IOSR Journal of Mathematics (IOSR-JM)

e-1SSN: 2278-5728, p-ISSN: 2319-765X. Volume 16, Issue 1 Ser. | (Jan — Feb 2020), PP 48-60

www.iosrjournals.org

Comparison Results and Estimates of Amplitude for Oscillatory

Solutions of Some Quasilinear Equations
TADIE

ApsTrRAaCT. In this work we investigate some qualitative properties of solutions
of problems of the type

V- {A(2)|Vul* " IVu} + C@)|ul* " tu+ Flz,u,Vu) =0 zeR"
where @ > 1 and n > 3;the functions A G'l{]R“,. RT), C € C(R", RT)
and F € C(R™ x K x R™ are strictly positive functions.

This work investigates via some comparison results the estimates of the
amplitudes of bounded and non-trivial ( strongly ) oscillatory solutions for

such problems.

Namely if w is such a solution, its nodal set say, denotes any bounded
D := D(w) = {z € R" | w(z) # 0 inside D and w|sp = 0}. The main result
obtained here is as follows: when e.g. D(u) liesin Qf := {z € R" | R <

|z| <T}, as R 7 oo,

A(x) } lf’(1+n}) ‘

|ut | put) = maxX,e pru+) ut(z) = "3'( maxq {m

l. Introduction

This work will be focussed on bounded solutions in B™®, n >3 of problems of

the types

(7) V- {A(:r)(l)(\?u)} + C(z)p(u) =0 (half-linear equations),

P) (7)) V- {A(I){IJ(VU)} + C(z)p(v) + F(z,v,Vv)=0

(#i1) V- {A(:t)(IJ(V-w)} + C(z)p(w) + VK (x) - &(Vw) =0

Here for some a>1, t>0, (e R", so are defined

B(t) = dalt) = |t|*71t; ®() := ®a(() = [¢|* !¢ with the properties that

(6(8) = 175 ¢-D(0) = ¢ B(0)@(C) = B(6) and  1/(t) = ad(t).

In the equations, F(z,.,.) denotes a perturbation term and VK(z)-®(Vw) a

damped term.
Definition 1.1. Let h € C(E) where E denotes R or ™. h will be said to be

(i) Oscillatory (weakly) in E if h has a zero in any Qr :={zx e E; |z|>T};

where K € C'(R™) and A, C, F € C(R") are positive real valued-functions.

DOI: 10.9790/5728-1601014860 www.iosrjournals.org

48 | Page



Comparison Results and Estimates of Amplitude for Oscillatory Solutions of Some Quasilinear..

(ii) Strongly oscillatory if it has a nodal set in any Q. where a nodal set is
any non trivial connected and bounded component of the support supp(h) of h. A
nodal set of say h will be denoted as D(h).

Fora T >0, Dr(h) will denote a nodal set for h lying inside .

(ii1) A differential equation will be said to be oscillatory if any of its non trivial
and bounded solution is oscillatory.

Here, a function u is called a solution for (P) if for any bounded domain D C
E, u, Vue CYD), uc C*(D) and satisfies the equations (i) or (ii).

(iv) Therefore a funetion w will be said not to be oscillatory if either there are
p, R > 0 such that (w| > p in Qp or liminf; - |w(t)| =0.

With funetions y and u defined respectively in R and R™ , we will be dealing
with differential operators of the types

P(y) := {a(t)cﬁ('y’}} +e(t)p(y) + f(t,y,y), teR and
(1.1)
Qu) = V- {A(:r}@(?u)} + C(z)p(u) + F(z,u,Vu), xeR™

The functions f(t,y,y’) and F(z,u,Vu) are the perturbations terms added
to the respective half-linear equations. But if they have the form g¢'(f)é(y") (or
VG(z) - ®(Vu) for any continuously differentiable ¢ (or G ) they are called
damping terms of the half-linear equations. General hypotheses will be on the
coefficients of the half-linear parts of the equations mainly

(H)

A solution of the problems P(y) = 0 or Q(u) =0 insay E will be a
non-trivial and bounded function y (u ) which satisfies ( weakly ) the respective
equations with y, a(t)¢(y’), u and A(x)®(Vu) ) continuously differentiable in E.

H1) In the equations (1.1) the numerical functions ( or any functions represent-
ing them in equations ) a and A are strictly positive and continuously differentiable
in their respective domains ; C' and ¢ are continuous in their respective arguments
and strictly positive .

H2) On the perturbation terms, for the leading terms in y or u in (1.1) for
small values of these unknown functions to remain c(t)o(y) and C(x)d(u)

£(t,3,) |F(a, 4, V)

2" —0 and lim

wo  [6()] o ) (1.2)

are required.
H3) Because our main interest is on the estimates for decaying oscillatory so-

lutions i.e. u such that lim,| .. |MaX,ep(u+) u"‘{:r}] =0, the following extra
assumptions will be required for the coefficients a and ¢ of the half-linear parts of
the equations:  for large |z|

a(x)
c(z)
Note that the goal of the hypothesis H2) is to avoid the solutions to have compact

support and to ensure some application of maximum principle ( see [4], [2] ).
In the sequel, the following notations will be used for any continuous function

~ x(|z|) where y € C(RT, R") is a decreasing function. (1.3)
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Il.  Comparison Results

he C(R", R); z e R" and r:=|z|,
a) h'(z):=max{0, h(z) }; A~ (z) := min{0, h(z) }; (1.4)
{b} H*(r) :==ht(r) := |Hl|£lx h(z) and C~(r):=h—(r):= ll’I}i_l'l h(z).

2. SOME C'OMPARISON PRINCIPLE FOR HALF-LINEAR EQUATION IN R™

If we take a > 1 then t s ¢(t) := [t|*"1t or ¢+ ®(() :=|¢|*7C
are monotonic increasing in the sence that v, se R ((;, (o € R™)

o(t) — ¢(s) |(t—s) and | ((y) — fb({g}) ((1 — (3) are strictly positive

whenever |f — s| (respectively |(; — (2| ) is non zero.
Let @ ¢ R™ be a connected and bounded regular domain.

Theorem 2.1. ( Comparison principle )
Let E c R™ be a connected and regular domain , ¢, co € C(E)
negative and a € C'(E, (0, o0) ). Let Q@ C E be a bounded subdomain. If two

distinct and nonegative u,v € C*(£)) satisfy in Q

be non-

(i)a V- {a(:r)il(?u)} +e(z)p(u) =0 and
@ip V- {a(:c)(b{"?v)} + ca(2)p(v) = 0; (2.1)
(@) (0) (u=v)oa20; (b) 3wyeQ; (u—v)(z)>0.

Then (u—wv) >0 in €, provided that c; > ¢, in ). In addition if () is connected
then w > v there. If a numerical function F e C (), R, R™) is non-negative, then
the results of the theorem still hold with (i)b replaced by

V- {a{r)‘i’(\?v}} +c2(z)p(v) + F(z,v,Vv) = 0.

Proof. In fact assume that Q7 := {x € Q| u(z) < v(z) } has a positive measure.
Let 7 = 0 besuch that w := w, =u—v+7 > 0 in some non-neglected D, C 1~

and w|sp, = 0. Such 7 exists because of (ii)(h) above.
As we CY{Q7) and non-negative ,

L i) [v - (a.(:r}[ B(Vu) — B(Vo) ]) ]d:g -
- /D T a(f)(@(vu) _ cb(v-u)) Vw dy = o)
[ v (@) - @i )i o

T

as v > u there.
Because of the strict monotonicity of £ — t¢(t) , the equation above is absurd as
— [p. a(x) (‘i}('\?u) — @(V-v)) - Vwdr =
— JFDT a(z)(Vu —Vuv) - [®(Vu) — &(Vv)]de < 0 contradicting (2.2);
the assumption is false and u — v = 01in €. So,
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V- {a(:c)(b('\?'u)} =V- {a{m)fb(\?’v)} and v > v in Q implying that u # v

therein ( see e.g. [5] , Theorem 2.2 ).
The last part of the result is a mere verification. O

Corollary 2.2. Let a, ¢1, c2 € C(R™) be strictly positive functions with ¢; < ez .
Let u; € C*(R™) be respectively two oscillatory solutions ( with overlapping nodal
sets ) for

V- [a(m)@(v-ui)] +ei(x)p(u;)) =0 zeR™ i=1,2.
Assume that there is a connected domain Q C D(ul)(D(u) which contains
their local mazima. Then
max( uf (2) ) < max( u (2) ).

Proof. This is due to the fact that Q@ :={z € Q| (u] —uJ)(z) < 0} would have
a zero maesure by the Theorem 2.1 . O

I11.  Some Half-Linear Operators And ldentities

3.1. Half-linear equations. ( Some identities). Given some positive functions
a, C € CY(R™) we consider the problem

V- [ai}(\_f'u}] + acp(u) = 0: reR" (3.1)
where for some m >0 and a >1
the functions a, C' > m and ¢ = ¢,. (3.2)

Note that the multiplier parameter o is added to the coefficient ¢ in (3.1) just
for easing the obtension of the identities. When the departing equation has no such

. c .
a to ¢, it would be enough to replace ¢ by — in the formulas later on.

o
Any non trivial and bounded solution of (3.1) is strongly oscillatory and easy
calculations show that

(i V- (aﬁ){'\?u)) =Va-®(Vu) + a&|V-u|“_1&u;

(ii) : [a{b( }Vu = |Vu|**t'Va + - a'\7 [|'\7u|“+1

V{a|'\7u.|“+1 ? V(|'\7u|“+l) and

v+ 1
a o
|u|ﬂ+1] = 1{'\7(0|u|‘-"‘+1) — |-u|“+1'\?c}.

So, from Vu{V - (a{b Vu ) - crcd)(u)} =0
We get

CV

(iii) acp(u)Vu=
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v {(a + a(z) Vul* + a-c{scnur*“} =

alu[*TVe(z) + a(z)V (|Vu—|a+l) (3.3)

or V- {&-a{m}|\7u|°‘+l + a'c{:t)|u|°‘+1} =

a|u|*T'Ve(z) — |[Vu|* TV a(z).

If the coefficients a,e € C'(R") and a is strictly positive any non-trivial
oscillatory solution u of (3.1) satisfies

(i) V- [‘f'(v“')] +A(z) - 2(Vu) + aC(z)p(u) =0 z€Q : ulpn=0
whnere Tr) = M an ) = @ om whic
here A(z) : a(z) d C(z): a(z) fr hich o
(ir) V- {W'H(T)PH + C(:c)|u(:c)|“+1} -
lu(z)|* TV C(z) - at 1.4(:1‘.)|'\7u|“+1

o
after processing as before.

3.2. Half-linear equation with constant coefficient of the principal part.
Consider

(i) '\7-{A@(Vu}}—l—c{ae)qﬁ{u):{} in R"

(3.5)
(ii) where A > 0 is a constant and ¢ & C(R"™, (0, o) ).
It is clear that with C'(z):= Lj) the equation (3.5)(i) is equivalent to
V- {(I){Vu}} +CYx)d(u)=0 in R". (3.6)

It is known that any non-trivial and bounded solution for (3.6) is strongly oscilla-
tory.

Also if the coefficient C' depends only on r := {3 2Z}'/2 the equation
would be axially symmetric ( see e.g. [11] ) and would have the form

(i {rﬂ-lfb(U’J} £ HU) = 0; P20

-

(3.7)

(i) or {c-ﬁ( )} + P2 L4(0) + CH)a(U) = 0
where C'(r) := CY(|z|) .
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3.3. One-dimensional cases. For (3.6), we have with ¢(f) > 0%t >0

{g-fr(u’)} +ae(t)p(u) =0, t=>0; (3.8)

and it is known that any non-trivial and bounded solution of that equation is
strongly oscillatory.

We also know ( e.g. from [10] ) that if ¢ is an increasing and unbounded
function, for any nodal set D(u™) of (3.8), we have the following estimates for
large T} = 0:

D(u™) =Ty, Ty =

() max M :Canst.{

1/(at1)
[Ty, T o(Th) } (3.9)

N 1 1/ (1)
(@) and |T2 —Ti| = C{mst.{ C(Tl)} :

3.4. Some Picone-type identities and some applications. ( some recalls)
Because of those identities and formulae will be refered to from now on, it is
necessary to recall them before hand.
For ease in writing, the operators F;(.) will denote the P(.) in (1.1) in which the
coefficients a, ¢ and the function f carry the index ¢. Similarly is defined ) (.).
Let y; and y, be respectively used in F;(y;) =0, £ > 0; ¢ =1, 2. Then wherever
1o is non zero, a version of Picone's identity reads

{ylal(tjg-ﬁ(yﬂ —1o( % )ﬂ-z(t]@f’(y’z)} =

= s (01, 12) + 036 = 00)| I + [ 2) — x| jmit 310

att1 | f2(ty2,45)  filt, v, 90) et | Pi(n)  Palye)
e e e R £y et

where, ¥y > 0, the two-form function {, is defined Yu,v e C'(R, R) by

"y PR T . u
(Z1) ¢ (u, ) = |u |"r+1 —(v+1)u q;ﬂr(;y ) + v ;@’T(;T—-’ }
: v\ U, U

, . u ,
= [0 = (7 + D', (S0) + 9150

is strictly positive for non null « # v and null only if u = Av for some A € R .
Similarly, if u, and us are respectively used in Qu;, i = 1,2, then wherever u, is
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non zero, a version of Picone’s identity reads

V- {tc.1.41 (z)®(Vuy) — uquh(%}_ﬁlg{:t)fb(‘?'ug)} = As(z)Za (11, uz)

4 (Al(:c) - Az(:c)) Y|+ 4 (Cz(r; el (:c)) g |41
ast | F2(z, u2, Vua) B Fi(z, ul,\_."tt-l:l]
ol [ O(u2) dluy)
g | H {Ql(ul} B Q2 (uz)
¢(uy) Pluz)
(22 Z,(u,0) = [Vu ™ = (34 ), (200) - Vu 45 200+

(3.11)

] where ¥y >0, Yu,ve CYR"™)

. u 4 U _
= [Vl — (v + DI Vo[ SV0- Vuto| Vo,

We recall that ¥y > 0 the two-form Z,(u,v) >0 and isnull only if 3k e R; u =
kv. ( see e.g. [1], [6, 7] ).
We note that Z, is associated to the two-form V., defined on R™ x R™ x R by

(B):  TY) = X[ = (+ DY X Y

which is positive for non-null X and Y and null only if one of them is null or if
X = puY for some p € R,

Lemma 3.1. Consider for some strictly positive funetions a, ¢, ¢35 the strongly
and bounded oscillatory solutions uw and v with some overlapping nodal sets
D(u*) and D(vt) of

{a.(t}g-ﬁ(u’)}’ +e(t)p(u)=0= {a(t)q-)(v’)}’ +ea(t)p(v); t>0
where Wt =0 e1(t) < eoft).

If through some translation of variable say, w(t) ==v(t +¢), £ € R the new
funetion satisfies for some s € D(u™) w'(s) =u'(s) =0, then

D(wt)c D(ut) and ut(s)=wT(s)= 5{3{}3{) v(t) (3.12)

and diam(vt) = diam(w™) < diam(u™).
The same conclusions hold even when the equation in v reads

{a(t)qﬁ(t—")} + co(t)p(v) + F(t,v,v") =0 with positive F(.,.,.).

Proof. Let s be the root of u’ in D(u™). A Picone formula for the solutions is

{att)|wbtar) — us( 5160)| | = a0 (w.0) + 200 = ex(O)u+

which is strictly positive in D(u™). Therefore v has to have a zero inside D(u™).
By a translation like t — t 4+ ¢ for a suitable choice of ¢ € R such that
Vit — &) :==v(t) satisfies V'(s) = u'(s) = 0, the Picone formula above in terms of
Vis ,

{ato) |wotar) — us( 32 )607)| | = ate)ca(w. V) + feat) = es()ul
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which remains also positive in D(u™). Let [to, t1] :== D(u™"). The integration
over (to, s) in one hand and over (s, t1) in other hand of the equation give
0= Lz{a(t)(q(u; V) + [ea(t) — eq(t)]|u|*H}dt  and
2 {a()Ca(w, V) + [ea(t) — ex ()] |u|> }dt = 0
each of which is absurd as each of the integrand is strictly positive. Therefore
V has a zero inside each of the subintervals, leading to D(V™) < D(u™) ( see
[12, 10]). By Corollary 2.2 , maxy,, +,) V' < maxp,, ¢, u.
When F is introduced, the Pinone formula becomes
o, w1 . F(t, v, v
{a(0)|uptur—us 3 16)| } = atorcati V) (Teatt-es 01+ ZEr 2 g
which brings no extra difficulties. '
U

Now let €} CR be an intervall and m > 0; a € C*'(€), (m, o0))) be increasing
and ¢ e C(1, (m, oo)) be given.
Lemma 3.2. Let F € C(R3 [0, 00)) be a positive function and
be CYR) with b #0 fore large t >0 .

If u is a strongly oscillatory solution and v a non-trivial and bounded solution

in €2 of

(7) {a(t)q’j(u’}} +e(t)p(u) =0 and

, (3.13)

(24) {a(t)q";(-ﬁ)} + b (t)p(v") + e(t)p(v) + F(t,v,v") =0,

then v is also strongly oscillatory. Moreover in any Qp with large T > 0

any D(u™) overlaps with a D(v'). Let s denote the singularity of u™ ( i.e

s € D(ut) and u'(s) =0 ). Thereis & € R such that the new oscillatory
function V(t) :=v(t+ &) satisfies V'(s) =u'(s) =0 leading to

D(VT)yc D(u™) and max VT < max u™. (3.14)
D{ut) Dut)

Proof. a) That v is oscillatory follows from [8], Theorem 3.4 .

For the self containing concern, we give the sketch of the proof mainly because
of the presence of the extra term F.

The Picone-type formula we chose for (3.13) is:

{ﬁ(t)uﬁi‘(‘“f) — ud( = Ja(t)p(v') — u( E )b(t)ﬁﬁ{vf}}’
! : , (3.15)

u , u,
= a’(t}':cx [:'li-: U) + 'H-(;-')( E )F(t: v, ) - b(t} I:u'ﬂ( E'U :]:| :

If in (3.13) b(t) isreplaced by b(t)+p, any p< R, we get (3.15) with b(f) + p
replacing b(t) i.e.

{a(t)uq’i{u’] — ud( % Ja(t)p(v') — ug( % Ja(t)(b(t) + ,u}c;f'){v’}}
(3.16)

= a(t)a (1) + w5 )F (e 0,07) = (b0 + )b 507
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If we assume that v > 0 in any D := D(u") the integration over D of the above
equation leads to

Yu e R, {}:/
D

_ fD (b(t)—kp,) {uff;( = )Ddt

and that can hold only if each of the integrand is zero! Obviously the first integrand
is not zero hence v has a zero in any D(u*) and is then also strongly oscillatory.

Let D(u™) := [to, s]U[s, t1] = Di|JDy where tq > T, b #0 in Qp and
u'(s) = 0. We chose £ € R such that the associate function to v, V() := v(t+&)
satisfles V'(s) = u'(s) = 0. Using D; or D, in the equations (3.16) and (3.17)
we similarly conclude that V' has one zero in each of them and diam(V ™) =
diam(v™) < diam(u™).

Consequently in both cases

a(t)Ca (1, V) + ud( i—‘ VE(t,v,v") | dt

(3.17)

D(Vt)yc D(ut) and max VT < max u™
D(ut) D(u+)

by the Theorem 2.1 . In fact inone of [ty, s] or[s, t;], U (t)o(v")+F(t,v,v") >0
and the Theorem applies over that sub-interval.
The proof is completed . O

IV.  Main Results
Let m >0 and for some T >0 :=Qp = (T, o). For some

increasing a € C'(€), (m, o0)); ¢,e1 € C(, (m, ) (41)
with ¢<e; and be CHQ, R) with b £0 in Qf '
the non-trivial and bounded solutions wu, v, w respectively of
{awou} +ewpm =0 {awow)} +awew =0
(4.2)

and {a.(t}g-ﬁ(w’)} +e(t)d(w) +'(t)p(w’) =0

are strongly oscillatory ( see e.g. [8] ). Let a fixed nodal set D(u™) C Qr of the
solution u in (4.2) be set and s € D(u™) be its singularity i.e. u'(s) = 0. Then
there are £, 0 € R such that the oscillatory oscillatory functions

Vit) =v(t+¢&) and W(t) := w(t +60) satisfy W'(s) = V'(s) = u'(s) = 0.
Consequently

Theorem 4.1. Consider a nodal set D(u™) C Qr for a large T > 0 where
u denotes a strongly oscillatory solution in ({.2) and s € D(u™) its singularity.
With 6(A) = diam(A) for any A C Qr we have the following estimates for the
oscillatory functions described above:
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(i) S(D(w™)) <d(D(w")) <8(D(u™)) as Wh(s) <V*(s)<uf(s) or

(i) max wt(t)< max ov'(t)< max ut(t) and
teDwt) teD(vt) teD(ut) (4.3)

t) 1/(1+4a)
max u'(t) = Const. max .
teD(ut) teD(ut) c[t)

Proof. The translation function conserves the distance and the last lemmae explain
the relations between the diameters. Lemma 3.1 applies for the comparison of the
estimates of u and V: Lemma 3.2 for those of v and W.

To complete the proof, the equation {a{t}g-‘h{u’}} + ¢(t)¢(u) = 0 being equiv-

alent to

from the relations above ( Lemmas 3.1 and 3.2 ) and (3.9)

max u’ = Const. max : (4.4)
teD(ut) teD(ut) .(t)

O

When the coefficients of the equation are radially symmetric ( i.e. depends only
on r:= |z|) and satisfy H1), the radially symmetric version of the equation

( (i) V- (.4{::)@(?-@) +C(z)p(u)=0, zeR"
{ would read (4.5)

& {r“_l_ﬁl(-r)qﬁ{U’)} +r7IC(P)U) =0, r>0

the coefficients in (4.5)(ii) being strictly positive with increasing A; that equation
is equivalent to

{QS(U’)] +K(r)'o(U") + EE ;*T{U) =0, r>0 (4.6)

where  K'(r) :={ log[r" *A(r)] } .
So, from the Theorem 4.1 and the estimates (3.9) we have the following

Theorem 4.2. [f the coefficients A and C are radially symmetric, strictly positive
and A increasing, any bounded and non-trivial solution U of (4.5) is radially
symmetric and satisfies (4.6). It satisfies in any Q1 for large T =0

and D(UT) :=[Ry, Rs]

|Ry — Ra| = Ry — Ry = const. [A(R?)

1/(e+1)
|

= x UT(r). 4.7
e, UYO). @)
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Remark 4.3. In one-dimensinal case the notion of the diameter of a D(u) is
without any confusion the length of the interval [ti, t2] := D(u). But in multi-
dimensional case, the situation is quite different. Thus we will estimate only the
local mazima of ut for the moment.

Define for any we C(R™", R) and Qf :={xrcQ; s <|z| <t}

Ty . , . Vi — i . ;
Wihi(t) = max w(z) and W] (s): ilg:gé w(z). (4.8)

2

Given the strictly positive functions a, ¢ € C(R™), to the equation

' (i) V- {a{m)@('\?’u}} +e(z)p(u) =0, z<R"
we associate

(4.9)

(i) V- {A;&(T)@(VU}} +C (MepU)=0, r=0

when we assume that D(u®) c 0F.

In fact the Picone-type formula, where A = A(T) := AL (T) and C(r) :=
C~(r) = minjy =, ¢(x) reads

V- [AUSVD) - ae)Uo( 5 )a(Vu)| =
0(2)Za(U,u) + (A — a)[VU|**! + (c — C(r))|U|*F! > 0.

So, whenever (4.9)(ii) is oscillatory so is (4.9)(i) as u would have a zero in any nodal
set D(UT) ( see e.g. [1, 8] ).

Any non-trivial and bounded Solution U of

V- [A(I)(VU)] +C(r)p(U)=0, r>0

is oscillatory and radially symetric and as in (3.7), the equation reads

{r“‘l_»flq-h{U’)} +rlC(r)e(U) =0, 1> 0.

Theorem 4.4. Consider for some strictly positive a, ¢ € C'(R™) the problem

V- {a{:r)@(\?tt.}} +c(z)p(u)=0, z<R", n=3. (4.10)

The equation is oscillatory .
1) If a(x) is constant or is radially symmetric and differentiable (i.e. a(z)=
a(|z|) ), then

N a(r) 1/(14a)
IEIIDI%S![_] uT(z) = O([C(-r)] ) for large |z| =r. (4.11)
2)  In general, when we take D(ut) := Dpr(u®) c Q% for a large R > 0, the

same conclusion holds and (4.11) becomes

v =0( |

1/(14a)
) forlarge r=|z|e (R, T). (4.12)
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Proof. 1)  From before, we can assume that under the hypotheses, (4.8)(i) and
(4.8)(ii) fulfill the conditions (2.1)(i)a and (i)b of the Theorem 2.1. In addition u™

has a zero inside any D(UT) . Therefore Theorem 2.1 applies here; UT = ut

whenever through a translation of U, the singularity z; of u is such that |zg| is
close enough to ry where Vu(zy) =0 and U’(rg) = 0. All this show that

max u'(r)< max Ut(x)
zeD(ut) zeD(U+)
whenever |zg| is very close to rp through a suitable translation of U. Let V'
be an oscillatory solution of

@) || o) =0, e
or with K(r) :=log{r" 'A(r)}, (4.13)
s [ ! ' ! ! ! C(r} ! — .
i) (6) + Ko+ GHav) =0, r>0
where A(r) = a(r) if a is radially symmetrie or constant. From Theorem 4.1 , if
C(r)
A(r)

is unhoubded above and continuous, then as r /oo

1/{14a)
maxX,cpyv+) V(1) = const. max,cpyv+) (A(-r‘},/C{r)) :

2) is a mere application of 1) as AT (T') is constant.

Dedicated to my late mother and aunts:

Meguem Homsi Justine (1926-January 1, 2019);

Moyum Victorine (1938- 2018 ) and

Mafoko Veronique (+ Oct. 2018)

“Dii de la bonté, de la bienveillance et gratitude dont vous avez fait preuve durant
votre vie, que nos ancétres vous accueillent et vous gquident dans la paiz et la sérénité
perpétuelles.”
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