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I. Introduction 
The subject of fractional calculus (integrals and derivatives of any arbitrary order) has gained 

considerable popularity and importance during the past three decades or so, due mainly to its demonstrated 

applications in numerous seemingly diverse and wide spread fields of science and engineering. It does provide 

several potentially useful tool for solving differential and integral equations, and various other problems 

involving special functions of mathematical physics, as well as, their extensions and generalizations from one 

variable to more variables [1]. 

Many problems can be treated by fractional Integro-differential equations from different sciences 

applications. In fact, most mathematical problems are hard to solve analytically, and therefore finding an 

approximate solution, by investigating several numerical methods, would be very convenient. In recent years, 

several numerical methods have been applied to solve fractional differential equations (FDEs) and fractional 

Integro-differential equations (FIDEs). 

In this paper, the semi-analytic methods which are so called HAM and ADM will be applied together 

to solve fractional order partial integro differential equations(FPIDEs). 

In [3], Kumer presents a comparative study among three numerical schemes such as linear, quadratic 

and quadratic-linear scheme of the fractional integro-differential equation. In [7],Singh study the numerical 

solution of nonlinear weakly singular partial integro-differential equation via operational matrices, he proposed 

and analyze an efficient matrix based on shifted Legender polynomials for the solution of non-linear volterra 

singular partial integro-differential equations (PIDEs). 

In [2],Hecht was presenteda finite difference for one system of nonlinear integro-differential 

equations.In [8],Yanghave been introduced an exponential variance Gamma method to the valuation of 

convertible bond pricing with partial integro-differential equation.   In [6], Ray was discussed for finding an 

approximate solution of two-dimensional wavelets operational method for solving volterra weakly singular 

partial integro-differential equations. 

In this paper, HAM and ADM will be applied for solving partial integro-differential equations with fractional 

order derivative given by the following formula 

𝐷𝑡
𝛼u 𝑥, 𝑡 𝐶 = g 𝑥, 𝑡 +   k 𝑦, 𝑠 𝐹 u 𝑦, 𝑠  𝑑𝑠𝑑𝑦,

𝑡

𝑎

𝑥

0
      (1) 

subject to  

u 𝑥, 0 = 𝑢0 𝑥  ,       𝑥 ∈  𝑎, b .                 (2) 

and 

𝐷𝑡
𝛼u 𝑥, 𝑡 𝐶 = g 𝑥, 𝑡 + 𝐼𝑡

𝛽
𝐼𝑥
𝛼k 𝑥, 𝑠 𝐹 u 𝑥, 𝑠   ,      (3) 

subject to  

u 𝑥, 0 = 𝑢0 𝑥  ,       𝑥 ∈  𝑎, b .                 (4) 
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II. Preliminaries 
In this section, we present some necessary definitions and mathematical preliminaries of the fractional calculus 

theory that have been needed in the construction of this paper. 

 

II.1  Fractional Order Derivatives and Integrals 

In this part we shall give some basic definitions and properties of the fractional order derivatives and integrals 

[4]. 

 

Definition 1.The Riemann–Liouville (R-L) fractional integral of order α > 0 is defined as follows: 

𝐼𝑥
𝛼 f (x) = 

1

𝛤(𝛼)
  𝑡 − 𝜏 𝛼−1𝑓 𝜏 𝑑𝜏
𝑥

0
, x> 0 ,𝛼 ∈ 𝑅+. 

 

Definition 2.The Caputo fractional derivative of order α > 0 is defined as follows: 

𝐷𝑥
𝛼𝐶 f (x) = 

1

𝛤(𝑚−𝛼)
 

𝑓 𝑚  (𝜏)

(𝑥−𝜏)𝛼+1−𝑚 𝑑𝜏  ,                       𝑚 − 1 < 𝛼 < 𝑚 ;
𝑥

0

𝑑𝑚

𝑑𝑥𝑚 (𝑥)
 𝑓 𝑥   ,                                                         𝛼 = 𝑚 .

  

For  𝛼 > 0, we have [5]: 

1- 𝐷𝑥
𝛼𝐶 (𝐼𝑥

𝛼 f(x)) =f(x). 

2- 𝐼𝑥
𝛼  𝐷𝑥

𝛼𝐶 𝑓 𝑥  = 𝑓(𝑥) −  𝑓 𝑘 (0+)
𝑥𝑘

𝑘!

𝑛−1
𝑘=0  . 

3- 𝐷𝑥
𝛼𝐶 (𝑐)=0, c∈ Ʀ. 

 

III. Existence and Uniqueness Theorems of the solutions of two dimensional partial integro-

differential equations of fractional order. 
The existence and uniqueness of problems (1)-(2) and (3)-(4) will be obtained in this section under certain 

conditions using Banach fixed point theorem. 

III.1 The Existence and uniqueness of the solution of problem (1)-(2).  

Lemma 1: 

The function u ∈ C  a, b ×  0, T  = X is a solution of problem (1)-(2) if and only if u x, t  is satisfying  

 

u 𝑥, 𝑡 = 𝑢0 𝑥 + 𝐼𝑡
𝛼g 𝑥, 𝑡 + 𝐼𝑡

𝛼   k 𝑦, 𝑠 𝐹 u 𝑦, 𝑠  𝑑𝑠𝑑𝑦.
𝑡

0

𝑥

𝑎
      (5) 

Proof: 

Apply It
α  on both sides of equation (1), yields 

𝐼𝑡
𝛼 𝐷𝑡

𝛼u 𝑥, 𝑡 𝐶 = 𝐼𝑡
𝛼g 𝑥, 𝑡 + 𝐼𝑡

𝛼   k 𝑦, 𝑠 𝐹 u 𝑦, 𝑠  𝑑𝑠𝑑𝑦,
𝑡

0

𝑥

𝑎

 

according to equation (2), we have  

𝑢 𝑥, 𝑡 = 𝑢0 𝑥 + 𝐼𝑡
𝛼𝑔 𝑥, 𝑡 + 𝐼𝑡

𝛼   𝑘 𝑦, 𝑠 𝐹 𝑢 𝑦, 𝑠  𝑑𝑠𝑑𝑦.
𝑡

0

𝑥

𝑎

 

Hence the result is obtained. 

Theorem 1 

Let A: X → X be defined as 

Au = 𝑢0 𝑥 + 𝐼𝑡
𝛼g 𝑥, 𝑡 + 𝐼𝑡

𝛼   k 𝑦, 𝑠 𝐹 u 𝑦, 𝑠  𝑑𝑠𝑑𝑦,
𝑡

0

𝑥

𝑎
     (6)  

such that k verified a Lipschitz condition w.r.t. u x, t with a Lipschitz constant 

L ≥ 0,and k x, t  ≤ M, 

Furthermore, if   
ML b−a Tα+1

Γ α+2 
< 1, then T has a unique solution. 

Proof: 

Define the supermum norm, which will be needed later in the proof as   

 𝑢 𝑥, 𝑡  = 𝑠𝑢𝑝
𝑥∈ 𝑎,𝑏 

𝑡∈ 0,𝑇 

 𝑢 𝑥, 𝑡   

Now to prove that T is a contractive mapping  

Let𝑢1 𝑥, 𝑡 , 𝑢2 𝑥, 𝑡 ∈ 𝑋, then 
 𝐴𝑢1 𝑥, 𝑡 − 𝐴𝑢2 𝑥, 𝑡   
 

≤
1

𝛤 𝛼 
    𝑡 − 𝑣 𝛼−1

𝑣

0

𝑥

𝑎

𝑡

0

 𝑘 𝑦, 𝑠   𝐹 𝑢1 𝑦, 𝑠  − 𝐹 𝑢2 𝑦, 𝑠   𝑑𝑦𝑑𝑠𝑑𝑣 

Hence 
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 𝐴𝑢1 𝑥, 𝑡 − 𝐴𝑢2 𝑥, 𝑡  ≤
𝑀𝐿

𝛤 𝛼 
 𝑢1 𝑥, 𝑡 − 𝑢2 𝑥, 𝑡      𝑡 − 𝑣 𝛼−1

𝑣

0

𝑥

𝑎

𝑡

0

𝑑𝑦𝑑𝑠𝑑𝑣.  

≤
𝑀𝐿

𝛤 𝛼 
 𝑢1 𝑦, 𝑠 − 𝑢2 𝑦, 𝑠  

 𝑥 − 𝑎 𝑡𝛼+1

𝛼(𝛼 + 1)
 

≤
𝑀𝐿 𝑏 − 𝑎 𝑇𝛼+1

𝛤 𝛼 + 2 
 𝑢1 𝑦, 𝑠 − 𝑢2 𝑦, 𝑠   

Since  
𝑀𝐿 𝑏 − 𝑎 𝑇𝛼+1

𝛤 𝛼 + 2 
< 1, 

Then 𝐴 is a contractive mapping therefore, the problem (1)-(2) has a unique solution. 

 

III.2 Existence and Uniqueness Theorems of the solutions of Problem (3)-(4): 

In this subsection the existence and uniqueness of problem (3)-(4) will be introduced. 

Lemma 2: 

The function u ∈ X is a solution of problem (3)-(4) if and only if u x, t  is satisfying  

u 𝑥, 𝑡 = 𝑢0 𝑥 + 𝐼𝑡
𝛼g 𝑥, 𝑡 + 𝐼𝑡

𝛼𝐼𝑡
𝛽
𝐼𝑥
𝛼k 𝑥, 𝑡 𝐹 u 𝑥, 𝑡        (7)  

Proof: 

Apply It
α  on both sides of equation (3), yields 

𝐼𝑡
𝛼 𝐷𝑡

𝛼u 𝑥, 𝑡 𝐶 = 𝐼𝑡
𝛼g 𝑥, 𝑡 + 𝐼𝑡

𝛼𝐼𝑡
𝛽
𝐼𝑥
𝛼k 𝑥, 𝑡 𝐹 u 𝑥, 𝑡  ,  

According to equation (4), we have  

𝑢 𝑥, 𝑡 = 𝑢0 𝑥 + 𝐼𝑡
𝛼𝑔 𝑥, 𝑡 + 𝐼𝑡

𝛼𝐼𝑡
𝛽
𝐼𝑥
𝛼𝑘 𝑥, 𝑡 𝐹 𝑢 𝑥, 𝑡  . 

Hence the result is obtained. 

Theorem 2: 

Let A: X → X be defined as 

           Au = 𝑢0 𝑥 + 𝐼𝑡
𝛼g 𝑥, 𝑡 +

1

Γ 𝑤 Γ 𝛼 
   𝑡 − 𝑠 𝑤−1 𝑥 − 𝑦 𝛼−1𝐹 𝑢 𝑦, 𝑠  𝑑𝑦𝑑𝑠

𝑥

𝑎

𝑡

0
  (8)                                                    

such that k verified a Lipschitz condition w.r.t. u x, t with a Lipschitz constant 

L ≥ 0, w = α + 𝛽and k x, t  ≤ M. 

Furthermore, if    
LM Tw (b−a)𝛼

Γ w+1 Γ 𝛼+1 
< 1,  thenA has a unique solution. 

Proof: 

 Au1 x, t − Au2 x, t   

    ≤
LM

Γ w Γ β 
 u1 x, t − u2 x, t     t − s w−1 x − y β−1F u y, s  dyds

x

a

t

0

 

 Au1 x, t − Au2 x, t  ≤
LM

Γ w Γ β 
 u1 x, t − u2 x, t   

tw (x − α)𝛼

w𝛼
  

 Au1 x, t − Au2 x, t  ≤
LMTw (b − a)𝛼

Γ w + 1 Γ β + 1 
 u1 x, t − u2 x, t   

Since     
LM Tw (b−a)β

Γ w+1 Γ β+1 
< 1, 

Then A is a contractive mapping therefore, the problem (3)-(4) has a unique solution. 

 

IV. ADM for solving two dimensional partial Integro-differential Equations 

of Fractional order: 
   In this section the implementation of the ADM for solving two dimensional FPIDEs will be presented. 

 

IV.1 ADM for solving problem (1)-(2): 

 

To apply the ADM for solving problem (1)-(2) first operating It
α  on both sides of equation (1) to get: 

u x, t = u0 x + It
αg x, t + It

α    
k y, s F u y, s  dyds  

t

a

x

0
     (9) 

according to ADM, we let the solution to be : 

u x, t =  un x, t ∞
n=0          (10) 

and the nonlinear term F u x, t  , in equation (1), will be decomposed as: 

F[u x, t ] =  An
∞
n=0          (11) 

where 

An =
1

n!

dn

dλn
 F( unλ

n )∞
n=0  λ=0        (12)  
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Substituting equations (10) and (11) into equation (9), we get: 

 𝑢𝑛 𝑥, 𝑡 

∞

𝑛=0

= 𝑢0 𝑥 + 𝐼𝑡
𝛼g 𝑥, 𝑡 + 𝐼𝑡

𝛼    
k 𝑦, 𝑠  𝐴𝑛

∞

𝑛=0

𝑑𝑦𝑑𝑠  

𝑡

𝑎

𝑥

0

  

consequently, we can write 

u0 x, t = u0 x + It
αg x, t  

and 

un+1 x, t = It
α    

k y, s Andyds  

t

a

x

0

 , n ≥ 1. 

Truncating the summation into equation (10), after m terms, so we have the mth  approximate solution of the 

problem (1)-(2)as: 

𝑢𝑚  𝑥, 𝑡 =  𝑢𝑛 𝑥, 𝑡 𝑚
𝑛=0 .        

IV.2 ADM for solving problem (3)-(4): 

In this subsection a similar manner that have been given in subsection (IV.1) will be implemented in order 

formulate a recurrence formula for finding the approximate solution of the problem (3)-(4) using ADMand as 

follows: 

 

u0 x, t = u0 x + It
αg x, t       (13) 

un+1 x, t = It
α  It

β
Ix
α

 k y, s An
 , n ≥ 1.     (14) 

So, the mth  order approximate solution of the problem (3)-(4) is given by  

𝑢𝑚  𝑥, 𝑡 =  𝑢𝑛 𝑥, 𝑡 𝑚
𝑛=0       (15) 

 

 

V. HAM for solving two dimensional partial Integro-differential Equations of Fractional order. 
            In this section the implementation of the HAM for solving two dimensional PIDEs will be presented. 

V.1 HAM for solving problem (1)-( 2): 

Rewriting equation (1) in an operator equation, so we have     

N u x, t  = 0          (16) 

where 

N u x, t  = Dt
αu x, t C − g x, t −   

k y, s F u y, s  dyds.  
t

a

x

0
     (17)  

       According to the HAM, we construct the so called zero-order deformation equation 

 1 − q ℒ ∅ x, t, q − u0 x  = qℏH x N ∅ x, t, q       (18) 

whereq ∈  0,1  is an embedding parameter, ℏ ≠ 0 is a nonzero auxiliary parameter, H x ≠ 0 is an auxiliary 

function  u0 x  is an initial guess of u x, t  and ℒ is an auxiliary linear operator defined by: 

ℒ = Dt
αC           (19) 

Obviously, when q = 0and 1, it holds  

∅ x, t, 0 = u0 x ,         ∅ x, t, 1 = u x, t respectively.  

Expanding  ∅ x, t, q  in Taylor series with respect to q,we have  

 

∅ x, t, q = u0 x +  um
+∞
m=1  x, t qm ,       (20)   

where 

um x, t =
1

m!

∂m∅ x,t,q 

∂qm │q=0         (21) 

If the initial guess, the auxiliary parameter ℏ and the auxiliary function H x  are so properly chosen then the 

series (20) converges at q = 1. 
Thus we have  

u x, t = u0 x +  um
+∞
m=1  x, t ,        (22)  

     Define the vector  

un     =  u0 x, t , u1 x, t , ……… , un x, t  . 
Differentiating equation (18) m times with respect to the embedding parameter q and then setting q = 0 and 

finally dividing by m!, we have the so called mth order deformation equation  

 

ℒ um x, t − χm um−1 x, t  = ℏH x Rm u  m−1       (23) 

where 

Rm u  m−1 =  
1

 m−1 !

∂m−1N ∅ x,t,q  

∂qm−1 │q=0        (24) 
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Now, letting ℏ = −1and H x = 1, then the solution of the mth  order deformation equations (23),yields:  

𝑢𝑚  𝑥, 𝑡 = 𝜒𝑚𝑢𝑚−1 𝑥, 𝑡 − 𝐼𝑡
𝛼  𝐷𝑡

𝛼𝑢𝑚−1 𝑥, 𝑡 𝐶 −  1 − 𝜒𝑚  g 𝑥, 𝑡 −   
k 𝑦, 𝑠 𝐹 u 𝑦, 𝑠  𝑑𝑦𝑑𝑠

𝑡

𝑎

𝑥

0
  (25) 

and by means of the above iteration formula (25), we can obtain directly the other components in order one after 

one. 

 

 

V.1.2Convergence analysis: 

In this subsection, the convergence of the formula (25) to the exact solution u x, t , of problem (1)-(2), will be 

proved, it is remarkable that  F u x, t   in equation (1) will be expressed as F u x, t  =  u x, t  p , p ≥ 1 . 
Theorem 3 (convergence theorem of the solution of problem (1)-(2): 

If the series   um
∞
m=0  x, t  is convergent, where um x, t  is produced by:  

Dt
αC  um x, t − χm um−1 x, t  = ℏHRm u  m−1        (26) 

Where 

𝑅𝑚  𝑢  𝑚−1 = 𝐷𝑡
𝛼𝐶 𝑢𝑚−1 −  1 − 𝜒𝑚  g 𝑥, 𝑡 −   k 𝑦, 𝑠  u 𝑦, 𝑠  𝑝𝑑𝑠𝑑𝑦, 𝑝 ≥ 1 

𝑡

0

𝑥

0
   (27) 

and besides    Dt
αC  um x, t  ∞

m=0  also converges, then it is the exact solution of problem (1)-(2). 

Proof: 

     Suppose that  um x, t ∞
m=0  converges uniformly to u x, t , 

Then it is clear that   

limm→∞ um x, t = 0, for all x and t ∈ R+       (28) 

since 

Dt
αC is a linear operator, we have: 

 Dt
αC  um x, t − χm um−1 x, t  

n

m=1

=   Dt
αC um x, t − χm Dt

αC um−1 x, t  .

n

m=1

 

= Dt
αC u1 x, t +  Dt

αC u2 x, t − Dt
αC u1 x, t  + ⋯+  Dt

αC un x, t − Dt
αC un−1 x, t   

= Dt
αC un x, t .         (29) 

Then from equations (26), (28) and (29), we have 

 Dt
αC  um x, t − χm um−1 x, t  =  lim

n→∞
Dt
αC un x, t 

∞

m=1

 

= Dt
αC  lim

n→∞
un x, t  = 0 

Hence  

ℏH  Rm u  m−1 

∞

m=1

= 0 

sinceℏ and H ≠ 0, then yields 

 Rm u  m−1 
∞
m=1 = 0          (30) 

and since  

Rm u  m−1 = Dt
αum−1 −  1 − χm g x, t −   k y, s  um−1 y, s  pdsdy.

t

0

x

0

C  

so, we have  

 

0 =   Dt
αum−1 −  1 − χm g x, t −   k y, s  um−1 y, s  pdsdy.

t

0

x

0

C  

∞

m=1

 

=  Dt
αC um−1

∞

m =1

 x, t − g x, t −  [  k y, s [ um−1−r1
 y, s 

m−1

r1=0

t

0

x

0

∞

m=1

 

 ur1−r2

r1

r2=0

 y, s  ur2−r3
 y, s …

r2

r3=0

 urp−3− rp−2

rp−3

rp−2=0

 y, s  urp−2− rp−1
 y, s ]dsdy].

rp−2

rp−1=0

 

Hence  

0 = Dt
αC  um−1

∞

m=1

 x, t − g x, t −   k y, s (  um−1−r1
 ur1−r2

∞

rp−2=rp−1

∞

rp−1=0

t

0

x

0
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 ur2−r3
……

∞

rp−2=rp−1

 urp−3− rp−2

∞

r2=r3

 urp−2− rp−1
 um−r1

∞

m=r1

) y, s ]dsdy.

∞

r1=r2

 

 

0 = Dt
αC  um

∞

m=0

 x, t − g x, t −   k y, s ( ui1
 y, s  ui2

∞

i2=0

∞

i1=0

 y, s 
t

0

x

0

 

 ui3
 y, s ……

∞

i3=0

 uip−1

∞

ip−1=0

 y, s  uip
 y, s )dsdy.

∞

ip =0

 

so from equation (30), we obtain 

0 = Dt
αC u x, t − g x, t −   k y, s  u y, s  pdsdy.

t

0

x

0

 

Since 

 um x, t ∞
m=0 also satisfies the initial condition  

 um x, 0 

∞

m=0

= u x, 0 = u0(x) 

Therefore, we conclude that it's an exact solution of  problem (1)-(2). 

 

V.2 HAM for solving problem (3)-(4): 

The HAM can be performed for solving problem (3)-(4)in a similar manner that have been given in subsection 

(V.1) and therefore, we have: 

𝑢𝑚  𝑥, 𝑡 = 𝜒𝑚𝑢𝑚−1 𝑥, 𝑡 − 𝐼𝑡
𝛼  𝐷𝑡

𝛼𝑢𝑚−1 𝑥, 𝑡 𝐶 −  1 − 𝜒𝑚  g 𝑥, 𝑡 − 𝐼𝑡
𝛽
𝐼𝑥
𝛼k 𝑦, 𝑠 𝐹 u 𝑦, 𝑠    (31) 

and by means of equation (31), we can obtain the other components in order one after one.  

 

V.2.1. Convergence analysis: 

In this subsection, the convergence of the formula (31) to the exact solution u x, t , of problem (3)-(4), will be 

proved, it is remarkable that  F u x, t   in equation (3) will be expressed as  F u x, t  =  u x, t  p , p ≥ 1 . 
Theorem 4 (convergence theorem of problem (3)-(4)): 

If the series   um
∞
m=0  x, t  is convergent , where um x, t  is produced by  

Dt
αC  um x, t − χm um−1 x, t  = ℏHRm u  m−1       (32) 

where 

Rm u  m−1 = Dt
αC um−1 −  1 − χm g x, t − It

β
Ix
αk x, t  u x, t  p  

and besides 

 Dt
αC  um x, t  ∞

m=0 also converges, then it is the exact solution of problem (3)-(4). 

Proof: 

The proof of theorem (4) will be in similar manner to the proof of theorem (3). 

 

VI. Applications:- 
In this section, we shall introduce some illustrative numerical examples in order to confirm the applicability and 

accuracy of the HAM and the ADM, , for solving non- linear two dimensional partial integro-differential 

equation of fractional order. 

Example 1 

Consider the following linear two dimensional FPIDEs:- 

Dt
3/4

u x, t C = g x, t +    y − s u y, s dsdy,   
t

0

x

0
      (32) 

subject to  

u x, 0 = 0,        (33) 

whereg x, t =
xt1/4

Γ 5/4 
−

x3t2

6
+

x2t3

6
, and the exact solution of problem (32)-(33) is  u x, t = xt. 

 

Following figures (1)-(2) represent a comparison between the approximate solution of problem (32)- 

(33) using HAM and ADM up to 4-terms and the exact solution. 

 
 
 

 

App

roxi

mat

e 

(x,t) 
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Figure1: comparison between the approximate solution of problem(32)-(33) using HAM up to 4-terms and the 

exact solution. 

 

 
Figure2: comparison between the approximate solutions of problem (32)-(33) using ADM up to 4-terms and the 

exact solution. 

 

Example 2 

 Consider the following linear two dimensional FPIDEs:- 

Dt
1/2

u x, t C = g x, t + It
1/2

Ix
3/4 x − t u x, t ,      (34) 

subject to  

u x, 0 = 0,       (35) 

whereg x, t =
xt1/2

Γ 3/2 
−

Γ 3 x11/4t3/2

Γ 15/4 Γ 5/2 
+

Γ 3 x7/4t5/2

Γ 11/4 Γ 7/2 
, and the exact solution of problem (34)-(35) is  u x, t = xt. 

 
Following figures (3)-(4) represent a comparison between the approximate solution of problem (34)-(35) using 

HAM and ADM up to 4-terms and the exact solution. 

Figure3: comparison between the approximate solution of problem(44)-(45) using HAM up to 4-terms and the 

exact solution. 
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Figure4: comparison between the approximate solutions of problem (34)-(35) using ADM up to 4-terms and the 

exact solution. 

 

 

Example 3 

 Consider the following nonlinear two dimensional FPIDEs:- 

Dt
1/2

u x, t C = g x, t + It
1/2

Ix
3/4

(x − t)u2 x, t ,      (36) 

subject to  

u x, 0 = 0,        (37) 

whereg x, t =
xt1/2

Γ 3/2 
−

2Γ 4 x11/4t5/2

Γ 19/4 Γ 7/2 
+

2Γ 4 x11/4t7/2

Γ 15/4 Γ 9/2 
, and the exact solution of problem (36)-(37) is  u x, t = xt. 

Following figures (5)-(6) represent a comparison between the approximate solution of problem (36)-
(37) using HAM and ADM up to 4-terms and the exact solution. 

 

 
Figure5: comparison between the approximate solution of problem (36)-(37)  using HAM up to 4-terms 

and the exact solution. 
 

 
Figure6: comparison between the approximate solution of problem (36)-(37) up to 4-terms using ADM and the 

exact solution. 
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VII.  Conclusions 

The existence and uniqueness for the solution of a class of two dimensional partial integro-differential 

equationsoffractional orderis discussed. 

Then two semi analytic methods which are so called ADM and HAM are introduced for approximating the 

solution of such kinds of problems. Moreover the convergence of the solution for the proposed methods is 

investigated.  

The numerical results illustrate the efficiency and accuracy of the present schemes for solving two dimensional 

partial integro-differential equations of fractional order. 
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