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Abstract: In this paper, the steady flow between two parallel plates and a laminar flow between two parallel 

walls has been studied. This paper also includes how the Navierstoke’s equation is compulsory for steady flow 

and oil flow between two parallel plates, one of which is at rest and other moves with a certain velocity. The 

case study for plane Couette flow, plane Poiseuille flow and generalized plane Couette flow have been discussed 

with different plate conditionswhen  (i) Lower plate is stationary while the upper is moving with uniform 

velocity U, parallel to x-axis in case of Couette flow. (ii) When both the walls are at rest in the case of plane 

Poiseuille flow and (iii) In generalized plane Couette flow case 
𝑑𝑝

𝑑𝑥
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, the lower plate is at rest while 

the upper is in motion with velocity U. 
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I. Introduction 

The Reynolds number (Re) is an important dimensionless quantity and fluid mechanics used to help 

predicts flow patterns in different fluid flow situations. The concept was introduced by George stokers in 1851, 

but the Reynolds number was named by ArnoldSommerfeldin 1908after OsborneReynolds  𝟏𝟖𝟒𝟐 − 𝟏𝟗𝟏𝟐  
was popularized its use in 1883. The Reynolds number is the ratio of inertial forces to viscous forces within a 

fluid that is subjected to relative internal movement due to different fluid velocities, which is known as a 

boundary layer in the case of a bounding surface such as the interior of a pipe. The Reynold’s number quantifies 

the relative importance of these two types of forces for given flow conditions and is a guide to when the 

turbulent flow will occur in a particular situation. Its measure water flow in long brass pipes and deduced a 

pressure drop low 

∆𝑃 =  𝑐𝑜𝑛𝑠𝑡 
𝐿𝑄

𝑅4  + entrance effects.This is our laminar flow sealing low  

 

1.1 Reynolds’s number 

In order to study the behavior of a certain system, we generally make an experimental investigation 

with the help of laboratory models. Naturally, the sizes of these models differ from the actual ones. In such a 

case it becomes imperative to know the relationship between the condition s of the models and actual 

phenomenon when the models and actual objects as geometrically similar. The question was passed by Osborns  

Reynolds who studied the condition of similarity. “Under what conditions is the form of any liquid around 

geometrically similar bodies, themselves geometrically similar”. The dynamical similarity between the model 

and actual objects exits when any change in mass, size or time in one system results in proportionate changes in 

other so that the equation in the two systemsis exactly similar. 

Suppose we study a model and get equations, boundary conditions, etc. for this system. We should then 

be able to get a description of the actual system by making.suitable changes in units with the help of the former. 

It is possible only when the ratio of the forces in the two systems is the same. The important forces in a system 

of flow of a solid in fluids are (i) internal forces of type𝜌 
𝜕𝑢

𝜕𝑡
or  𝜌𝑢 

𝜕𝑢

𝜕𝑥
and (ii) the fractional (viscous) forces of 

the type𝜇
𝜕2𝑢

𝜕𝑥 2. 

The inflow of a solid through a fluid, the velocities are all proportional to the velocity of the body, say,𝑢. Let us 

take a length ℓ associated with a body representing the linear scale of measurement keeping the shape of the 

body-fixed, we can varyℓ to signify changes in its size. Terms of the first type,i.e., the inertial forces are 𝜌𝑢2 ℓ  

and type(ii) are𝜇𝑢 ℓ2 . 

Re =
𝐢𝐧𝐭𝐞𝐫𝐧𝐚𝐥 𝐟𝐨𝐫𝐜𝐞𝐬 

𝐯𝐢𝐬𝐜𝐨𝐮𝐬 𝐟𝐨𝐫𝐜𝐞𝐬
 = 

𝛒𝐮𝟐 𝓵 

𝛍𝐮 𝓵𝟐 

𝛒𝐮𝓵

𝛍
 = 

𝓵𝐮

𝐯
 

or,                            Re =
𝑢ℓ

𝑣
  as  v = 

𝜇

𝜌
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This ratio Re is called the Reynolds number. Obviously, this number has no units, i.e., it is non-

dimensional. Hence for the geometrical similarity of two flows, it is necessary that their Reynold’s number 

should be the same and the boundary conditions are satisfied.  

When Reynold’s number is small the viscous force is predominant and the effect of viscosity is 

important in the whole velocity fields. When Reynold’s number is large, the inertial force is predominant and 

the effect of viscosity is important only in a narrow region near the solid wall which gives the rise to Prandtl 

boundary larger. When Reynold’s number is enormously large, the flow becomes turbulent. 

 

1.2 Significance of Reynold’s Number 

i. Two flows of incompressible viscous fluid about similar geometrical bodies and dynamically similar when 

Reynold’s number for the flows are equal. 

ii. Reynold’s number throws light on important features of a given flow. Thus, for example, a small Reynold’s 

number implies that viscosity is predominant whereas a large Reynolds number implies that viscosity is 

small. 

iii. It is experimentally shown that if the value of Reynold’s number exceeds certain critical values (namely 

2,800) the flow ceases to be laminar and it becomes turbulent. When Re < 2,000, the flow is laminar. 

iv. Concepts of the laminar boundary layer were developed by examining the flow for which Reynold number 

is very large. 

v. Concepts of very slow motion or creeping motion were developed by examining the flow for Reynold 

number is very small. 

 

1.3 Mathematical formulation 

Reynold’s number Re is defined as  

Re = 
𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙  𝑓𝑜𝑟𝑐𝑒  

𝑣𝑖𝑠𝑐𝑜𝑢𝑠  𝑓𝑜𝑟𝑐𝑒
 

= 
𝑚𝑎𝑠𝑠  × 𝐴𝑐𝑐𝑒𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛  

𝑆𝑕𝑒𝑎𝑟  𝑆𝑡𝑟𝑒𝑠𝑠  × 𝐶𝑟𝑜𝑠𝑠  𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙  𝐴𝑟𝑒𝑎
 

= 
𝑉𝑜𝑙𝑢𝑚𝑒  × 𝐷𝑒𝑛𝑠𝑖𝑡𝑦  × (𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑇𝑖𝑚𝑒 )

𝑆𝑕𝑒𝑎𝑟  𝑠𝑡𝑟𝑒𝑠𝑠  × 𝐶𝑟𝑜𝑠𝑠  𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙  𝑎𝑟𝑒𝑎
 

= 
𝐶𝑟𝑜𝑠𝑠  𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙  𝑎𝑟𝑒𝑎  ×𝑙𝑖𝑛𝑒𝑎𝑟  𝑑𝑖𝑚𝑒𝑛𝑡𝑖𝑜𝑛  × 𝜌 × 

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝑇𝑖𝑚𝑒

𝑠𝑕𝑒𝑎𝑟  𝑠𝑡𝑟𝑒𝑠𝑠  ×𝑐𝑟𝑜𝑠𝑠  𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙  𝑎𝑟𝑒𝑎
 

= 
(𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 )2  × 𝜌

𝜇 (𝑑𝑢 𝑑𝑡 )
  =  

𝑉2  × 𝜌

𝜇(𝑉 𝐿 )
=  

𝑉𝐿𝜌

𝜇
 = 

𝑉𝐿

𝑣
, 

Where V and L denote the characteristic length and characteristic velocity respectively so that velocity will be 

proportional to V and  𝑑𝑢 𝑑𝑦  will be proportional to𝑉 𝐿 . 

 

II. Steady Flow Between Parallel Planes 
To describe e the motion of a viscous fluid of uniform density between parallel planes, the motion 

being steady where one plate is at rest and the other is in motion. 

Let an incompressible viscous fluid be in steady,motion bounded by the planes (or plates)y = 0 and y =h. Let the 

plate y = 0. i.e., x-axis beat rest while the plate y = h has a velocity u along x-axis. If q be the fluid velocity at 

point P(x,y,z), then  

q = q (u, 0, 0)           (1) 

Such type of flow is known as plane Couette flow the equation of continuity is  
𝜕𝑢

𝜕𝑥
 = 0                                                                   (2) 

So that 𝑢  is independent of x. Also by symmetry 𝑢 is independent of 

Consequently 𝑢 = 𝑢(𝑦).                                                                         (3) 

Navier – stoke’sequation in the absence of body forces is   
𝑑𝑞

𝑑𝑡
 = 

𝜕𝑞

𝜕𝑡
+ (q.∇)q = - 

1

𝜌
∇𝑝+ 𝑣∇2q    (4) 

Motion is steady ⇨
𝜕𝒒

𝜕𝑡
 = 0 

(𝑞. ∇)q = 𝑢
𝜕𝑞

𝜕𝑥
 = u 

𝜕𝑖𝑢

𝜕𝑥
= 𝑖𝑢

𝜕𝑢

𝜕𝑥
= 0,  by (1) and (2) 

Now (4) becomes  

−
1

𝜌
∇𝑝 + 𝑢∇2q= 0   or  −∇𝑝 + 𝜇𝑖∇2𝑢 = 0. 

This is equivalent to the following equations: 

−
𝜕𝑝

𝜕𝑥
 + 𝜇∇2𝑢 = 0                                              (5a) 

−
𝜕𝑝

𝜕𝑦
= 0    (5b) 
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−
𝜕𝑝

𝜕𝑧
 = 0                                                         (5c) 

(5b) and (5c) ⇨𝑝 = 𝑝  𝑥  

Writing (5a) with the help of (3) 
𝑑𝑝

𝑑𝑥
= 𝜇

𝑑2𝑢

𝑑𝑦 2    (6) 

The inspection of (6) shows that L.H.S. is a function of 𝑥 only while R.H.S. is a function of  𝑦  only. Hence, 

each side is constant. As the liquid is moving in a positive direction of 𝑥 axis, the pressure 𝑝(𝑥) should decrease 

as 𝑦 increase so that, 

𝑑𝑝 𝑑𝑥 < 0 ∀ 𝑥 > 0. 
Hence, we take  
𝑑𝑝

𝑑𝑥
=  𝜇

𝑑2𝑢

𝑑𝑦 2 =  −𝑝, Where,𝑝 > 0.    (7) 

This⇨
𝑑2𝑢

𝑑𝑦 2 =  
𝑝

𝑢
  ⇨  

𝑑𝑢

𝑑𝑦
=  − 

𝑝𝑦

𝜇
+ 𝐴 ⇨ 𝑢 =  −

𝑝𝑦 2

2𝜇
+ 𝐴𝑦 + 𝐵.    (8) 

Subjecting (8) to the conditions (i) = 0,  𝑖𝑖 𝑦 = 𝑕, 𝑢 = 𝑈, we get  

0 = 𝐵, 𝑈 =  − 
𝑕2

2𝜇
 P + 𝐴𝑕 + B so, that B = 0, A = 

𝑈

𝑕
+  

𝑕𝑃

2𝜇
 

∴ 𝑢 =  − 
𝑦

2𝜇

2
 𝑃 +  

𝑈

𝑕
+  

𝑕𝑃

2𝜇
 𝑦    (9) 

This shows that the velocity profile between the two plates in parabolic. The flow Q per unit breadth is given by 

𝑄 =   𝑢 𝑑𝑦 =    − 
𝑦2

2𝜇
𝑃 + (

𝑈

𝑕
+  

𝑕𝑃

2𝜇
)𝑦 𝑑𝑦

𝑕

0

𝑕

0
 

or, 𝑄 =  
𝑕3

12𝜇
+ 𝑃 +  

1

2
𝑕𝑈.            (10) 

Deductions(1) If both the planes 𝑦 = 0, 𝑦 = 𝑕 𝑎𝑟𝑒 at rest, then by putting 𝑈 = 0 𝑖𝑛  9 𝑎𝑛𝑑  10 , we obtain 

𝑢 =  − 
𝑦2

2𝜇
+  

𝑦𝑕

2𝜇
 𝑃 𝑎𝑛𝑑 𝑄 =  

𝑕3𝑃

12𝜇
.  

(2) Mean velocity across such section is 
𝑄

𝑕,
, 𝑖. 𝑒., 

1

𝑕
 𝑢 𝑑𝑦 =  

𝑕2

12𝜇
𝑃 +

1

2
 𝑈.

𝑕

0

 

The tangential stress at any point 𝑃  𝑥, 𝑦, 𝑧  𝑖𝑠 

𝜇
𝑑𝑢

𝑑𝑦
= −𝑃𝑦 +  

𝜇𝑈

𝑕
+  

𝑕𝑃

2
, 𝑏𝑦 Differentiating (9) 

(3) Drag per unit area on the lower plane 

= (𝜇
𝑑𝑢

𝑑𝑦
)𝑦=𝑕 =  −𝑃𝑕 + 

𝜇𝑈

𝑕
+ 

𝑕𝑃

2
− 

1

2
𝑕𝑃 +  

𝜇𝑈

𝑕
. 

Combining these two results, we have: 

Drag per unit area in the two planes 
1

2
𝑕𝑃 + 

𝜇𝑈

𝑕
 

 

III. Laminar Flow Between Partial Plates (Walls) 
By laminar flow, we mean that fluid moves in layer parallel to the plates. 

We suppose that an incompressible, fluid with constant velocity is confined between two parallel plates 

𝑦 =  𝑎 2 , 𝑦 =  −𝑎 2 . Let the fluid be moving with velocity 𝑢 parallel to the x-axis with laminar flow. In 

order to maintain such a motion, the difference of pressure in x-direction must be balanced by shearing stresses.    

Here,𝒒 = 𝒒(𝜇, 0,0) 

Equation of continuity is  
𝜕𝑢

𝜕𝑥
= 0  So, that 𝑢 = 𝑢 𝑦, 𝑡 , 

Navier Stoke’ equation is the absence of external force is  
𝑑𝑞

𝑑𝑡
=  

𝜕𝑞

𝜕𝑡
+  𝑞. 𝑉 𝑞 =  −

1

𝜌
∇𝑝+ v∇2q 

or, i
𝜕𝑢

𝜕𝑡
+ 𝑖𝑢 

𝜕𝑢

𝜕𝑥
=  − 

1

𝜌
∇𝑝 + 𝑣𝑖∇2𝑢 

 or,                  i
𝜕𝑢

𝜕𝑡
=  − 

1

𝜌
∇𝑝+ vi∇2𝑢  as 

𝜕𝑢

𝜕𝑥
= 0 

This ⇨
𝜕𝑢

𝜕𝑡
=  

1

𝜌

𝜕𝜌

𝜕𝑥
+ 𝑣∇2𝑢   (1) 

0 =  − 
1

𝜌

𝜕𝜌

𝜕𝑦
and  0 =  − 

1

𝜌

𝜕𝜌

𝜕𝑧
. 

The last two ⇨ P =P(x, t)      (2) 

Now, (1)        ⇨
𝜕𝑝

𝜕𝑥
=  𝜌

𝜕𝑢

𝜕𝑡
+  𝜇

𝜕2𝑢

𝜕𝑦 2.                           (3) 
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Also, R.H.S. of (3) is constant or function of 𝑦, 𝑡.  Consequently (3) declares that either 𝜕𝑝 𝜕𝑥  is constant or 

function of 𝑡. Now consider the case of steady motion so that (3) becomes. 

𝜇
𝜕2𝑢

𝜕𝑦2
=  

𝜕𝑝

𝜕𝑥
=  

𝑑𝑝

𝑑𝑥
 

or 
𝜕2𝑢

𝜕𝑦 2 =
1𝑑𝑝

𝜇𝑑𝑥
 

Integrating, 
𝑑𝑢

𝑑𝑦
=  

𝑦

𝜇

𝑑𝑝

𝑑𝑥
+ 𝐴   𝑜𝑟    𝑢 =  

𝑦2

2𝜇

𝑑𝑝

𝑑𝑥
+ 𝑑𝑦 + 𝐵.   (4) 

 

Case I:  Plane Couette Flow  

In this case 
𝑑𝑝

𝑑𝑥
 = 0, the lower plate is stationary while the upper is moving with uniform velocity U parallel to the 

x-axis. The boundary conditions are  

(i) 𝑢 = 0, =  − 𝑕 2,  (ii)  𝑢 = 𝑈 = 𝑐𝑜𝑛𝑠𝑡. , 𝑦 =  𝑕 2 . 

Subjecting (4) to (i) and (ii) , we get 

0 =  
𝑕2

𝐵𝜇
 .0 + 𝐴  −

𝑕

2
 + 𝐵   and  𝑈 =  

𝑕2

𝐵𝜇
. 0 + 𝐴

𝑕

2
+ 𝐵 

This⇨ −𝐴𝑕 + 𝐵 =  2𝑈 ⇨ 2𝑏 = 𝑈, −𝐴𝑕 + 𝑈 = 0 

Now (4) becomes  

𝑢 =  
𝑈

𝑕 
𝑦 +

𝑈

2
   (5) 

Evidently, the velocity distribution is linear. 

 

Case II Plane Poiseuille Flow  

In this case 
𝑑𝑝

𝑑𝑥
 = const. = 𝑎 ≠ 0  and both the walls are at rest. 

The boundary conditions are  

(i) 𝑢 = 0, 𝑦 =  −
𝑕

2
,  (ii) 𝑢 = 0 , 𝑦 =  

𝑕

2
. 

Subjecting (4) to the condition (i) and (ii), 

𝑎 =  
𝐴𝑕2

8𝜇
+ 𝐴  −

𝑕

2
 + 𝐵 = 0, and   

𝑎𝑕2

8𝜇
+ 𝐴 

𝑕

2
 + 𝐵 = 0. 

Subjecting we get,  

A = 0, so that 𝐵 =  −𝑎𝑕2 8𝜇  

 Now (4) becomes  

𝑢 =  
𝑎𝑦 2

2𝜇
− 

𝑎𝑕2

8𝜇
=  − 

𝑕2

8𝜇
 1 − 

4𝑦2

𝑕2  
𝑑𝑝

𝑑𝑥
  (6a) 

or,                    𝑢 = 𝑢𝑚  1 −
4𝑦2

𝑕2          (6b) 

Where,𝑢𝑚 =  − 
𝑕2

8𝜇

𝑑𝑝

𝑑𝑥
        (7) 

is the maximum velocity in the flow occurring at  𝑦 = 0. Evidently, the velocity distribution is parabolic. 

Drag (shear stress) at lower plate       =  𝜇
𝑑𝑢

𝑑𝑦
 
𝑦= −𝑕 2 

 

     =  𝜇  −
8𝑦

𝑕2 𝑢𝑚 
𝑦= −𝑕 2 

 

= 4𝜇𝑢𝑚 𝑕  

The average velocity distribution or the flow of the present is given by 

𝑢𝑎 =  
𝑎

𝑕
 𝑢𝑑𝑦.

𝑕 2 

−𝑕 2 
 Using (6), we get  

𝑢𝑎 =  
1

𝑕
𝑢𝑚   1 − 

4𝑦2

𝑕2
 𝑑𝑦 =  

2

𝑕
𝑢𝑚   1 − 

4𝑦2

𝑕2
 𝑑𝑦

𝑕 2 

0

𝑕 2 

−𝑕 2 

 

=
2

𝑕
.  −

𝑕2

8𝜇
𝑎  

𝑕

2
 
−4

𝑕2
 .

1

3
 
𝑕

2
 

3

 =   −
𝑕𝑎

4𝜇
  

𝑕

3
  

=  
2

3
 −

𝑕2𝑎

8𝜇
 =  

2

3
𝑢𝑚  

or,                           𝑢𝑎 =  
2

3
𝑢𝑚   (8) 

Where 𝑢0 = average velocity,𝑎 =  
𝑑𝑝

𝑑𝑥
= 𝑐𝑜𝑛𝑠𝑡. 

𝑢𝑚 = Maximum velocity  
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Case III Generalized Plane Couette Flow 

In this case 
𝑑𝑝

𝑑𝑥
 = const. = a≠ 0, the lower plate is at rest while the upper is in motion with velocity𝑈. The 

boundary conditions are  

(i) 𝑢 = 0, 𝑦 =  −𝑕 2,   (ii) 𝑢 = 𝑈, 𝑦 =  𝑕 2.  

Subjecting (4) to (i) and (ii), 
𝑎𝑕2

8𝜇
+ 𝐴 −

𝑕

2
 + 𝐵 = 0,

𝑎𝑕2

8𝜇
+ 𝐴  

𝑕

2
 + 𝐵=U. 

This ⇨𝐵 =  
𝑈

2
− 

𝑎𝑕2

8𝜇
 , 𝐴 =  

𝑈

𝑕
 

Now (4) becomes  

=  
𝑎𝑦2

2𝜇
+  

𝑈

𝑕
𝑦 +  

𝑈

2
− 

𝑎𝑕2

8𝜇
 

or,                        𝑢 =  
𝑎

8𝜇
 4𝑦2 − 𝑕2 +  

𝑈

2
 1 +

2𝑦

𝑕
  

Evidently,the velocity distribution is parabolic 

𝜇
𝑑𝑢

𝑑𝑦
=  

𝑎

8𝜇
 8𝑦 − 0 +  𝜇

𝑈

2
 0 +

2

𝑕
 = 𝑎𝑦 +

𝜇

𝑕
𝑈,    (9) 

Drag per unit area on the boundaries  

=  𝜇 
𝑑𝑢

𝑑𝑦
 𝑎𝑡 𝑦 =  ±

𝑕

2
 

=  𝜇
𝑈

𝑕
±

𝑕

2

𝑑𝑝

𝑑𝑥
. 

Total flux (flow) per unit breadth across a plane perpendicular to the 𝑥 axis 

 is     Q=   𝑢 𝑑𝑦 
𝑕 2 

−𝑕 2 
=   

𝑎

8𝜇
 

4

3
𝑦3 − 𝑕2𝑦 +

𝑈

2
 𝑦 +

𝑦3

𝑕
  

𝑦= −𝑕 2 

𝑦= 𝑕 2 

 

or, 𝑄 = 𝑈
𝑕

2
− 

𝑕3𝑎

12𝜇
. 

Vortricity 𝑊 𝜉, 𝜂, 𝜁  at any point is given by  

𝝃 = 0, = 0, 𝜻 = 
1

2
 
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
 =  

1

2

𝜕𝑢

𝜕𝑦
=  − 

1

2

𝑑𝑢

𝑑𝑦
 

=  −
1

2
 
𝑎𝑦

𝜇
+

𝑈

𝑕
  by (9) 

Rate D of dissipation of energy per unit area is given by  

𝐷 = 4𝜇  𝜁2𝑑𝑦
𝑕 2 

−𝑕 2 

=  𝜇   
𝑎𝑦

𝜇
+  

𝑈

𝑕
 

2

𝑑𝑦
𝑕 2 

−𝑕 2 

 

     = 𝜇   
𝑎2𝑦2

𝜇2
+

𝑈2

𝑕2
+

2𝑎𝑦𝑈

𝜇𝑕
 𝑑𝑦 =  

𝑎2𝑕3

12𝜇

𝑕 2 

−𝑕 2 

+
𝑈2𝑎

𝑕
 

 

Problem 1:Let there be a laminar flow of water at 50℉ between two parallel plates separated by a distance of 1 

inch. If the pressure drop per foot of channel is recorded to be 0.003 inches of water, find the maximum 

velocity, the shear stress at the wall, and the velocity distribution between the plates. The viscosity of water at 

50℉ is 𝜇 = 2.74 × 10−5ℓ bf sec! 𝑓𝑡2. 

 

Solution  

The pressure drop in appropriate units is  
𝑑𝑝

𝑑𝑥
 = −

0.003×62.5

12
 = −0.0156 ℓ𝑏𝑓 𝑓𝑡2.  

VelocityDistribution ids are given by 𝑢 =  𝑢𝑚  1 −
4𝑦2

𝑕2   

Where,𝑢𝑚 = − 
𝑕2

8𝜇

𝑑𝑝

𝑑𝑥
. 

Shear stress or Drag =  𝜇
𝑑𝜇

𝑑𝑦
 
𝑦−𝑕 2 

=  𝜇  
−8𝑦

𝑕2  
𝑦=−𝑕 2 

=  
4𝜇

𝑕
𝑢𝑚  

Now the maximum value of  𝑢 is 𝑢𝑚  such that 

𝑢𝑚 =  −
𝑕2

8𝜇

𝑑𝑝

𝑑𝑥
=  

𝑕2

8𝜇
 . 0156 

0.0156

12 × 12 × 8 × 2.74 × 10−5
 

=  
1560

144 ×8 ×2.74
=  

10.83

8 ×2.74
= 0.494.          Ans 

Shear stress = 4 × 12 × 2.74 × 10−5 × 0.494 = 0.000649 

= 𝟔. 𝟒𝟗 × 𝟏𝟎−𝟒 
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     𝑢 =  𝑢𝑚  1 −
4𝑦2

𝑕2  = 0.494  1 −
4𝑦2

𝑕2  = 0.494 1 − 4𝑦2 as  𝑕 = 1 inch. 

or, 𝑢 = 0.494 1 − 4𝑦2 where 𝑦 is measured in inches.              

Problem 2  

Water at 70℉ flows between two large parallel plates at a distance of 
1

16
 inch apart. If the average velocity is 

0.5𝑓𝑡 𝑠𝑒𝑐 , determine the maximum velocity pressure drop and wall shear stress. The viscosity of water at 70℉ 

is 𝜇= 2.05× 10−5ℓ𝑏𝑓 sec/ft 2 

Solution   

It is given that 𝑕 =  
1

16
 inch = 

1

 16×12 
𝑓𝑡, 

𝜇 = 2.05 × 10−5ℓ𝑏𝑓/𝑓𝑡2 average velocity = 𝑢𝑎𝑣  = 
1

2
 𝑓𝑡/𝑠𝑒𝑐 

𝑢 = 𝑢𝑚𝑎𝑥  1 −
4𝑦2

𝑕2  , Where  𝑢𝑚𝑎𝑥 =  −
𝑕2

8𝜇

𝑑𝑝

𝑑𝑥
 

𝜍 = Shear stress =  𝜇
𝑑𝑢

𝑑𝑦
 
𝑦= −𝑕 2 

=  𝜍 𝑢𝑚𝑎𝑥  
−8𝑦

𝑕2  
𝑦= −𝑕 2 

 

𝜍 =  
4𝜇

𝑕
𝑢𝑚𝑎𝑥  

The average velocity 𝑢𝑎𝑣  is given   

𝑢𝑎𝑣 =  
1

𝑕
 𝑢 𝑑𝑦

𝑕 2 

−𝑕 2 

=  
1

𝑕
 𝑢𝑚𝑎𝑥  1 −

4𝑦2

𝑕2
 𝑑𝑦 =  

2

3
𝑢𝑚𝑎𝑥

𝑕 2 

−𝑕 2 

 

This ⇨𝑢𝑚𝑎𝑥 =
3

2
𝑢𝑎𝑣 =  

3

2
 

1

2
 =

3

4
𝑓𝑡

𝑠𝑒𝑐
. 

Maximum velocity =  𝑢𝑚𝑎𝑥 = 0.75 𝑓𝑡/𝑠𝑒𝑐                      Ans 

Again 𝑢𝑚𝑎𝑥 =  −
𝑕2

8𝜇

𝑑𝑝

𝑑𝑥
∴  

3

4
=  −

1

8
.  

1

16 × 12
 

2 1

2.05 ×10−5

𝑑𝑝

𝑑𝑥
 

This ⇨
𝑑𝑝

𝑑𝑥
=  − 

3

4
× 8 ×  16 × 12 2 × 2.05 × 10−5 =  −4.5342 

∴ Pressure drop = 4.5342 ℓbf/𝑓𝑡2 

𝜍 =  
4𝜇

𝑕
𝑢𝑚𝑎𝑥 = 4 × 2.05 × 10−5 × 

3

4
 × 16 × 2 =  .0118 

or     Shear stress = 0.0118 ℓbf/𝑓𝑡2 

 

PROBLEM 3  

A 
1

2
– in – diameter water pipe is 60 ft. long and delivers water at 5 gals/ min at 200C. what fraction of this pipe 

id taken up by the entrance region?  

Solution:  

Convert Q = ( 5 gal / min ) 
0.00223 𝑓𝑡 3/ 𝑠 

1 𝑔𝑎𝑙  /𝑚𝑖𝑛
 = 0.0111𝑓𝑡3/𝑠 

The average velocity is  

                          V = 
𝑄

𝐴
 =  

0.0111𝑓𝑡 3/𝑠

𝜋 4   
1

2
/12 𝑓𝑡  

2 = 8.17ft/s 

For, water v = 1.01× 10−6 𝑚2 𝑠  = 1.09× 10−5 𝑓𝑡2 𝑠 . Then the pipe Reynolds number is 

𝑅𝑒𝑑  = 
𝑉𝑑

𝑣
 = 

 8.17𝑓𝑡 𝑠    
1

2
12  𝑓𝑡  

1.09×10−5𝑓𝑡 2/𝑠
 = 31,300 

This is greater than 400 hence the flow is fully turbulent, and 
𝐿𝑑

𝑑
≈ 1.6𝑅𝑒𝑑

1 4 
 for 𝑅𝑒𝑑 ≤ 107 

Applies for entrance length:
𝐿𝑒

𝑑
 = 

21

1440
 = 0.015=1.5% 

This is a very small percentage so that we can reasonably treat this pipe flow as essentially fully developed.  

 

IV. Conclusion: 
The methods are successfully applied to the governing differential equation of two-dimensional viscous 

flow. Also, the transformed ODE equation is numerically solved. Moreover, the effects of wall dilation rate and 

permeation Reynolds number (Re) on the dimensionless axial velocity distributions are represented. The 

following conclusions are drawn from the present research.The steady flow between two parallel plates and a 

laminar flow between two parallel walls has been studied. The shear stress at the wall and the velocity 

distribution between the plates has been calculated for problem 1. The maximum velocity pressure drop and 

wall shear stress for the problem are calculated. 
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