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Abstract: This paper is designed to develop high order compact finite differences schemes for solving 

Helmholtz equation using Pade approximation.The developed schemes are fourth order in one, two and three 

dimensional cases. Test problems were conducted to validate the efficiency and accuracy of the schemes and 

resultsobtained from the proposed schemes are compared with the exact solution , the traditional second order 

and any other fourth order schemes developed by Crank- Nicolson. The proposed schemes can be applied to any 

fractional problems. The results obtained have high degree of accuracy than usual second order difference 

scheme and canbe appliedto any other type of partial differential equations. 
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I. Introduction 
Helmholtz equation was developed by Herman Von Helmholtz of the form  

         (1) 

where  is the Laplacian,   is the wave number and  is the amplitude. Helmholtz equation often arises in 

the study of physical problems involving partial differential equations in both space and time. Linear standing 

wave is governed by Helmholtz equation. Intensive research has been performed in recent years to developed 

efficient and accurate numerical schemes for solving Helmholtz equation because of its relevance. In light of the 

problems caused by non –compact finite difference schemes, it is desirable to develop a class of schemes that 

are both high order and compact. The emergence and growing popularity of compact schemes have brought a 

renewed interest towards the finite difference approach. As such a great deal of effort towards numerical 

approximation of Helmholtz equation using compact finite difference approach can now be seem in literature. A 

compact FD schemes is one which utilizes grid points located only directly adjacent to the node about which the 

differences are often taken. These schemes offer higher accuracy even when the grid size is small. They are able 

to determine the flow with information solely from the nearest neighbors. The major advantage of compact 

discretization is that it leads to a system of linear equation with coefficient matrix having smaller band – width 

as compared to non – compact schemes. For solving Helmholtz equation, the high order compact (HOC) 

discretizations have been utilized in a number of different ways and varieties of specialized techniques have 

been developed. The pioneering works on Helmholtz equation were done by Lele (1995), presented a paper 

titled spectral – like resolution of the classical Pade schemes and the flexibility of compact finite difference 

schemes. Spotz (1995) developed high order compact finite difference schemes for computational mechanics. 

Singer and Turkel (1998, 2006) developed high order finite difference method for Helmholtz equation and sixth 

–order accurate finite difference schemes for the Helmholtz equation using Taylor series of expansion. The 

equations were used to calculate the higher order correction terms. Nabavi et.al (2007) demonstrated A new 9 

point sixth order accurate compact finite difference method for the Helmholtz equation. Godehand (2007) 

presented compact finite difference schemes of sixth order for the Helmholtz equation. Okoro and Owoloko 

(2010) developed one- way dissection of high order schemes for the solution of 2D Poisson equation. 

Mohammed and Othman (2010) presented eighth order compact finite differences for one dimensional 

Helmholtz equation. 0koro and oyakhire (2016) published paper titled compact finite difference schemes for 

Poisson equation using Pade approximation method. The outline of the paper are as follows, section 2 treats the 

derivation or formulation compact schemes, section 3 is concerned with numerical analysis, in section 4  deals 

with teat problems and results analysis and finally conclusion in section 5.  
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II. Derivation Of Modified Form Of Pade Approximation 

Given the function  with Maclaurin’s series expansion  

        (2) 

 is of order   which is defined by   in Baker  (1975). Therefore, Pade approximation of a 

function   as   

          (3) 

Where    and   are chosen in a way that . It is constructed in such a way that 

 can be expressed in matrix form. One can argue that there are an infinite number of finite 

difference schemes which may be derived on the bases of Pade approximation. Deriving finite difference 

schemes of order   with approximation where . And keeping only the terms in the 

resulting expression which are   will lead to increasingly worse results the larger the  .If  

 is an approximation to the second partial derivatives with respect to the co-ordinates directed  

and where   denoted three dimensional lattices indices, ( ) two dimension and  one dimensional 

lattices indices respectively. The simplest approximation can be obtained by  

         (4) 

where  is the grid spacing in the direction   and  is the second – order difference. 

    
     (5)

 

The explicit expression in terms of  reads for the  - component 

.       (6) 

If   is defined as the difference scheme and  the resulting 13- points stencil can be written as 

 

                                               0       0          1       0           0                     

                                              0       0        -16      0          0  

               

  -1      -16      90     -16         -1          , 

                                               0         0         -16    0          0 

                                                0        0            1       0        0             

 

 

 

 

 

 

 

 

 

 

)(xu

10,)()(
0






xxuxu
i

n

)(xu  NM ,
N

M

)(xu x

nh ,,

 








N

i

i

i

M

i

i

i

nm

xq

xP

xu

0

0

, )(

ip iq 00 








xi

i

xi

i

x

f

x

)(xu
N

M









)(ho nm, nnm  2

)(ho nm 

kjiU ,,)(  

),,( kji ji, i

  kjikji
u

h
U ,,

2

2,,

1




 

h  2



.,,1,,,,1

2 2 kjikjikji uuu  

kjiu ,, x

)163016(
12

11
)( ,,2,,1,,1,,1,,22 kjikjikjikjikji

x

ijkxx uuuuu
h

u  

kji ,, , hhx

2,0,
12

1

h
ki 



Compact Finite Difference Schemes for One, Two and Three Dimensional Helmholtz Equation .. 

DOI: 10.9790/5728-1506051019                                     www.iosrjournals.org                                        12 | Page 

                                             0      0            0       0        0         

                                             0      0            0        0       0 

            

 0         0           16       0      0 

                                              0     0           0        0        0 

                                             0      0            0         0       0             

 

 

 

 

 

 

 

 

                                                          1          3             1         

                         

 3          14            3 

                                                           1           3              1          

 

 

 

 

The source term function is thereby modified to 

               +    

                                +   .      (7) 

 

Pade approximation to the bracketed expression in equation (9) will be used to derive difference form 

of compact stencil forHelmholtz  equations. The terms compact will be used in the numerical schemes, which 

need less neighbor grid points than the straight – forward expansion approach neighbor of equation (9).The 

proposed method has the advantage of flexibility and highaccuracy comparedwith other classical finite 

difference formulations neighbors, which cause problems  at the boundary.  

 

III. Numerical Analysis: 
Considering the function 

           (8) 

The expansion of equation (8) yields  

 

 (9) 

 

One dimensional case: 

Considering one dimensional Helmholtz equation of the form  

        (10) 

A  Fourth –order accurate scheme may be derived from equation (9) when considering only the first two terms 

in the expansion and substituting in equation  (3) 
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                                    (11) 
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    where  

 
This yields symbolically 

      (12) 

Applying the symbolic operators for the fourth –order compact approximation as  

       (13) 

 Multiply  both sides of equation (13) by   which is    

   

 (14)Keeping terms on the  Left hand side LHS up to fourth –order equation (14) may be written finally 

as 

   (15) 

. Since the operator commute this leads to 

        (16) 

where an effective term  was introduced 

          (17) 

          (18) 

Recall from equation (1) and applying the fourth order schemes yields 

        (19) 

       (20) 

Note that       and      (21) 

Substituting expressions (21) into equation (20), yields 

 (22) 

Simplifying equation (22) a system of  linear equations are obtained for

  (23) 

where  

 

Two dimensional   cases: 

The two dimensional case Helmholtz equation is of the form   
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      (24) 

With the discretized form as
 

         (25)
.
 

Where   denote the two dimensional lattice indices and   is an approximation to the second partial 

derivatives with respect to the coordinates direction x.  

       A   -  

Considering   equation. (9) approximated by an [ ],Pade approximation through 

        (26) 

where  in  equation (9) the operator was defined. Inserting this approximation in equation (25), it can be 

written as  

          (27) 

Recall that   and  

  (28)

 

This yields symbolically 

  
    

 (29) 

Applying the symbolic operators for the fourth –order compact approximation, we have 

  (30)                                                                

Simplifying equation (30), we obtained 

  (31)  

Both sides of equation (31) are multiplied by  which are  and . Since the 

operators commute this leads to 

      (32) 

where an effective source term   was introduced. 

      (33) 
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   (34) 

where  

 (35) 

This can be written explicitly as  

                                                                          

(36)

 

and in stencil notation, we obtained 
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 (44)                                                               

 

Simplifying equation (44)  gives 

   (45)  

 

Since the operators commute this leads to 

 

        

(46) 

where an effective source term   was introduced. 

(47) 

Keeping terms on the left hand side  LHS up to fourth – order  equation (45) may be written finally as 

 

 (48)
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where (49)

  

 

IV. Set -Up Of The Numerical Experiments 

Three standard measures of convergence, defined as follow: Let  denote the initial estimate, the urrent 

iterate and the analysis solution respectively. 

The measure are 

rel- res  (the  relative residual  

( the relative  error is  

Max-err denote the maximal component wise error  

Two and three dimensional problems are considered with nonzero on the right hand side and known analytic 

solutions. The example use the same variable , with three parameters  a, b,c 

 with  

Thus, a and b control he range of value of  and  control the number of oscillation of   in the domain. 

An  example with a known exact solution is chosen in order to show the performance of the high order compact 

schemes developed in section 3 using compact programs that implement these schemes. Testing is conducted on 

the unit interval  with a uniform mesh size , and boundary condition are prescribed on ends of the until 

interval. The computation were performed in a MATLAB environment using version 7.and was executed on 

Pentium at 1.86  GHZ, RAM 1   GB. The computed solutions and the exact solution are compared with the use of  

- norm of the error vector which is defined for   as 

   

   

Example 1: Considering 2D Helmholtz equation with the following analytic solution 

, where  

defined over the domain , 

 

Table 1:Computational results using the developed compact finite difference schemes for  second order  

and fourth  order. 

N    2
nd

 Order 4
th

  Order 
     

4 0 6 . 2 9 9 6 
1.33x10  

5 - . 7 4 3 5 8.47x10  

8 0 1 0 
1.21x10  

1 0 8.87x10  

1 2 0 1 3 . 1 0 3 7 
1.23x10  

1 3 . 8 3 1 6 9.07x10  

1 6 0 1 5 . 8 7 4 0 
1.16x10  

1 7 . 4 1 1 6 8.90x10  

2 0 0 1 8 . 4 2 0 2 1.19x10  2 0 . 8 1 3 8 9.09x10  

2 4 0 2 0 . 3 0 0 8 1.14x10  2 4 . 0 8 3 0 8.97x10  

2 8 0 2 3 . 0 5 2 2 1.20x10  2 7 . 2 4 3 0 8.94x10  
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3 2 0 2 5 . 1 9 8 4 1.21x10  3 0 . 3 1 4 3 8.95x10  

 

N=2.5298x  N=4,4987x  

Table 1: shows  error obtained with the standard second order schemes and the fourth order schemes 

for different values of  and , 

 

Table 2: Comparison of  the proposed fourth order schemes with any other  fourth order schemes using 

finite difference methods. 

  

  

4 0 5 . 5 2 0 4 4 . 4 9 x 1 0 - 6 1 . 9 5 x 1 0 - 6 

8 0 1 0 5 . 1 3 x 1 0 - 6 1 . 8 1 x 1 0 - 6 

1 2 0 1 4 . 1 5 5 8 5 . 4 7 x 1 0 - 6 1 . 4 2 x 1 0 - 6 

1 6 0 1 8 . 1 1 4 5 4 . 4 9 x 1 0 - 6 1 . 4 4 x 1 0 - 6 

2 0 0 2 1 . 9 3 2 7 5 . 4 2 x 1 0 - 6 1 . 5 9 x 1 0 - 6 

2 4 0 2 5 . 6 4 2 5 5 . 4 3 x 1 0 - 6 1 . 5 9 x 1 0 - 6 

2 8 0 2 9 . 2 6 4 7 5 . 5 6 x 1 0 - 6 1 . 3 6 x 1 0 - 6 

3 2 0 3 2 . 8 1 3 4 5 . 4 5 x 1 0 - 6 1 . 5 7 x 1 0 - 6 

                                                                

Table 2: shows the comparison of any fourth order schemes with  the new compact finite difference schemes 

developed in this article 

 

V. Conclusion 
Derivation of fourth -  order compact finite difference schemes method for 1D, 2D and 3DHelmholtz 

equation using Pade approximation was developed.Numerical experiments were conducted to test the validity, 

accuracy, efficiency and the robustness of the schemes. Matlab software was utilizes in this work. 

Computational experiment verified that the new compact finite  difference schemes is  much more efficient than 

the second-order scheme and the Crank- Nicolson method.  Since the scheme is compact, no extra numerical 

boundary conditions are needed The proposed  schemes can be applied to mathematical physics and 

computational finance with Neumann boundary condition because the schemes derived are flexible in terms of 

application to complex geometries and boundary condition when compared to other several methods like the 

traditional finite difference schemes that are  non- compact. 
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