
IOSR Journal of Mathematics (IOSR-JM)

e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 16, Issue 1 Ser. I (Jan – Feb 2020), PP 04-21

www.iosrjournals.org

DOI: 10.9790/5728-1601010421 www.iosrjournals.org 4 | Page

Derivative Free Optimization by Using Genetic Algorithm

Method

Firaol Asfaw Wodajo
Debreberhan University, Debreberhan, Ethiopia

Abstract: In this paper, derivative free optimization methods specifically Genetic Algorithm is discussed. The

solution of bound-constrained optimization problems by using Genetic algorithm, the concept of the project is

divided into five parts: The first part is the introduction part; under this statement of the problem and objective

of the study are included. The second part is the preliminary which includes some lemma and theorems which

are used in the body of the seminar paper. The part includes detail explanation of derivative free optimization

methods specifically, Genetic Algorithm and Simulated Annealing and also supporting examples of them. The

last part presents the summary of the study what was discussed in the main part of the paper. A Non linear

Mathematical model is proposed and studied the combined effect of vertical Transmission (MTCT) and

variable inflow of infective immigrants on the dynamics of HIV/AIDS: Vertical transmission means,

Propagation of the disease from mother to children, ‘Variable in flow of infective immigrants’ includes both the

aware and unaware infected immigrants. The equilibrium points of the model are found and the stability

analysis of the model around. These equilibrium points are conducted. The stability analysis on the model shows

that the disease free equilibrium point is locally asymptotically stable when the positive endemic equilibrium

point is shown to be locally asymptotically stable Further it is shown that the basic reproduction number of the

present model is greater than the one which is obtained from the model without vertical transmission. Through

vertical transmission the disease flows from infected mother to children. That is, Vertical transmission

contributes positively to the spread of the disease. Numerical simulation of the model is carried out to assess the

effect of unaware HIV infective immigrants and vertical transmission (MTCT) in the spread of HIV/AIDS

disease. The result showed that HIV infective immigrants and vertical transmission (MTCT) significantly affects

the spread of the disease. Screening of the disease reduces the spread of HIV and also prevents mother to child

transmission. It is well accepted that both vertical transmission and immigration contribute positively to

the spread of the disease and these two parameters cannot be avoided in practice. Hence, the purpose of this

study is to investigate the combined effect of vertical transmission, unaware and aware infected

immigrants on the spread of

HIV/AIDS and offers possible intervention strategies:

Keywords: HIV/AIDS, Unaware and Aware Infective Immigrant, Vertical Transmission (MTCT), Screening,

Local Stability, Reproduction Number

--- ----------

Date of Submission: 20-12-2019 Date of Acceptance: 03-01-2020

--- ----------

I. Introduction
1.1. Background

Optimization is the process of adjusting the inputs or characteristics of a device, mathematical process,

or experiment to find the minimum or maximum output or result. The input consists of variables; the process of

function known as the cost function, objective function, or fitness function; and the output is the cost or fitness.

 The aim of optimization is to determine the best suited solution to a problem under a given set of

constraints. Several researchers over the decades have come up with different solutions to linear and nonlinear

optimization problems. Mathematically, an optimization problem involves a fitness function describing the

problem, under a set of constraints representing the solution space for the problem. Unfortunately, most of the

traditional optimization techniques are centered around evaluating the first derivatives to locate the optima on a

given constrained surface. Because of the difficulties in evaluating the first derivatives, to locate the optima for

many rough and discontinuous optimization surfaces, in recent times, several derivative free optimization

algorithms have been emerged. The optimization problem, nowadays, is represented as an intelligent search

problem, where one or more agents are employed to determinethe optima on a search landscape, representing

the constrained surface for the optimization problem. In the later quarter of the twentieth century,

Holland.J.H.1973
[4]

 (Genetic algorithms and the optimal allocation of trials), pioneered a new concept on

evolutionary search algorithms, and came up with a solution to the so far opened problem to nonlinear

optimization problems. This work addresses the solution of bound-constrained optimization problems using

Derivative Free Optimization by Using Genetic Algorithm Method

DOI: 10.9790/5728-1601010421 www.iosrjournals.org 5 | Page

algorithms that require only the availability of objective function values but not derivative information. We refer

to these algorithms as derivative free algorithms. Fueled by a growing number of applications in science and

engineering, the development of derivative free optimization algorithms has long been studied, and it has found

renewed interest in recent times. The development of derivative free algorithms dates back to the works of

Spendley, Nelder and Mead
[8]

 with their simplex-based algorithms. Recent works on the subject have led to

significant progress by providing convergence proofs, incorporating the use of surrogate models and offering.

Given a set of points, derivative free optimization identifies the point with the best objective and builds a

quadratic model by interpolating a selected subset of points. The resulting model is optimized within a trust

region centered at the best point.
In recent years, some optimization methods that are conceptually different from the traditional

mathematical programming techniques have been developed. These methods are labeled as modern or non-

traditional methods of optimization. Most of these methods are based on certain

Characteristics and behavior of biological, molecular, and swarm of insects: The following methods are

discussed in this work.

1. Genetic algorithms

2. Simulated annealing

Most these methods have been developed only in recent years and are emerging as popular methods for

the solution of complex engineering problems. Most require only the function values (and not the derivatives).

The genetic algorithm is based on the principles of natural genetics and natural selection. Simulated annealing is

based on the simulation of thermal annealing of critically heated solids. Both genetic algorithms and simulated

annealing are stochastic methods that can find the global minimum with a high probability and are naturally

applicable for the solution of discrete optimization problems.

1.2. Statement of the problem

Most of the traditional optimization techniques are centered around evaluating the first derivatives to

locate the optima on a given constrained surface. Because of the difficulties in evaluating the first derivatives to

locate the optima for many rough and discontinuous optimization surfaces, it is found important to use

derivative free optimization algorithms. Sometimes, it is difficult to solve optimization problems by using their

derivatives. It may also be tedious to find the derivatives of complex functions. This work addresses the method

by which we can solve optimization problems without using derivatives but by the available objective functions

values. This seminar deals with genetic algorithm and simulated annealing.

1.3. Objectives

 The main objective of this work is to solve optimization problems without using derivative information

of the objective function.

Accordingly, the work goes through the following specific objective:

 To describe derivative free optimization methods: Genetic Algorithm and Simulated Annealing.

 To explore real life applications of these derivative free optimization methods.

 To illustrate these methods with examples.

II. Preliminaries Concepts
In this topic, we deal with some methods, theorems and concepts which are important for the study of

derivative free optimization methods specifically Genetic Algorithms and Simulated Annealing.

Derivative-free optimization has experienced a renewed interest over the past decade that has

encouraged a new wave of theory and algorithms. This seminar explores the properties of these algorithms.

Here, focus of our work is the unconstrained optimization problem:

𝑚𝑖𝑛{𝑓(𝑥): 𝑥 ∈ 𝑅𝑛 }, where 𝑓: 𝑅𝑛 → 𝑅 (3.1)

It may be noisy or non-differentiable and, in particular, in the case where the evaluation is of 𝑓 is

computationally expensive. These expensive optimization problems arise in science and engineering because

evaluation of the function 𝑓often requires a complex deterministic simulation based on solving the equations

(for example, non-linear eigenvalue problems, ordinary or partial differential equations) that describe the

underlying physical phenomena. The computational noise associated with these complex simulations means that

obtaining derivatives is difficult and unreliable. Moreover, these simulations often rely on legacy or proprietary

codes and hence must be treated as black-box functions, necessitating a derivative-free optimization algorithm.

Several comparisons have been made of derivative-free algorithms on noisy optimization problems that arise in

applications. Performance profiles, introduced by Dolan and Mor’e (2007)
[2]

 have proved to be an important

tool for benchmarking optimization solvers. Dolan and Mor'e (2007)
[2]

 define a benchmark in terms of a set P

of benchmark problems, a set 𝑆 of optimization solvers, and a convergence test T. Benchmarking derivative-free

Derivative Free Optimization by Using Genetic Algorithm Method

DOI: 10.9790/5728-1601010421 www.iosrjournals.org 6 | Page

algorithms on selected application with trajectory plots provide useful information to users related applications.

In particular, users can find the solver that delivers the largest reduction within a given computational budget.

However, the conclusions in these computational studies do not readily extend to other applications. Most

researchers have relied on a selection of problems from the collection of problems for their work on testing and

comparing derivative-free algorithms. The performance data gathered in these studies is the number of function

evaluations. The convergence test is sometimes related to the accuracy of the current iterate as an approximation

to a solution, while in other cases it is related to a parameter in the algorithm. For example, a typical

convergence test for trust region methods requires that the trust region radius be smaller than a given tolerance.

Users with expensive function evaluations are often interested in a convergence test that measures the decrease

in function value. We propose the convergence test

𝑓 𝑥0 − 𝑓 𝑥 > (1 − 𝜏)(𝑓 𝑥0 − 𝑓 𝐿 , 𝑤ℎ𝑒𝑟𝑒 𝜏 > 0 (3.2)

It is a tolerance, 𝑥0 is the starting point for the problem, and 𝑓𝐿 is computed for each problem as the

smallest value of 𝑓 obtained by any solver within a given number 𝜇𝑓 of function evaluations. This convergence

test is tested for derivative-free optimization because it is invariant to the affine transformation 𝑓 ↦ 𝛼𝑓 +
𝛽 (𝛼 > 0) and measures the function value reduction

𝑓 𝑥0 − 𝑓 𝑥 achieved by 𝑥 relative to the best possible reduction 𝑓 𝑥0 − 𝑓𝐿 . The convergence test

(3.2) was used by Marazzi and Nocedal (2002) but 𝑓𝐿 set to an accurate estimate of 𝑓 at a local minimizer

obtained by a derivative-based solver. Instead of using a fixed value of𝜏, we use

𝜏 = 10−𝑘With k∈ {1,3,5,7} so that a user can evaluate solver performance for different levels of

accuracy: The performance profiles are useful to users who need to choose a solver that provides a given

reduction in function value within a limit of 𝜇𝑓 function evaluations.

Performance profiles were designed to compare solvers and thus use a performance ratio instead of the

number of function evaluations required to solve a problem. As a result, performance profiles do not provide the

percentage of problems that can be solved (for a given tolerance 𝜏) with expensive optimization problems and

thus an interest in the short-term behavior of algorithms.

III. Benchmarking Derivative-Free Optimization Solvers
Performance profiles, introduced by Dolan and More, have proved to be an important tool for

benchmarking optimization solvers. Dolan and More define a benchmark in terms of a set 𝑃 of benchmark

problems, a set 𝑆 of optimization solvers, and a convergence test Ƭ. Once these components of a benchmark are

defined, performance profiles can be used to compare the performance of the solvers.

3.1 Performance profiles

Performance profiles are define in terms of a performance measure 𝑡𝑝,𝑠 > 0 obtained for each 𝑝 ∈ 𝑃

and 𝑠 ∈ 𝑆. For example, this measure could be based on the amount of computing time or the number of

function evaluations required to satisfy the convergence test. Larger values of 𝑡𝑝,𝑠 indicates worse performance.

For any pair (𝑝, 𝑠) of problem 𝑝 and solvers, the performance ratio is defined by:

𝑟𝑝,𝑠 =
𝑡𝑝 ,𝑠

𝑚𝑖𝑛 ⁡{𝑡𝑝 ,𝑠 : 𝑠∈𝑆}
 (3.3)

Note that the best solver for a particular problem attains the lower bound 𝑟𝑝,𝑠 = 1. The convention 𝑟𝑝,𝑠 = ∞ is

used where the solvers fails to satisfy the convergence test on problem 𝑝.The performance profile of a solver

𝑠 ∈ 𝑆 is defined as the fraction of problems where the performance ratio is at most 𝛼, that is,

𝜌𝑠 𝛼 =
1

 𝑃
 𝑠𝑖𝑧𝑒 𝑝 ∈ 𝑃: 𝑟𝑝,𝑠 ≤ 𝛼 (3.4)

Where 𝑃 denotes cardinality of 𝑃. Performance profile is the probability distribution for the

ratio𝑟𝑝,𝑠 . the performance profiles seek to capture how well the solver performs relative to the other solvers in S

on the set of problems in𝑃. Note in particular, that 𝜌𝑠 1 is the fraction of problems for which solver s𝜖𝑆

performs the best and that for α sufficiently large,𝜌𝑠 𝛼 is the fraction problems solved by s𝜖𝑆.In general,𝜌𝑠 𝛼
is the fraction of problems with a performance ratio 𝑟𝑝,𝑠 bounded by α,and thus solvers with high values for

𝜌𝑠 𝛼 are preferable. Benchmarking gradient-based optimization solvers is reasonably straightforward once the

convergence test is chosen. The convergence test is invariably based on the gradient, for example, 𝛻𝑓(𝑥) ≤
𝜏 𝛻𝑓(𝑥0) for some 𝜏 > 0 and norm . . This convergence test is augmented by a limit on the amount of

computing time or the number of function evaluations. The latter requirement is needed to catch solvers is

usually done with a fixed choice of tolerance 𝜏 that yields reasonably accurate solutions on the benchmark

problems. The underlying assumption is that the performance of the solvers will not change significantly with

other choices of the tolerance and that, in any case, users tend to be interested in solvers that can deliver high-

accuracy solutions. In derivative-free optimization, however, users are interested in both low-accuracy and high-

accuracy solutions. In particular, situations, when the evaluation of 𝑓 is expensive, a low-accuracy solution is all

Derivative Free Optimization by Using Genetic Algorithm Method

DOI: 10.9790/5728-1601010421 www.iosrjournals.org 7 | Page

that can be obtained within the user’s computational budget. Moreover, in these situations, the accuracy of the

data may warrant only a low-accuracy solution.

Benchmarking derivative-free solvers require a convergence test that does not depend on evaluation of

the gradient. We propose to use the convergence test

𝑓(𝑥) ≤ 𝑓𝐿 + 𝜏(𝑓 𝑥0 − 𝑓𝐿) (3.5)

Where 𝜏 > 0 is a tolerance,𝑥0 is the starting point for the problem, and 𝑓𝐿 is computed for each

problem 𝑝𝜖𝑃 as the smallest value of 𝑓 obtained by any solver within a given number 𝜇𝑓 of function

evaluations. The convergence test (3.5) can also be written as:

𝑓(𝑥0) − 𝑓(𝑥) ≥ (1 − 𝜏)(𝑓 𝑥0 − 𝑓𝐿) and this shows that equation (3.5) requires that the reduction

𝑓(𝑥0) − 𝑓(𝑥) achieved by 𝑥 be at least 1 − 𝜏 times the best possible reduction 𝑓 𝑥0 − 𝑓𝐿.The convergence test

equation (3.5) was used by Elster and Neumaier
[6]

 but with 𝑓𝐿 set to an accurate estimate of 𝑓 at a global

minimizer. This test was also used by Marazzi and Nocedal
[7]

 but with 𝑓𝐿 set to an accurate estimate of 𝑓 at a

local minimizer obtained by a derivative-based solver. Setting 𝑓𝐿 to an accurate estimate of 𝑓 at a local a

minimizer is not appropriate when the evaluation of f is expensive because no solver may be able to satisfy

equation (3.5) within the user’s computational budget. Even for problems with a cheap𝑓, a derivative-free solver

is not likely to achieve accuracy comparable to a derivative-based solver. On the other hand, if 𝑓𝐿 is the smallest

value of 𝑓 obtained by any solver, then at least one solver will satisfy equation (3.5) for any 𝜏 ≥ 0. An

advantage of equation (3.4) is that it is invariant to the affine transformation f↦ 𝛼𝑓 + 𝛽 where α> 0. Hence,

we can assume, for example, that 𝑓𝐿=0 and 𝑓(𝑥0) =1. There is no loss in generality in this assumption because

derivative-free algorithms are invariant to the affine transformation 𝑓 ↦ 𝛼𝑓 + 𝛽. In deed; algorithms for

gradient-based optimization (unconstrained and constrained) problems are also invariant to this affine

transformation. The tolerance 𝜏𝜖[0,1] in equation (3.5) represents the percentage decrease from the starting

value 𝑓 𝑥0 . A value of 𝜏 = 0.1 may represent a modest decrease,a reduction that is 90% of the total possible,

while smaller values of 𝜏 decreases,the accuracy of 𝑓(𝑥) as an approximation to some minimizer depends on

the growth of f in a neighborhood of the minimizer. As noted, users are interested in the performance of

derivative-free solvers for both low-accuracy and high-accuracy solutions. A user’s expectation of decrease

possible within their computational budget will vary from application to application. The following new result

relates the convergence test equation (3.5) to convergence results for gradient-based optimization solvers.

Theorem 3.2

Assume that 𝑓: 𝑅𝑛 ↦ 𝑅 is a strictly convex quadratic and that 𝑥∗ is the unique minimizer of 𝑓. If 𝑓𝐿 =
𝑓 𝑥∗ ,then,𝑥 ∈ 𝑅𝑛 satisfies the convergence test equation (3.5) if and only if

 𝛻𝑓(𝑥) ∗ ≤ 𝜏
1

2 𝛻𝑓(𝑥0 ∗ (3.6)

For the norm . ∗ defined by: 𝑣 ∗ = 𝐺
−1

2 𝑣
2
 v

And G is the Hessian matrix of 𝑓 and 𝐺 is the Hessian matrix of 𝑓, and 𝑥∗ is unique minimizer,

𝑓 𝑥 = 𝑓 𝑥∗ +
1

2
(𝑥 − 𝑥∗)𝑇𝐺 𝑥 − 𝑥∗ (3.7)

Hence, the convergence test (3.5) holds if and only if:

 𝑥 − 𝑥∗ 𝑇𝐺 𝑥 − 𝑥∗ ≤ 𝜏 𝑥0 − 𝑥∗ 𝑇𝐺 𝑥0 − 𝑥∗

Which is in terms of the square root 𝐺
1

2 is just:

 𝐺
1

2(𝑥 − 𝑥∗
2

2

≤ 𝜏 𝐺
1

2 𝑥0 − 𝑥∗
2

2

 (3.8)

We obtain equation (3.6) by noting that since 𝑥∗ is the minimizer of the quadratic 𝑓 and 𝐺 is the Hessian

matrix, 𝛻𝑓 𝑥 = 𝐺 𝑥 − 𝑥∗ . Other variations on theorem 3.1 are of interest. For example, it is not difficult to

show, by using the same proof techniques that equation (3.3) is also equivalent to:
1

2
 𝛻𝑓(𝑥) ∗

2 ≤ 𝜏(𝑓 𝑥0 − 𝑓 𝑥∗) (3.9)

This inequality shows, in particular, that we can expect that the accuracy of 𝑥, as measured by the gradient

norm 𝛻𝑓 𝑥 ∗, to increase with the square root of 𝑓(𝑥0) − 𝑓 𝑥 ∗. Similar estimates hold for the error in x

because 𝛻𝑓 𝑥 = 𝐺 𝑥 − 𝑥∗ . thus, in view of (3.6), the convergence test (3.5) is equivalent to:

 𝑥 − 𝑥∗ ⋄ ≤ 𝜏
1

2 𝑥0 − 𝑥∗ ⋄ Where the norm . ⋄ is defined by: 𝑣 ⋄ = 𝐺
1

2
2

In this case, the accuracy of 𝑥 in the . ⋄ norm increases with the distance of 𝑥0 from 𝑥∗ in the . ⋄ norm. We

now explore an extension of theorem (3.1) to nonlinear functions that are valid for an arbitrary starting point

𝑥0.The following result shows that the convergence test (3.5).

Derivative Free Optimization by Using Genetic Algorithm Method

DOI: 10.9790/5728-1601010421 www.iosrjournals.org 8 | Page

Lemma 3.2

If 𝑓:𝑅𝑛 → 𝑅 is twice continuously differentiable in a neighborhood of a minimizer 𝑥∗with 𝛻2𝑓(𝑥∗) positive

definite, then

𝑙𝑖𝑚𝑥→𝑥∗
𝑓 𝑥 −𝑓(𝑥∗)

 𝛻𝑓(𝑥) ∗
2 =

1

2
 (3.10)

Where the norm . ∗ is defined in (3.2) and 𝐺 = 𝛻2𝑓 𝑥∗ .

Proof:

We first proof that:

𝑙𝑖𝑚𝑥→𝑥∗

 𝛻2𝑓(𝑥∗)
1
2 (𝑥−𝑥∗)

 𝛻𝑓(𝑥) ∗
= 1. (3.11)

This result can be established by noting that since 𝛻2𝑓 is continuous at 𝑥∗and 𝛻𝑓 𝑥∗ = 0, ∇𝑓 𝑥 =
∇2𝑓 𝑥∗ 𝑥 − 𝑥∗ + 𝑟1 𝑥 , 𝑟1 𝑥 = 𝑜 𝑥 − 𝑥∗ . If 𝜆1 is the smallest eigenvalue of ∇2𝑓 𝑥∗ , then, this

relationship implies, in particular that

 ∇𝑓(𝑥) ∗ ≥
1

2
𝜆

1

2 𝑥 − 𝑥∗ (3.12)

For all 𝑥 near 𝑥∗.This inequality and the previous relationship prove.

We can now proof by noting that since ∇2𝑓 is continuous at 𝑥∗and

∇𝑓(𝑥∗) = 0, 𝑓 𝑥 = 𝑓 𝑥∗ +
1

2
 ∇2𝑓 𝑥 𝑥

1

2(𝑥 − 𝑥∗)2 + 𝑟2 𝑥 , 𝑟2 𝑥 = 𝑜(𝑥 − 𝑥∗ 2).

This relationship together with (3.11) and (3.12) complete the proof.

Lemma (3.1) shows that there is a neighborhood (𝑥∗) of 𝑥∗such that if 𝑥 ∈ 𝒩 𝑥∗ satisfies the convergence

test (3.5) with 𝑓𝐿 = 𝑓 𝑥∗ , then,

 ∇f(x) ∗ ≤ 𝛶𝜏
1

2(𝑓 𝑥0 − 𝑓 𝑥∗)
1

2 (3.13) where the

constant 𝛶is a slight overestimate of 2
1

2 . Conversely, if 𝛶 is a slight underestimate of 2
1

2 , then (3.13) implies that

(3.5) holds in some neighborhood of 𝑥∗. Thus, in this sense, the gradient (3.13) is asymptotically equivalent to

(3.5) for smooth functions.

IV. Genetic Algorithms
4.1 Basic Concepts of GA

Genetic Algorithms (GAs) are the main paradigm of evolutionary computing. G As are inspired by

Darwin’s theory about evolution the ‘’survival of the fittest”. In nature, competition among individuals for

scanty resources results in the fittest individuals dominating over the weaker ones.

GAs are the ways of solving problems by mimicking processes nature uses; i.e. selection, crosses over,

Mutation and Accepting, to evolve a solution to a problem.

GAs are adaptive heuristic search based on the evolutionary ideas of natural selection and genetics.

GAs are intelligent exploitation of random search used in optimization problems.

GAs, although randomized, exploit historical information to direct the search into the region of better

performance within the search space.

4.2 Biological Background

Basic Genetics

 Every organism has a set of rules, describing how that organism is built. All living organism consist of

cells.

 In each cell there is some set of chromosomes. Chromosomes are strings of DNA and serve as a model for

the whole organism.

 A chromosome consists of genes, blocks of DNA.

 Each gene encodes a particular protein that represents a trait (feature), e.g., colour of eyes.

 Possible settings for a trait (e.g., blue, brown) are called alleles.

 Each gene has its own position in the chromosome called locus.

 Complete set of genetic material (all chromosomes) is called a genome.

 When two organisms mate they share their genes; the resultant offspring may end up having half the genes

from one parent and half from the other. This process is called recombination (crossover).

The new created offspring can then be mutated. Mutation means, that the elements of DNA are a bit changed.

These changes are mainly caused by errors in copying genes from parents.

Derivative Free Optimization by Using Genetic Algorithm Method

DOI: 10.9790/5728-1601010421 www.iosrjournals.org 9 | Page

4.2.1. Working Principles

Before getting into GAs, it is necessary to explain few terms.

 Chromosome: a set of genes; a chromosomes contains the solution in form of genes.

 Gene: a part of chromosome; a gene contains a part of solution. It determines the solution. It determines the

solution. E.g. 16743 is a chromosome and 1,6,7,4, and 3 are its genes.

 Individual: same as chromosome.

 Population: number of individuals present with the same length of chromosome.

 Fitness: the value assigned to an individual based on how far or close an individual is from the solution;

greater the fitness value better the solution it contains.

 Fitness function: a function that assigns fitness value to the individual.

 Breeding: taking two fit individuals and then intermingling their chromosome to create new two

individuals.

 Mutation: changing a random gene in an individual.

 Selection: selecting individuals for creating the next generation.

GA begins with a set of solutions (represented by chromosomes) called the population.

Solutions from one population are taken and used to form a new population. This is motivated by the possibility

that the new population will be better than the old one. Solutions are selected according to their fitness to form

new solutions (offspring); more suitable they are, more chances they have to reproduce. This is repeated until

some condition (e.g. number of populations or improvement of the best solution) is satisfied.

4.2.2. Outline of the basic Genetic Algorithm

1. [Start] Generate random population of n chromosomes (i.e. suitable solutions for the problem).

2. [Fitness] Evaluate the fitness 𝑓(𝑥) of each chromosome 𝑥 in the population.

3. [New population] Create a new population by repeating the following steps until the new population is

complete.

(a) [Selection] Select two parent chromosomes from a population according to their fitness (better the fitness,

bigger the chance to be selected)

(b) [Crossover] with a crossover probability, cross over the parents to form new offspring (children). If no

crossover was performed, offspring is the exact copy of parents.

(c) [Mutation] with a mutation probability, mutate new offspring at each locus (position in chromosome).

(d) [Accepting] place new offspring in the new population

4. [Replace] Use new generated population for a further run of the algorithm

5. [Test]. If the end condition is satisfied, stop, and returns the best solution in current population.

6. [Loop] Go to step 2.

Note: The genetic algorithms performance is largely influenced by two operators called cross over and

mutation. These two operators are the most important parts of GA.

4.2.3. Encoding

Before a genetic algorithm can be put to work on any problem, a method is needed to encode potential solutions

to that problem in a form so that a computer can process. One common approach is to encode solutions as binary

strings: sequences of 1’s and 0’s, where the digit at each position represents the value of some aspect of the

solution. For Example, a Gene represents some data (eye colour, hair colour, sight, etc.).

A chromosome is an array of genes. In binary form a Gene looks like: (11100010)

A Chromosome looks like: Gene 1 Gene 2 Gene 3 Gene 4

(11000010, 00001110, 001111010, 10100011)

A Chromosome should in some way contain information about solution which it represents; it thus requires

encoding. The most popular way of encoding is a binary string like:

Chromosome 1: 1101100100110110

Chromosome 2: 1101111000011110

Each bit in the string represents some characteristics of the solution. There are many other ways of encoding,

e.g., encoding values as integer or real numbers or some permutations and so on. The virtue of these encoding

methods depends on the problem to work on.

4.2.3.1. Binary Encoding

Binary Encoding is the most common to represent information contained. In GAs, it was first used because of its

relative simplicity. In binary encoding, every chromosomes is a string of bits: 0 or 1, like:

Chromosome 1:1 0 1 1 0 0 1 0 11 00101011100101

Chromosome 2:111111100000110000011111

Derivative Free Optimization by Using Genetic Algorithm Method

DOI: 10.9790/5728-1601010421 www.iosrjournals.org 10 | Page

Binary encoding gives many possible chromosomes even with a small number of allele’s i.e. possible settings

for a trait (features).This encoding is often not natural for many problems and sometimes corrections must be

made after crossover and/or mutation.

Example 4.3.1

One variable function, say 0 to 15 numbers, numeric values, represented by 4 bit binary string:

Table 1.One variable function, represented by 4 bit binary string.
Numeric value 4-bit string Numeric value 4-bit string Numeric value 4-bit string

0 0000 6 0110 12 1100

1 0001 7 0111 13 1101

2 0010 8 1000 14 1110

3 0011 9 1001 15 1111

4 0100 10 1010

5 0101 11 1011

Example 4.3.2

Two variable functions represented by 4 bit string for each variable:

Let two variables 𝑥1,𝑥2 (1011, 0110).

Every variable will have both upper and lower limit as 𝑋1
𝐿 𝑋1 𝑋1

𝑈

Because 4-bit string can represent integers from 0 to 15, so, (0000 0000) and (1111 1111) represent the points

for 𝑥1,𝑥2 as (𝑋1
𝐿 , 𝑋2

𝐿) and (𝑋1
𝑈 , 𝑋2

𝑈) respectively.

Thus, an n- bit string can represent integer from 0 to2𝑛 − 1 , i.e. 2𝑛 integers.

Binary Coding Equivalent integer Decoded binary substring

Remainder 1 0 1 0 Let 𝑋𝐼 be coded as a substring 𝑆𝑖

Of length 𝑛𝑖 .Then, decoded binary

0 substring 𝑆𝑖 as K=𝑛𝑖 − 1

1 2𝐾𝑆𝐾 , K=0 where𝑆𝑖 can be 0 or 1

0 and the string S is represented as

 𝑆𝑛−1…𝑆3𝑆2𝑆1𝑆0

4.3.3. Decoding Value

Consider a 4-bit string (0111) the decoded value is equal to 23 . 0 + 22 . 1 + 21 . 1 + 20. 1=7 knowing 𝑋𝑖
𝐿 and 𝑋𝑖

𝑈

corresponding to (0000) and (1111), the equivalent value for any 4-bit string can be obtained as

𝑋𝑖 = 𝑋𝑖
𝐿 +

(𝑋𝑖
𝑈−𝑋𝑖

𝐿)

(2𝑛𝑖−1)
×(decoded value of string)

For example, a variable 𝑋𝑖 ; let 𝑋𝑖
𝐿 = 17, find what value the 4-bit string 𝑋𝑖 = 1010 would represent. First get

decoded value for 𝑆𝑖 = 1010 = 23. 0 + 22. 0 + 21 . 1 + 20 . 0 = 10 then,

𝑋𝑖 = 2 +
(17−2)

(24−1)
× 10 = 12 v

The accuracy obtained with a 4-bit code is 1/16 of search space. By increasing the string length by 1-bit,

accuracy increases to 1/32.

4.3.4. Value Encoding

The value encoding can be used in problems where values such as real numbers are used. Use of binary

encoding for this type of problems would be difficult.

1. In value encoding, every chromosome is a sequence of some values.

2. The values can be anything connected to the problem, such as: real numbers, characters or objects.

For example: Chromosome A 1.2324 5.3243 0.4556 2.3293 2.4545

Chromosome B ABCDJEIFJDHDIERJFDLDFLFEGT

Chromosome C (back), (back),(right),(forward),(left)

3. Value encoding is often necessary to develop some new types of crossovers and mutations specific for the

problem.

2 10

2 5

2 2

 1

Derivative Free Optimization by Using Genetic Algorithm Method

DOI: 10.9790/5728-1601010421 www.iosrjournals.org 11 | Page

4. 3. 5. Permutation Encoding

Permutation encoding can be used in ordering problems, such as travelling salesman problem or task ordering

problem.

1. In permutation encoding, every chromosome is a string of number that represent a position in a sequence.

Chromosome A 1 5 3 2 6 4 7 9 8

Chromosome B 8 5 6 7 2 3 1 4 9

2. Permutation encoding is useful for ordering problems. For some problems, crossover and mutation

corrections must be made to leave the chromosome consistent.

4.3.6. Operator of G A

Genetic operators used in genetic algorithms maintain genetic diversity. Genetic diversity or variation

is a necessity for the process of evolution. Genetic operators are analogous to those which occur in the natural

world: Reproduction (or Selection), Crossover (or Recombination); and Mutation. In addition to these operators,

there are some parameters of GA. One important parameter is population size. Population size says how many

chromosomes are in population (in one generation).If there are only few chromosomes, then GA would have a

few possibilities to perform crossover and only a small part of search space is explored. If there are many

chromosomes, then GA slows down.

4.3.7. Reproduction or Selection

Reproduction is usually the first operator applied on population. From the population, the

chromosomes are selected to be parents to crossover and produce offspring. According to Darwin’s evolution

theory’’ survival of the fittest’’, the best ones should survive and create new offspring. The reproduction

operators are also called Selection operators. Selection means extract a subset of genes from an existing

population, according to any definition of quality. Every gene has a meaning, so one can derive from the gene a

kind of quality measurement called fitness function. Following (fitness value), selection can be performed.

Fitness function quantifies the optimality of a solution (chromosome) so that a particular solution may be ranked

against all the other solutions. The function depicts the closeness of a given ‘solution’ to the desired result.

Many reproduction operators exists and they all essentially do same thing. They pick from current population

the strings of above average and insert their multiple copies in the mating pool in a probabilistic manner. The

most commonly used methods of selecting chromosomes for parents to crossover are: Roulette wheel selection,

Boltzmann selection, tournament selection, Rank selection, Steady state selection. The Roulette wheel and

Boltzmann selections methods are illustrated next.

4.3.7.1 Roulette Wheel Selection (Fitness- proportionate Selection)

Roulette-wheel selection, also known as Fitness proportionate Selection, is a genetic operator, used for selecting

potentially useful solutions for recombination. In fitness-proportionate selection: the chance of an individual’s

being selected is proportional to its fitness, greater or less than its competitors’ fitness. Conceptually, this can be

thought as a game of Roulette.

Figure 1.Roulette-wheel shows 8 individual with fitness

The Roulette-wheel simulates 8 individuals with fitness values 𝐹𝑖 , marked at its circumference ; e.g.,

the 5𝑡ℎ individual has a higher fitness than others, so the wheel would choose the 5𝑡ℎ individual more than

other individuals. The fitness of the individuals is calculated as the wheel is spun n=8 times, each time selecting

an instance, of the string, chosen by the wheel pointer. Probability of 𝑖𝑡ℎ string is 𝑝
𝑖 =

𝐹𝑖
 𝐹𝑗
𝑛
𝑗=1

 , where

𝑛 = Number of individuals, called population size;
𝑃𝑖 = probability of 𝑖𝑡ℎ string being selected

5 9

13

17
20

8
8

20

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

Derivative Free Optimization by Using Genetic Algorithm Method

DOI: 10.9790/5728-1601010421 www.iosrjournals.org 12 | Page

𝐹𝑖= fitness for 𝑖𝑡ℎ string in the population. Because the circumference of the wheel is marked according to a

string’s fitness, the Roulette-wheel mechanism is expected to make
𝐹

𝐹
 copies of the 𝑖𝑡ℎ string.

Average fitness= 𝐹 𝐹𝑗/ 𝑛 ; Expected count = (n=8)x𝑃𝑖 ; Cumulative probability= 𝑃𝑖𝑖=1
𝑁=5

Example 4.3

Evolutionary Algorithms is to maximize the function 𝑓(𝑥) = 𝑥2 with 𝑥 in the integer interval

 [0, 31], i.e., 𝑥 =0, 1,.…,30, 31.

1. The first step is encoding of chromosomes; use binary representation for integers; 5-bits are used to represent

integers up to 31.

2. Assume that the population size is 4.

3. Generate initial population at random. They are chromosomes or genotypes;

E.g. 01101, 11000, 01000, 10011

4. Calculate fitness value for each individual.

(a) Decode the individual into an integer (called phenotypes),

01101 13; 11000 24; 01000 8; 10011 19;

(b) Evaluate the fitness according to 𝑓(𝑥) = 𝑥2, 13 169; 24 576; 8 64; 19 361.

5. Select parents (two individuals) for crossover based on their fitness in 𝑝𝑖 .Out of many methods for selecting

the best chromosomes, if roulette-wheel selection is used, then the probability of the 𝑖𝑡ℎ string in the population

is 𝑝
𝑖 =

𝐹𝑖
𝐹𝑗)(𝑗=1

𝑛
 , 𝑝𝑖 =

𝐹𝑖

 𝐹𝑗
𝑛
𝑗=1

 , where

𝐹𝑖 is fitness for the string 𝑖 in the population, expressed as 𝑓(𝑥)

𝑃𝑖 is probability of the string 𝑖 being selected,

𝑛 is number of individuals in the population, is population size, 𝑛 = 4

𝑛 ∗ 𝑃𝑖 is expected count

Table 2.Data for maximum chance of selection

The string number 2 has maximum chance of selection.

4.4. Boltzmann Selection

Simulated annealing is a method used to minimize or maximize a function.

 This method simulates the process of slow cooling of molten metal to achieve the minimum function value

in a minimization problem.

 The cooling phenomenon is simulated by controlling a temperature like parameter introduced with the

concept of Boltzmann probability distribution.

 The system in thermal equilibrium at a temperature 𝑇 has its energy distribution based on the probability

defined by (𝐸) = 𝑒𝑥𝑝(
−𝐸

𝐾𝑇
) , where 𝐾 is the Boltzmann constant.

 This expression suggests that a system at a higher temperature has almost uniform probability at any energy

state, but at lower temperature it has a small probability of being at a higher energy state.

 Thus, by controlling the temperature 𝑇 and assuming that the search process follows Boltzmann probability

distribution, the convergence of the algorithm is controlled.

4.5. Crossover

Crossover is a genetic operator that combines (mates) two chromosomes (parents) to produce a new

chromosome (offspring). The idea behind crossover is that the new chromosome may be better than both of the

parents if it takes the best characteristics from each of the parents. Crossover occurs during evolution according

to a user- definable crossover probability. Crossover selects genes from parent chromosomes and creates a new

offspring. The crossover operators are of many types. One simple way is, One-point crossover. The others are

Two point, Uniform, and Arithmetic crossovers. The operators are selected based on the way chromosomes are

encoded.

String No Initial population 𝑥 value Fitness 𝐹𝑖𝑓(𝑥) = 𝑥2 𝑃𝑖 Expected count N* prob𝑖
1 0 1 1 0 1 13 169 0.14 0.58

2 1 1 0 0 0 24 576 0.49 1.97

3 0 1 0 0 0 8 64 0.06 0.22

4 1 0 0 1 1 19 361 0.31 1.23

Sum(Total) 1170 1.00 4.00

Average 293 0.25 1.00

Max 576 0.49 1.97

Derivative Free Optimization by Using Genetic Algorithm Method

DOI: 10.9790/5728-1601010421 www.iosrjournals.org 13 | Page

One Point Crossover

One-point crossover operator randomly selects one crossover point and then copy everything before this point

from the first parent and then everything after the crossover point copy from the second parent. The Crossover

would then look as shown below.

Consider the two parents selected for crossover.

Parent 1 1 1 0 1 1 0 01 0 0 1 1 0 1 1 0

Parent 2: 1 1 0 1 1 1 1 0 0 0 0 1 1 1 1 0

Interchanging the parents chromosomes after the crossover points, the offspring produced are:

Offspring: 1 1 1 0 1 1| 1 1 0 0 0 0 1 1 1 1 0

Offspring: 2 1 1 0 1 1| 0 0 1 0 0 1 1 0 1 1

Note: The symbol, a vertical line,| is the chosen crossover point.

Two-point crossover
Two-point crossover operator randomly selects two crossover points within chromosomes then interchanges the

two parent chromosomes between these points to produce two new offspring.

Consider the two parents chromosomes between the crossovers points. The Offspring produced are: Offspring

1 1 1 0 1 1 | 0 0 1 0 0 1 1 | 0 1 1 0 ,

Offspring 2 1 1 0 1 1 | 0 0 1 0 0 1 1| 0 1 1 0

Arithmetic Crossover

Arithmetic crossover operator linearly combines two parent chromosome vectors to produce two new offspring

according to the equations:

Offspring 1 = a * parent 1+ (1- a) * parent 2

Offspring 2 = (1-a) * parent 1 + a* parent 2

Where a is a random weighting factor chosen before each crossover operation. Consider two parents (each of 4

float genes) selected for crossover:

Parent 1 (0.3) (1.4) (0.2) (7.4)

Parent 2 (0.5) (4.5) (0.1) (5.6)

Applying the above two equations and assuming the weighting factor a=0.7, applying above equation, we get

two resulting offspring. The possible set of offspring after arithmetic crossover would be:

Offspring 1: (0.36) (2.33) (0.17) (6.86)

Offspring 2: (0.44) (3.57) (0.13) (6.14)

4.6. Mutation

After a crossover is performed, mutation takes place. Mutation is a genetic operator used to maintain

genetic diversity from one generation of a population of chromosomes to the next. Mutation occurs during

evolution according to a user-definable mutation probability, usually set to fairly low value, say 0.01 a good first

choice. Mutation alters one or more gene values in a chromosome from its initial state. This can result in entirely

new gene values being added to the gene pool. With the new gene values, the genetic algorithm may be able to

arrive at better solution than was previously possible. Mutation is an important part of the genetic search, helps

to prevent the population from stagnating at any local optima. Mutation is intended to prevent these arches

falling into local optimum of the state space. The mutation operators are of much type.

Derivative Free Optimization by Using Genetic Algorithm Method

DOI: 10.9790/5728-1601010421 www.iosrjournals.org 14 | Page

 Figure 2: Flow chart of GA

4.7. Some examples and applications of GA

GA is applicable in different optimization problems. Here, we try to solve some optimization problems by using

GA.

Example 4.4 Minimizing Rastrigin’s function

Rastrigin’s Function

This section presents an example that shows how to find the minimum of Rastrigin’s function, a function that is

often used ti test the genetic algorithm.

For two independent variables, Rastrigin’s function is defined as

𝑅𝑎𝑠 𝑥 = 20 + 𝑥1
2 + 𝑥2

2 − 10(cos 2𝜋𝑥1 + cos 2𝜋𝑥2)

Global Optimization Tool box software contains the rastriginsfcn.m file, which computes the

values of Rastrigin’s function. The following figure shows a plot of Rastrigin’s function.

Figure 3. Graph of Rastrigin’s function

Derivative Free Optimization by Using Genetic Algorithm Method

DOI: 10.9790/5728-1601010421 www.iosrjournals.org 15 | Page

As the plot shows, Rastrigin's function has many local minima-the "valleys" in the plot. However, the

function has just one global minimum, which occurs at the point [0 0] in the x-y plane, as indicated by the

vertical line in the plot, where the value of the function is 0. At any local minimum other than [0 0], the value of

Rastrigin's function is greater than 0. The farther the local minimum is from the origin, the larger the value of

the function is at that point.

Rastrigin's function is often used to test the genetic algorithm, because its many local minima make it

difficult for standard, gradient-based methods to find the global minimum.

The following contour plot of Rastrigin's function shows the alternating maxima and minima.

Figure 4. Alternating maxima and minima of Rastrigin's Function

4.8. Finding the Minimum of Rastrigin's Function

This section explains how to find the minimum of Rastrigin's function using the genetic algorithm.

Note: Because the genetic algorithm uses random number generators, the algorithm returns slightly differently

results each time you run it.

To find the minimum, do the following steps:

1. Enter optimtool('ga') at the command line to open the Optimization app.

2. Enter the following in the Optimization app:

 In the Fitness function field, enter @rastriginsfcn.

 In the Number of variables field, enter 2, the number of independent variables for Rastrigin's function.

The Fitness function and Number of variables fields should appear as shown in the following figure.

3. Click the Start button in the Run solver and view results pane, as shown in the following figure.

While the algorithm is running, the Current iteration field displays the number of the current generation. You

can temporarily pause the algorithm by clicking the Pause button. When you do so, the button name changes to

Resume. To resume the algorithm from the point at which you paused it, click Resume.

When the algorithm is finished, the Run solver and view results pane appears as shown in the following figure.

Your numerical results might differ from those in the figure, since ga is stochastic.

Derivative Free Optimization by Using Genetic Algorithm Method

DOI: 10.9790/5728-1601010421 www.iosrjournals.org 16 | Page

The display shows:

 The final value of the fitness function when the algorithm terminated:
Objective function value: 5.550533778020394E-4

Note that the value shown is very close to the actual minimum value of Rastrigin's function, which is 0. Setting

the Initial Range, Setting the Amount of Mutation, and Set Maximum Number of Generations describe some

ways to get a result that is closer to the actual minimum.

 The reason the algorithm terminated.
Optimization terminated: maximum number of generations exceeded.

 The final point, which in this example is [-0.002 -0.001].

Finding the Minimum from the Command Line

To find the minimum of Rastrigin's function from the command line, enter
rng(1,'twister') % for reproducibility

[xfvalexitflag] = ga(@rastriginsfcn, 2)

This returns
Optimization terminated:

average change in the fitness value less than options.FunctionTolerance.

x =

 -1.0421 -1.0018

fval =

 2.4385

exitflag = 1

 x is the final point returned by the algorithm.

 fval is the fitness function value at the final point.

 exitflag is integer value corresponding to the reason that the algorithm terminated.

Note:Because the genetic algorithm uses random number generators, the algorithm returns slightly different

results each time you run it.

Displaying Plots

The Optimization app Plot functions pane enables you to display various plots that provide information about

the genetic algorithm while it is running. This information can help you change options to improve the

performance of the algorithm. For example, to plot the best and mean values of the fitness function at each

generation, select the box next to Best fitness, as shown in the following figure.

http://www.mathworks.com/help/gads/population-diversity.html#f14613
http://www.mathworks.com/help/gads/population-diversity.html#f14613
http://www.mathworks.com/help/gads/population-diversity.html#f14613
http://www.mathworks.com/help/gads/vary-mutation-and-crossover.html#f8092
http://www.mathworks.com/help/gads/setting-the-maximum-number-of-generations.html

Derivative Free Optimization by Using Genetic Algorithm Method

DOI: 10.9790/5728-1601010421 www.iosrjournals.org 17 | Page

When you click Start, the Optimization app displays a plot of the best and mean values of the fitness function at

each generation.

Try this on Minimize Rastrigin's Function:

When the algorithm stops, the plot appears as shown in the following figure.

Figure 5.Best and Mean fitness of Rastrigin's Function

The points at the bottom of the plot denote the best fitness values, while the points above them denote the

averages of the fitness values in each generation. The plot also displays the best and mean values in the current

generation numerically at the top.

To get a better picture of how much the best fitness values are decreasing, you can change the scaling of the y-

axis in the plot to logarithmic scaling. To do so,

1. Select Axes Properties from the Edit menu in the plot window to open the Property Editor attached to your

figure window as shown below.

http://www.mathworks.com/help/gads/example-rastrigins-function.html

Derivative Free Optimization by Using Genetic Algorithm Method

DOI: 10.9790/5728-1601010421 www.iosrjournals.org 18 | Page

2. Click the Y Axis tab.

3. In the Y Scale pane, select Log.

The plot now appears as shown in the following figure.

Figure 6: optional graph of Best and Mean fitness of Rastrigin's Function

Typically, the best fitness value improves rapidly in the early generations, when the individuals are farther from

the optimum. The best fitness value improves more slowly in later generations, whose populations are closer to

the optimal point.

Example 4.5

Constrained Minimization Using GA

Suppose you want to minimize the simple fitness function of two variables 𝑥1 and𝑥2.

min 𝑓 𝑥 = 100(𝑥1
2 − 𝑥2)2 + (1 − 𝑥1)2

subject to the following nonlinear inequality constraints and bounds

𝑥1 . 𝑥2 + 𝑥1 − 𝑥2 + 1.5 ≤ 0 (nonlinear constraint)

10 − 𝑥1. 𝑥2 ≤ 0 (nonlinear constraint)

0 ≤ 𝑥1 ≤ 1 (bound)

0 ≤ 𝑥2 ≤ 13 (bound)

Begin by creating the fitness and constraint functions. First, create a file named simple_fitness.m as follows:

function y = simple_fitness(x)

y = 100*(x(1)^2 - x(2))^2 + (1 - x(1))^2;

(simple_fitness.m ships with Global Optimization Toolbox software.)

The genetic algorithm function,ga, assumes the fitness function will take one input x, where xhas as many

elements as the numberof variables in the problem. The fitness function computes the value of the function and

returns that scalar value in its one return argument,y. Begin by creating the fitness and constraint functions.

First, create a file named simple_constraint.m, as follows:

function [c, ceq] = simple_constraint(x)

c = [1.5 + x(1)*x(2) + x(1) - x(2);...-x(1)*x(2) + 10];

ceq = [];

(simple_constraint.mships with Global Optimization Toolbox software.)

The ga function assumes the constraint function will take one input x, where x has as many elements as the

number of variables in the problem. The constraint function computes the values of all the inequality and

equality constraint and returns two c and ceq respectively.

Derivative Free Optimization by Using Genetic Algorithm Method

DOI: 10.9790/5728-1601010421 www.iosrjournals.org 19 | Page

To minimize the fitness function, you need to pass a function handle to the fitness function as the first argument

to the ga function, as well as specifying the number of variables as the second argument. Lower and upper

bounds are provided as LB and UB respectively. In addition, you also need to pass a function handle to the

nonlinear constraint function.

ObjectiveFunction = @simple_fitness;

nvars = 2; % Number of variables

LB = [0 0]; % Lower bound

UB = [1 13]; % Upper bound

ConstraintFunction = @simple_constraint;

rng(1,'twister') % for reproducibility

[x,fval] = ga(ObjectiveFunction,nvars,...

[],[],[],[],LB,UB,ConstraintFunction)

Optimization terminated: average change in the fitness value less than options.TolFun

and constraint violation is less than options.TolCon.

x =

0.8123 12.3137

fval =

1.3581e+04

The genetic algorithm solver handles linear constraints and bounds differently from nonlinear constraints. All

the linear constraints and bounds are satisfied throughout the optimization. However, ga may not satisfy all the

nonlinear constraints at every generation. If ga converges to a solution, the nonlinear constraints will be satisfied

at that solution.

ga uses the mutation and crossover functions to produce new individual at every generation. ga satisfies linear

and bound constraints by using mutation and crossover functions that only generate feasible points. For

example, in the previous call to ga, the mutation function mutationguassiandoes not necessarily obey the bound

constraints. So, when there are bound or linear constraints, the default ga mutation function is

mutationadaptfeasible. If you provide a custom mutation must only generate points that are feasible with

respect to the linear and bound constraints. All the included crossover functions generate points that satisfy the

linear constraints and bounds except the crossoverheuristic function. To see the progress of the optimization, use

the gaoptimset function to create an options structure that selects two plot functions. The first plot function

gaplotbestf, which plots the best and mean score of the population function is gaplotmaxconstr, which plots the

maximum constraint violation of nonlinear constraints at every generation. You can also visualize the progress

of the algorithm by displaying information to the command window using the 'Display' option.

options = gaoptimset('PlotFcns',{@gaplotbestf,@gaplotmaxconstr},'Display','iter');

Rerun the ga solver.

Optimization running.
andOptimization terminated: average change in the fitness value less than options.TolFun

and constraint violation is less than options.TolCon.
x =

0.8123 12.3103

fval =

1.3574e+04

Figure 7.Best fitness and maximum constraint

0 10 20 30 40 50 60 70 80 90 100
0

5000

10000

15000

Generation

Fit
ne

ss
 va

lue

Best: 13575.6 Mean: 13576.6

0 10 20 30 40 50 60 70 80 90 100
0

5

10

Generation

Ma
x c

on
str

ain
t

Max constraint: 5.45697e-12

Best f itness

Mean fitness

Derivative Free Optimization by Using Genetic Algorithm Method

DOI: 10.9790/5728-1601010421 www.iosrjournals.org 20 | Page

You can provide a start point for the minimization to the ga function by specifying the Initial Population option.

The ga function will use the first individual from InitialPopulation as a start point for a constrained

minimization.

X0 = [0.5 0.5]; % Start point (row vector)

options = gaoptimset(options,'InitialPopulation',X0);

Now rerun the ga solver,

 [x,fval] = ga (ObjectiveFunction,nvars,[],[],[],[],...

LB,UB,ConstraintFunction,options)

Optimization terminated: average change in the fitness value less than options. TolFun

and constraint violation is less than options. TolCon.

x =

0.8122 12.3103

fval =

1.3574e+04

Figure 8.Optional best and Mean fitness of Rastrigin's Function

V. Summary
Mathematically, an optimization problem involves a fitness function describing the problem, under a

set of constraints representing the solution space for the problem. Unfortunately, most of the traditional

optimization techniques are centered around evaluating the first derivatives to locate the optima on a given

constrained surface. Because of the difficulties in evaluating the first derivatives, to locate the optima for many

rough and discontinuous optimization surfaces, in recent times, several derivative free optimization algorithms

have been emerged. The optimization problem, nowadays, is represented as an intelligent search problem, where

one or more agents are employed to determine the optima on a search landscape, representing the constrained

surface for the optimization problem. In the later quarter of the twentieth century, Holland.J.H.1973 (Genetic

algorithms and the optimal allocation of trials), pioneered a new concept on evolutionary search algorithms, and

came up with a solution to the so far opened problem to nonlinear optimization problems. Derivative free

optimization method helps to solve bound constrained optimization problems using algorithms that require only

of objective the availability objective function values but not the derivative information. It also helps to evaluate

a deterministic function f:𝑅𝑛 → 𝑅 over a domain of interest that possibly includes lower and upper bounds on

the problem variables. Genetic Algorithm is well suited for solving optimum design problems characterized by

mixed continuous-discrete variables and discontinuous and non-convex design spaces. Genetic Algorithm can

also help to find the global minimum solution with a high probability. Genetic Algorithm are based on Darwin’s

theory of survival of the fittest and also based on the principles of natural genetics and natural selection.

Because, Genetic algorithms are based on the survival of the fittest principle of nature, they try to maximize a

function called the fitness function. Thus, Genetic Algorithms are naturally suitable for solving unconstrained

maximization problems. The fitness function𝐹(𝑥),can be taken to be same as the objective function 𝑓(𝑥) of an

unconstrained maximization problems so that 𝐹(𝑋) = 𝑓(𝑥). A minimization problem can be transformed into a

0 10 20 30 40 50 60 70 80 90 100
0

5000

10000

15000

Generation

Fi
tn

es
s

va
lu

e

Best: 13578.5 Mean: 13579.1

0 10 20 30 40 50 60 70 80 90 100
0

5

10

Generation

M
ax

 c
on

st
ra

in
t

Max constraint: 0

Best f itness

Mean fitness

Derivative Free Optimization by Using Genetic Algorithm Method

DOI: 10.9790/5728-1601010421 www.iosrjournals.org 21 | Page

maximization problem before applying the Genetic Algorithms. Usually, the fitness function is chosen to be

non-negative. The commonly used transformation to convert an unconstrained minimization problem to a fitness

function is given by 𝐹(𝑋) =
1

1+𝑓(𝑥)
which does not alter the location of minimum of 𝑓(𝑥) but, converts the

minimization problem into an equivalent maximization problems.

References
[1]. Argaez M. 2001. Optimization Theory Application, On the global convergence of a modified augmented Lagrangian line search

interior-point Newton method for nonlinear programming, 144:1-25

[2]. Elizabeth D. Dolan and Jorge J.More. 2007. Benchmarking optimization software with performance profiles. Mathematical

programing, 49(4):673-692.
[3]. Goldberg D.E. and Holland J.H. 1988.Genetic algorithms and machine learning. Machine Learning3: 95-99.

[4]. Hollad.J.H. 1975.Adaption in Natural and Artificial Systems.University of Michigan.Press. Ann Arbor. Michigan.

[5]. Ingber L. and Rosen B. 1992.Genetic Algorithms and very fast reannealing. A Comparison Mathl, Comput, Modelleing. 16(11),
87-100.

[6]. Kirkpatrick, S. Gelatt, C. D. and Vecchi M. P. 1983.Optimization by simulated annealing, vol. 220, pp. 671–680,

[7]. Marazzi,M, and Nodeal,J. 2002. Wedge trust region method for derivative free optimization.Mathprogram., 91, pp.289-300.
[8]. Nelder JA and Mead R. (1965). A simplex method for function minimization. Computer Journal 7: 308–313

Firaol Asfaw Wodajo. "Derivative Free Optimization by Using Genetic Algorithm Method."

IOSR Journal of Mathematics (IOSR-JM), 16(1), (2020): pp. 04-21.

