(1-z)-(1/z1)·(1/(1-z/z1))-(1/z2).(1/(1-z/z2))= 

= ∑ (2 −
1

𝑧1
(𝑛+1)

−
1

𝑧2
(𝑛+1)

) ∙ 𝑧𝑛

∞

𝑛=0

= ∑ (2 − 2 ∙ 𝑐𝑜𝑠(𝜑 ∙ (𝑛 + 1))) ∙ 𝑧𝑛

∞

𝑛=0

 

 

and finally 

𝑓′(𝑧) = ∑ λ𝑛 ∙ 𝑧(𝑛−1) =∞
𝑛=0 ∑ 4 ∙ 𝑠𝑖𝑛2 (

𝜑∙(𝑛)

2
) 𝑧(𝑛−1)∞

𝑛=1                                                                 (21) 
 

A possible lower “bound” (we have verified its validity for low values of n) of the Li-Keiper coefficients,  for all 

n greater than zero, would be: 

                                   λn  4·sin2(φ.(n) /2).    n > 0                                                                                               (22) 

 

Below we give the plot of the proposed lower “bound” (periodic function) in the range n =[ 0..4] with the first 

four true values  λ's. 
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Fig. 2. In red the periodic function as lower bound; in green the  polygonal of the first 4 values  λ's. 

 

Below on the Table, we give our  first fifteen values of Eq.(22) (lower bounds) and the corresponding true 

values of Ref  [10]. 

 

                                       n           lower bound                  true value  

 

                                       1           0.0230957                      0.0230957  

                                       2           0.0918494                      0.0923457 

                                       3           0.2046732                      0.2076389 

                                       4           0.3589613                      0.3687904 

                                       5           0.5511504                      0.5755427 

                                       6           0.7768017                      0.8275660 

                                       7           1.0307037                      1.1244601 

                                       8           1.3069922                      1.4657556 

                                       9           1.5992862                      1.8509160 

                                      10          1.9008350                      2.2793393 

                                      11          2.2046741                      2.7503608 

                                      12          2.5037861                      3.2632553 

                                      13          2.7912628                      3.8172400 

                                      14          3.0604647                      4.4114776 

                                      15          3.3051744                      5.0450793 

 

Table 
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Fig. 3. The lower periodic “bound” (the periodic function up to the first maximum  around  n=20)  and the first 

15  true values,  taken from  [10], up to  the true value λ15 =  5.04.. 

 

Remark 
We now investigate about the possibility that the above inequality  has the chance to  be correct. 

For this we take the infinite temperature limit (K0) in Eq.(8))and we have - instead of Eq. (22) - Eq.(23) given 

by (since now  φk = 0 all k!) 

 

 λn4·sin2(0·(n+1)) = 0  for all n>0.                                              (23) 

 

If the above inequality holds, then Eq.(23) coincides with the Li-Keiper  Equivalent for the truth of the RH i.e. 

that  all  λn  should  all  be non negative,for every n . We note that in the high temperature region (K small) it 

emerges our periodic function which is greater than  the Li-Keiper Equivalent  given by the  above Equation. 

Analyzing the high  temperature region we have  thus remarked  that the coefficients of f '(z) increase,  a 

manifestation of the possible positiveness of all the Li-Keiper coefficients. (See Appendix 1 and Appendix 2 for 

additional completations). 

 

IV. Inhomogeneous interactions 
We now look at a spin model with inhomogeneous interactions  between two spin variable i.e.  X1 = exp(-2K1) 

between  nearest neighbors, and so on … XN-1 = exp(-2KN-1)  and  XN= exp(-2KN) for two spin variable sitting on 

the opposite sites (diameter) of the circle. We restrict us to the second Equation (i=2) above.  The two Equations 

are given by [3]: 

 

2𝑁 ∙ [(∏ 𝑋𝑖
2𝑁−1

𝑖=1 ) ∙ 𝑋𝑁] = 2𝑁 − λ1 = 2𝑁 − φ1                                   (24) 

 

2𝑁 ∙ [(∏ 𝑋𝑖
2𝑁−1

𝑖=1 ) ∙ 𝑋𝑁]2 ∙ [2𝑁 ∙ (∑ (
1

𝑋𝑖
2) + 𝑁 ∙ (

1

𝑋𝑁
2 )𝑁−1

𝑖=1 )   ]             (25) 

 

As above, in the high temperature limit (e(-2X) ~ 1 – 2·X )the first Equation gives 

 

2 ∙ 𝑁 ∙ (∑ 4 ∙ 𝐾𝑖 + 2 ∙ 𝐾𝑁
𝑁−1
𝑖=1 ) = λ1                                                  (26) 

 

In the same way, the second Equation gives: 

 

𝑁2 − 𝑁 − 2𝑁(𝑁 − 1) ∙ (4 ∙ 𝐾𝑁 + ∑ 𝐾𝑖

𝑁−1

𝑖=1

) + 8𝑁 ∙ ∑ 𝐾𝑖

𝑁−1

𝑖=1

− 8𝑁 ∙ ∑ 𝐾𝑖

𝑁−1

𝑖=1

 

(27) 

Finally, substituting  λ1 from the above Equation in the last Equation (27), we obtain: 
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(
2𝑁
2

) − 2𝑁 ∙ (𝑁 − 1) ∙ 2 ∙
λ1

2𝑁
=  (

2𝑁
2

) − 2𝑁 ∙ φ1 + φ2  

 

φ2   = 2·φ1 =   2·λ1                                                                                                                           (28) 

 

Since   φ2  = (½)·( λ1 
2 + λ2 )   →λ2   = 4·λ1 -  λ1

2                                                       (29) 

as for the homogeneous case  i.e. where    Ki  =  K, for all i. 
 

Remark:   Notice that   4·λ1 - λ1
2 =  0.091849... while the true  value is  λ2  = 0.0923457... The value λ2' = 4·λ1 +  

- λ1
2 appears as a lower bound to the true value  λ2. 

We now show,  using the density of the  zeros, that λ2 >  λ2' = 4·λ1- λ1
2. 

From the definition we have in fact: 

 

λ2 = ∑ (1 − (1 −
1

ρ
)

2

)

ρ

= 2 ∙ ∑
1

ρ
− ∑

1

ρ2
= 2 ∙ λ1 − ∑

1

ρ2

ρρρ

 

 

and the above inequality is true if    

 

∑ 1/ρ2  <λ1
2–2·λ1that is   with   ρ= σ +i·t 

 

if    λ2 = 2·λ1- ∑ (2·σ 2–2·t2)/(σ 2+t2)2 = 4·λ1 - ∑4·σ 2/(σ 2+t2)2 > 4·λ1  - λ1
2 

that is  

 

if  λ1 
2 > ∑

(4∙σ𝑖
2)

(σ𝑖
2+𝑡𝑖

2)
2

ρ
𝑖=1       i.e. 

 

if     λ1 
2 > ∑ 4 ∙ (

1

𝑡𝑖
4

)∞
𝑖=1                                                                                                        (30) 

Using the density of the nontrivial zeros  dN = (1/(2  )·log(t/(2 )·dt  and integrating  from t1 = 14.134725.. (the 

first t value)to infinity we obtain that  0.000576...  >  0.00002149301199·4 =  0.000086... 

Thus    λ2' =  4·λ1 - λ1
2 is a lower bound to the true value λ2 . 

 

V. The case 2N= 4 
We now treat in details the case 2N=4, i.e. a spin system with 4 particles (4 spins ½) and the corresponding 

truncated ξ function, i.e. a Polynomial in z = 1-1/s of degree 4: this because in this manner one see in detail the 

computations which leads to the possible lower bound to the Li-Keiper coefficients for all N. 

For this small spin system we have, with X= e(-2K) and z=e(-2h): 

 

                                  Z4 (X, z)      =        1+ 4·X3·(z+z3)  + 6·X4·z2  + z4                    (31) 

 

for 0<X< 1  and we know that the zeros in z of Z4 are on the unit circle (Lee and Yang Theorem, and others)            

[3]. 

The corresponding truncated ξ function reads: 

 

Z4 ( λ1,  λ2 ) = 1  +(4- λ1)·(z+z3 ) + (6-4.φ1 + φ2 ) ·(z2+ z4) = 

 1 +(4- λ1)·(z+z3 ) + (6 – 4. λ1 + (½)·( λ1 
2+ λ2  ))·z2 +z4                                                                                                                                     (32) 

 

and with  λ1 and λ2  solutions of the system of  the 2  Equations  below for  values              0 <X<1  i.e. 

                                  4·X3  = 4 -  λ1                                                                                                                             (33) 

6·X4 = 6 – 4· λ1  + (½)·( λ1 
2 +  λ2  )                                               (34) 

 

the zeros in z of   Z4 ( λ1,  λ2 )  are on the unit circle.  With the change of variable       w = z + 1/z we obtain: 

 w2  + 4·X3·w    + 6·X4  - 2 = 0.                                                    (35) 

 

with the two real solutions  given and represented below  as a function of X, 0 < X <1. 
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𝑤 =
1

2
{−4 · 𝑋3 ± [√(𝑋2 − 1)2 ∙ (2 ∙ 𝑋2 + 1)]}    (36) 

 

 
Fig. 4.  w1  and  w2   as a function of X = e-2.Kin the ferromagnetic region 0<X<1. 

 

For the Equation of the truncated  ξ function we have: 

        w 2  + (4-λ1)·w  +4-4·λ1 + φ2   = 0                      (37) 

 

with the two real solutions  given by: 

𝑤 =
1

2
{−(4 − λ1) ± [√λ1  

2     + 8 ∙ λ1 − 4 ∙ φ2]}    (38) 

 

if  λ2  ≤  4·λ1 – (½)·λ1
2. 

The zeros in z are on the unit circle if   | w | <=2, i.e. if λ2  > = 4. λ1 –  λ1
2  .                  (See Eq.(29)). Below we 

represent, as a function of X, 0<X<1, 

 

                                              λ1 (X) = 4·(1-X3)      and                                           (39) 

                                              λ2  (X) = 12·(X4 -1) +32·(1-X3) – 16·(1-X3)2                  (40) 

 

We notice that for the true value  λ1 =0.0230957089661, we obtain X=0.9980716414, argument that inserted in λ2  

(X) gives  λ2  (0.9980716414) = 0.09193843822 to be compared with the true value λ2 = 0.0923457...(See the 

above remark). 
 

 

Fig. 5.  In red λ1 (X), in green   λ2  (X)  for 0 <X<1. 
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High temperature limit for the spin model. 

In Z4 (X, z) we set K0 i.e. Xn ~ 1– 2K·n, here   n≤ 4 and we obtain Z4'. Then 
 

w2 + 4·(1-6K) ·w + 6·(1-8K) - 2 = 0.                           (41) 

 

with the solutions   w 1 = - 2 and w 2  =  -2 + 24·K which gives 4 zeros in z  of Z'4   on the unit circle.   From 

above, 24·K = λ1and  for the  truncated  ξ function  Z4' ( λ1, λ2)  we have 
 

w2  + (4-λ1) ·w   + 4- 2·λ1 = 0.                                     (42) 

 

Then with  the second Equation   i.e.,  

6·(1-8K) = 6 -4· λ1   + φ2     we have   φ2  = 2·λ1  λ2  = 4·λ1 -  λ1
2. 

 

Then, w1   = -2 and   w2  = -2 + 24·K = -2 + λ1. 

The solutions in z of Z4' (λ1,λ2)  =0  are  thus given by: 

w1= z+1/z = -2   →      (z+1)2 = 0 and,z1 = z2 = -1.  

w2=  z+1/z = -2 +  λ1 
 

and                  

𝑧3,4 =
1

2
[−(2 − λ1) ± √λ1  

2     − 4 ∙ λ1]                       (43) 

 

In order that all 4 zeros be on the unit circle we should have λ1
2 – 4·λ1  =  - λ2 0   i.e.  λ2  0.The above high 

temperature limit gives   φ2  = 2·λ1     and    λ2> 0 ensure that all zeros in z for this limit are on the unit circle . 

 

 
Fig. 6.   λ1' (X) = - 12·log(X)  (in red) and λ2' (X) = -12·log(X)·(4+12·log(X)) (in green), for 0<X<1. 

 

Notice that in this limit -for  λ1 = 0.0230957089661 -we have X= 0.9980772085  which gives  λ2  = 

0.09184942519  equal to λ2  = 4·λ1 -  λ1
2 . 

Finally since in this limit (for 2N=4!),                                                                      

 

                        Z4' ( λ1, λ2)  =   Z4
' ( λ1, λ2= 4·λ1 - λ1

2) =  (1+z)2· (z2 +(2-λ1 )·z +1)= 

 

                                          =  (1+z)4· (1 -  λ1·z/(1+z)2)                                                                                        (44) 

 

changing back from z → -z and remembering the factor (1-z)2N = (1-z)4of multiplication for the truncation of ξ 

[3], we see that the factor   (1 + λ1·z/(1-z)2 ) = (1+ λ1 ·K(z) ) involves here too the Koebe function K(z) [5],  for 

every N as discussed above. 

In fact, the Taylor expansion of log(1+ λ1·K(z)) around z=0 is given   (defining f as below), by: 

 

 

                      f(z) =   log(1 + λ1·z/(1-z)2 )  ~ λ1·z/+ (4·λ1  - λ1 
2)- z2/2  + 

                       +    (9·λ1-6·λ11+ λ1
3 )·z3/3  +....                                                                                                (45) 

 

i.e., by introducing   the two zeros in z of  (1-z)2 + λ1·z =z2-(2- λ1)·z+1 
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                       z1 = ei·ϕ   and z2 = e-i·ϕ     we have  

                        d/dz (f(z) ) = 2/(1-z) – (1/z1)·(1/(1-z/z1)) – (1/z2)·(1/(1-z/z2)) =  

                        2-2·cos( ϕ )  +  (2-2·cos( 2·ϕ)·z+ (2-2·cos(3·ϕ))·z2 +...  = 

 

 

 

= ∑(2 − 2cos (𝑛ϕ) ∙ 𝑧𝑛−1 =

∞

𝑛=1

∑ 4 ∙ 𝑠𝑖𝑛2 (
𝑛ϕ

2
) ∙ 𝑧𝑛−1 =

∞

𝑛=1

 

 

= ∑ λ𝑛
′ ∙ 𝑧𝑛−1

∞

𝑛=1

 

 

Thus:             

λ𝑛
′ = 4 ∙ 𝑠𝑖𝑛2 (

𝑛ϕ

2
)      n=1, 2,....                                                           (46) 

 

Notice that it may be shown  that  for an hexagon ( 2N=6 spins variable  and the corresponding truncation up  to 

z6  of ξ ), Z6' ( λ1)   =   (1+z )6· ( 1-  λ1·z/(1+z)2 ).              

Similarly for an “Octagon”, 

 

Z8' ( λ1)   =   (1+z )8·( 1 -  λ1·z/(1+z)2 ).                                                                 (47) 

 

From our analysis we have established that our high temperature limit  for the truncated  ξ function  i.e. Eq.(45) 

holds for- and is the same -for all N - (apart the factor (1-z)2N  which is recovered and which have been  dropped 

out) and is  given by 

 

                             log(1 + λ1·z/(1-z)2 ) = log[( z2 - (2- λ1 )·z +1)/(z-1)2]         (48) 

 

where the numerator in the argument of the log is  the expression which gives the zeros  in the  magnetic field 

variable z= e-2h  (h=H/β.T)of the truncation of smaller order of  the ξ function corresponding to the  thermodynamic  

reduced  partition function  of the  ferromagnetic model with two spins (two  particles) of Statistical Mechanics.  

Our periodic function  appears as a  lower bound to the Li-Keiper coefficients for N=2  (system with  2N= 4 spins, 

that is λ1 and λ2 = 4. λ1 - λ1
2) and the periodic function above is the same for all N, thus concluding: for a non 

negative possible lower bound to the Li-Keiper coefficients which would ensure  the truth of the RH. 

 

VI. Concluding remark             
In this work, starting with a comparison between the partition functions of a spin ½ lattice system on a 

circle with two-body  long range ferromagnetic interaction and those corresponding to a truncation  of the 

Riemann's  ξ  function started in [3],we extended analytical computations in a high temperature region – thus- 

obtaining and proposing also in our  high temperature region  a new possible non negative lower  “bound” on the 

Li-Keiper coefficients in the form of a periodic function containing the Koebe function and the first Li-Keiper 

coefficient λ1 – which- if it is equal to the reciprocals[11] of all the zeros on the critical line ensures  the truth of 

the Riemann Hypothesis: for the infinite temperature limit, such a lower “bound” coincides with the Li-Keiper 

condition for the truth of the RH i.e. the non negativity property [9, 13] of all the Li-Keiper coefficients: in our 

height but “finite”  temperature region , such  a lower “bound” increases  from 0 to a positive discrete periodic 

function of a maximum value which is equal to 4.  

The high temperature property  of the  coefficients of zN  (advanced and  controlled in [3] up to N=5) is 

proven here for all N.  

In the Appendix we give a proof (for a system with 2N = 6 spin variable, i.e. for the corresponding 

truncation of the ξ function to order 6) that  the λi, i=1, 2, 3  of the small system have as lower bounds  λi', i =1, 2, 

3, the values emerging from the high temperature limit we have constructed.                 

Finally, extensions of the approach with more general  Lee-Yang  measures for models with long range 

interactions are expected to yield possibly more information about the values of the Li-Keiper coefficients. 

Our (positive) periodic function (a background Riemann wave  depending only on γ (the Euler-

Mascheroni constant) and π) i.e. on the first Li-Keiper coefficient λ1 and the Li-Keiper constant function (constant 

zero) are represented on the Figure  below. 
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Fig. 7. The Li-Keiper constant (in black) and the background Riemann Wave (in red). Notice that the minima of 

the periodic function are positive (the first one in the interval n=[40-41]). 
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Appendix 1 

 

We know that for 2N=6, the truncated ξ function (a polynomial of order 6 in z) or the spin model (6 spins with 

the magnetic field variable z) have all their 6 zeros on the unit circle [3, 6, 7].Here we construct a proof for this 

small system ,that the λ's  are bounded below from  the λ's emerging from our high temperature limit X1 in 

some manner for this system. 

 

The three Equations obtained from the general set Eq.(1) and Eq.(5) are given by: 

                                             6-λ1  = 6·X5                                                                                                                                                                     (a1) 

15 – 6·λ1  +  φ2= 15·X8                                                                                                                                         (a2) 

                                 20 – 15·λ1  + 6· φ2- φ3 =  20·X9                                                                                                                    (a3) 

 

where φ1= λ1  is a positive  free parameter , φ2 = (½)·(λ2 + λ1
2 )  and   φ3 = (1/3)·(λ3++(3/2)·λ1·λ2+λ1

3/2). 

From these relations we compute  φ2  and φ3  as a function of  X i.e. of  λ1  and the same for λ2  and λ3 . 

We verify that φ2  > 2·λ1 and that φ3> 3.λ1 , also that λ2> 0.091938.. (the true value is 0.0923457..) and also that λ3 

> 0.205... (the true value is 0.20763...).The plots of λ2  and of  λ3   as a function of  X, i.e. of  λ1  with  Eq.(a1) is 

given below in the interval of λ1  from 0.022  to the highest value  0.0230957, value which gives  the two values  

greater then the two lower bounds i.e. 

 λ2 = 0.0920628 > λ2' = 0.091849 and λ3 = 0.205951> λ3' =  0.204673 

( λ2' is obtained from φ2  = 2·λ1 and  λ3' is obtained from   φ3 = 3·λ1 ). 
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Fig. (a1). λ2 (in red) and   λ2' (in green) as a function  λ1 in the region [0.022..0.0230957] 

 

 
Fig. (a2). λ3 (green) and λ3' (red) as a function  λ1 in the region  [0.022..0.0230957] 

 

With φ2 and φ3   the formulas are given by: 

λ2' =   4·λ1 -  λ1
2        and    λ3'=  9·λ1 -  6·λ1

2   + λ1
3   ... 

For X=1 in Eq. (a1) we obtain λ1 = 0; from Eq.(a2), λ2 = 0 and from Eq.(a3) ,  λ3  = 0;these values  may be seen as 

lower bounds for the first three values of λ in the spirit of the Li-Keiper condition for the  truth of  the Riemann 

Hypothesis.(Non negativity of all the Li-Keiper coefficients). 

Our high temperature limit X→1provides a discrete periodic function which should constitute  in the same spirit 

a condition for the truth of the Riemann Hypothesis. Concerning Equivalents of the Riemann Hypothesis [8] we 

can consider the Li-Keiper Equivalent of the RH and affirm the following: 

“If our emerging periodic function is correct in the sense of  Statistical  Mechanics, then all Li-Keiper coefficients 

are non negative. 

If RH is true, then the Li-Keiper coefficients are surely greater than the periodic bound, thus if our periodic 

function is correct true for all N, then we have a new “Equivalent” of  the RH”. 
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Fig. (a3). Model with six spin variables nearest neighbors interactions 12 and 16.Spin variables with 

nearest, next nearest and the two body interaction14 of the two opposite spins on the diameter. 

Appendix 2 

 

It may be interesting to prove that φ2= (½)·(λ+λ1
2 > 2·λ1using the formula for the structure of the zeros i.e.  

λ2 = ∑ (1 − (1 −
1

ρ
)

2

)

ρ

 

(where the sum is over all nontrivial zeros of ζ ) , without a comparison with a spin model and without assuming 

RH is true.  

 

Proof  

 

If ρ = σ +i·t is a zero then (1-ρ) = (1-σ - i·t) is a zero and also their conjugates i.e. σ - i.t and 1-σ +i·t, are nontrivial 

zeros, thus: 

 

λ2 = ∑ (2/ρ) -(1/ρ2 ) = 2.λ1 - ∑ (1/ρ2 ) 

 

Notice that λ1 = ∑(1-(1-1/ρ)1) = ∑(1/ ρ) = 
 ρ                                      ρ  

= ∑[ (2σ /(σ2 + t2) + 2.(1-σ)/((1-σ)2 +t2)) ] (1) 

(the summation is always on all nontrivial zeros of ξ) 

 

We have: 

 

∑ - (1/ρ2 ) = -∑ 2( σ2 – t2 )/(σ2 + t2)2 -2·(1-σ)2 - t2 )/((1-σ)2 +t2)2 =  

= - ∑ 2(2·σ2- σ2– t2 )/(σ2 + t2)2 -2·(2·(1-σ)2-(1-σ)2 - t2 )/((1-σ)2 +t2)2 =  

 

= ∑ [ 2/(σ2 + t2)+2/((1-σ)2 +t2)] - ∑[4· σ2/(σ2 + t2)2 +4((1-σ)2/((1-σ)2+t2)2 ] 

 

The second term is of the Form - ∑ Xn
2, i.e. a sum of squares of positive  numbers and since - ∑ Xn

2 ≥ - (∑ Xn )2 

= - λ1
2 from Eq.(1), we obtain 

 

λ2 ≥ 2·λ1 -λ1
2 + ∑ [ 2/(σ2 + t2)+2/((1-σ)2 +t2)] = 

 

2·λ1 -λ1
2 + ∑ [ 2·σ/(σ2 + t2)+2·(1-σ)/((1-σ)2 +t2)] + R(σ ,t) ≥ 4.λ1 - λ1

2 + 

 

+ R(σ, t)  

where  

 

R(σ, t ) = 4·( σ-1/2) ·[ 1/((1- σ)2+t2) – 1/((σ2 + t2)] (2) 
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Notice here the appearance of the Riemann symmetry for the function R,- for all t- given by R(σ, t) = R(1- σ, t) 

which has a minimum at σ=1/2, i.e. R(1/2,t) =0 for all t. As an illustration we give below the plot of R for three 

value of t.  

 

 
Fig. (a4). Plots of the function  R for t=1.5(maroon, t=2(green) and t=2.5(red) in the range [0, 1] of σ. 

 

In conclusion: λ2 ≥ 4·λ1 -λ1
2 i.e. φ2 ≥ 2·λ1 a result obtained  without assuming the RH is true.  

Notice that the lower bound is given by 4·λ1 -λ1
2 = 0.09184938.. 

We now perform a numerical experiment to calculate the increment  from λ1 to λ2 i.e., ∆2 = λ2 - λ1. From the 

Definition of λn, in general  we have: 

∆𝑛= λ𝑛 − λ𝑛−1 = ∑ (1 − (1 −
1

ρ 
)

𝑛

)

ρ 

− ∑ (1 − (1 −
1

ρ 
)

𝑛−1

) =

ρ 

 

= ∑ ((1 −
1

ρ 
)

𝑛−1

) ∙ (
1

ρ
) = ∑ ((

ρ − 1

ρ 
)

𝑛

∙ (
1

ρ − 1
))

ρ ρ 

 

 

 

Remark: if there is a zero off the critical line, then if ρ= σ +i·t is  such a zero with σ >1/2 we have the two 

contributions: 

(( σ-1-i·t)/( σ-+i·t))n.(1/( σ-1-i·t)) very small for n big in absolute  value and the amount ((- σ-i·t)/((1- σ-i·t))n 

.(1/(-σ-i·t) ) exploding as n is big in absolute value since  

(σ /(1-σ )) >1.For the numerical experiment on ∆2 = λ2 - λ1 we assume here the RH; then  

ρ = ½ ± i·t and we obtain: 

 

∆n = λn - λn-1 =  

=∑ -(-1)n· (cos(2·n·arctan(2·t))+2·t·sin(2·n·arctan(2·t)) ·(1/(1/4+t2)). 

 

For n=2, we take the first 20 zeros from the Tables and form the 21-ten zero we integrate with the weight ((1/(2·π)) 
·log(t/(2·π))·dt  up to infinity.  We obtain : 

 

∆2 = 0.0478413 + 0.0212776 = 0.0691189 to be compared 

 

with the exact value ∆2= 0.0923457 – 0,0230957 = 0.0692500.. 

With the lower bound we obtain instead ∆2 ' = 0.091849-0.0230957=0.0687536. 

We may also consider the equivalent formula 

 

∆2 (σ) = ∑[ (2·σ)/(σ 2 +t2) +2·(1- σ)/((1- σ)2+t2) + 
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- (2· σ 2 -2·t2)/(σ 2 +t2) 2 – (2·(1- σ)2 -2·t2)/((1- σ)2+t2)2 ] = 

 

= ∑ R' (σ, t) 

where R' is the contribution of the four zeros ( σi·t and (1- σ) i·t). Notice that here R' has the Riemann symmetry 

i.e. R'(σ, t) = R'(1- σ, t) for all t but,  contrary to the  function R(σ, t) (which has a minimum) R' has a maximum 

at σ =1/2, (See Figure below) and thus R'(σ, t) > R'(0,t) = R'(1,t) =2/t2 +4t2 /(1+t2)2. 

A lower bound to ∆2 is given by ∆2= ∑R'(0, t) =∑(2/t2+ 4t2 /(1+t2)2 )where the sum is on the heights tk  > 0 of all 

the nontrivial zeros. 

This proves here too that ∆2> 0. For any n,  

∆𝑛(σ) = ∑ 𝑅𝑛
′

𝑡𝑘

(𝑛, σ, 𝑡𝑘 ) 

where R' (n, σ, tk) has the Riemann symmetry and have a maximum  for σ=1/2, but for big n there are contributions 

of negative amounts  in a corresponding region of the t values . The truth of the RH is equivalent to the ∆n's having 

the maximum possible value for each n, and every height t (maximum increment). Below the plot of R'(σ, t) for 

n=2 and n=10 at the value of t1 =14.134725 i.e. the height of the first nontrivial zero. 

 

 
Fig. (a5). R'(σ, t=14.134725.., n=2)  

 

 
Fig. (a6). R'(σ, t=14.134725.., n=10) 
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Fig. (a7). R'(σ =0, n=100, t) in the range 3..14 to illustrate the on set  of negative values of R' at “large” n. 

 
Fig. (a8). R'(σ =0, n=100, t) in the range [14..100 ]of t, to illustrate the onset of negative values of R' at “large” 

n. 

 

We also add  the analysis for n=3 as follows: we study 

 

φ3 = (1/3)·(λ3  +(3/2)· λ1·λ2   +  (1/2)·λ1
3 ) ≥  3· λ1 

 

i.e. 

   λ3    ≥   9·λ1 -(3/2)· λ1·λ2   -  (1/2)·λ1
3 

 

The right hand side with  λ1 = 0.0230957089661 and with λ2 =  0.0923457352280  [10] gives  

0.20465603289 smaller than λ3= 0.207638920554 [10]. We have thus verified that φ3 ≥ 3· λ1. 

In conclusion, the relation between spin models and truncations of the ξ function  offered  by Eq.(19)  for 

general n  as  a “lower bound” and  here, without  assuming RH is true, the proof has been given for n=2 and 

verified for n=3. We think, it would be difficult to  disprove such “stability bound” given by Eq.(18) and connected  

with theorems concerning models of  Statistical Mechanics. 
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