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Abstract: 
The linear and the quadratic transformationsof the hypergeometric function are proven very useful in making 

various transformations and carryingout the analytic continuation of hypergeometric function into any part of the 

complex z-plane cut along the real axis from the point z= +1 to the point z= +∞. Here we shall represent the 

associated Legendre functions (or spherical functions) of the first kindin terms of the hypergeometric function to 

gain their analytic continuation into any part of the complex z-plane. Furthermore, the hypergeometric 

representation enables us to develop the theory of spherical functions by implementing the general theory of the 

hypergeometric function. Obtaining the hypergeometric representation of such functions by means of linear and 

quadratic transformations is more general and less complicated than the Euler’s integral representation which is 

restricted to certain constraints to the values of the parameters of the hypergeometric function that are essential to 

make use of the integral definition of the Beta function. 

Key words:Analytic Continuation,Hypergeometricfunction,Hypergeometric series, First kindassociated 
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I. Introduction 

Motivated by the great importance of special functions in general and the Legendre functions in 

particular, here we shall relate the associated Legendre functions to the so called Gaussianhypergeometric function 

(Abramowitz andStegun  1968;Andrews et al. 1999;Laham and Abdallah 1996;Rainville 1960;Lebedev1965;Wang 

and Chu2014; Wang and Chu2018). The hypergeometric function was introduced by Euler and then studied 

thoroughly by Gauss (Laham and Abdallah 1996) and plays an important role in mathematical analysis and its 

applications such as conformal mapping of triangular domains bounded by line segments or circular 

arcs(Lebedev1965).The Legendrefunctions have been discovered by Laplace and Legendre as early in the 18th 

century and they are connected with many problems ofmathematical physics, in the potential theory for spheroidal, 

toroidal andother coordinates (Hobson 1955).The associated Legendre functions of the first and second kinds  

(Kuipers  and Meulenbeld  1957;Virchenko1987)  possess high importance in variety of applications to problems 

of physics, quantum mechanics, and engineering.  Many algebraic and transcendental functions that appear in 

problems of mathematical physics can be expressed in terms of the hypergeometric function, thus the theory of 

these functions can be considered as a special case of the general theory of the hypergeometric functions 

(Lebedev1965). The hypergeometric representation of the associated Legendre functions has the great advantage of 

obtaining the analytic continuation of these functions into any part of the complexz-plane (Lebedev1965). In turn 

this should allow variety of applications for such functions. The hypergeometric representation of any function can 

be achieved with the aid of the so called linear as well as nonlinear transformations on the independent variable for 

the hypergeometric function (Lebedev1965;Wang and Chu 2017). Such transformations were derived extensively 

in an elaborate manner in (Erdelyi  et al.1953-55) and references therein. The linear transformations consist of all 

the following fractional linear form  

𝑧′ =
𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
, 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ.

 
Since the core idea of deriving the linear transformations comes from the theory of the twenty-four solutions of 

the hypergeometric differential equationdiscovered by Kummer in 1836, sometimes the linear transformations 

are called byKummer's relations (Rainville 1964). The nonlinear transformations contain expressions like 

1 −  1 − 𝑧

2
,

1 −  1 − 𝑧

1 +  1 − 𝑧
 ,

1

 1 − 𝑧 2
, 𝑧2, … 

which are known as the quadratic transformations of the hypergeometric function. In fact the theory of quadratic 

transformations of the hypergeometric function is an old topic and can be traced back to Gauss,Kummer, and 

Goursat (Lebedev 1965).  For an extensive list of such transformations the reader is referred to the 

references(Abramowitz  andStegun  1968;Rainville 1964; Lebedev 1965;Erdelyi  et al.1953-55).Conceptually, 
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both kinds oftransformations are proven very useful in making various transformations and known as Euler's 

transformations of the hypergeometric function (Rainville 1964). It is worth mentioning that the linear and 

nonlinear transformations are among the most important relations in the theory of hypergeometric function. 

However there are other approaches to investigate the properties of the hypergeometric functions and obtain 

their analytic continuation.For instance, Hobson(1955)investigated properties of the associated Legendre 

functions by means ofcontour integralsdefined in terms of Pochhammer symbol (Abramowitz  and 

Stegun1968)and Jordan double contour integrals(Verchenko and Rumiantseva 2008).  Such an approach has the 

privilege of being away from the convergence issue of infinite series.The main results in the theory of the 

generalized associated Legendre functions have been establishedby Kuipers and Meulenbeld(1957).Also 

Verchenko and Rumiantseva(2008)considered the generalized hypergeometricfunction (Verchenko 

1999;Verchenko et al. 2001;Raoa and Shukla 2013;Malovichko1976; Wang and Chu 2016 )to gain an integral 

representation of the generalized associated Legendre functionsof both kinds (Kuipers and 

Meulenbeld1957;Verchenko and Rumiantseva 2008;Verchenko and Fedotova 2001). Verchenkoet al. 

implemented the integral form of the generalized (in the sense of Wright (Verchenko and Fedotova 

2001)hypergeometric function which is defined in terms of the so called Fox-Wright functions (Verchenko and 

Fedotova 2001; Wright 1935) obtaining an integral form of thegeneralizedassociated Legendre functions. A 

further generalized hypergeometric k-functions is defined andsome properties are established in (Rahman et al. 

2016; Miller 2003) using a special case of Wright hypergeometric function.  Since the classical 

Gausshypergeometric function and the associated Legendre functions are respectively, special cases of the 

generalized hypergeometric function and the generalized associated Legendre functions, one could claim 

thatVerchenko  andRumiantseva (2008) presented a more general approach using the generalization concept of 

such functions. The Euler’s integral representation of the hypergeometricfunction(Rainville 1960) can be 

obtained using the integral definition of the Beta function(Abramowitz and Stegun1968). Such an integral form 

of the hypergeometricfunctions less general because is often restricted to certain constraints on the values of the 

parameters of the hypergeometric functionwhich are essential to make use of the integral definition of the Beta 

function. We will consider the hypergeometric representation of the considered functions only by means of 

linear and quadratic transformations of the hypergeometric function, referring the reader elsewhere for integral 

representations(Lebedev 1965). 

This paper is structured as follows: in section one; we briefly set up the notations for the hypergeometric 

function. After obtaining the solutions of the associated Legendre differential equation in section 

two,hypergeometric representations of the first kind associated Legendre functions are presented in section four. 

Some useful linear transformations are derived in section three. Finally, a discussion and conclusion is drawn on 

the hypergeometric representation of the associated Legendre functionsin sectionsfive and six respectively. 

 

II.    Overview on the Gaussianhypergeometric function
 

In this section we shall introduce some notations that are used in this paper. Consider the series  

 

1 +  
𝛼 𝛼 + 1 …  𝛼 + 𝑛 − 1 𝛽 𝛽 + 1 …  𝛽 + 𝑛 − 1 

𝛾 𝛾 + 1 …  𝛾 + 𝑛 − 1 

∞

𝑛=1

𝑧𝑛

𝑛!
 ,                                            (1) 

 

where z  is a complex variableα or β and γ are parameters, which can take arbitrary real or complex values 

provided that 𝛾 ≠ 0, −1, −2, …. If we let α=1 andβ = γ, then we get the elementary geometric series 𝑧𝑛∞
𝑛=0 . 

The series (1) is called the Gauss hypergeometric series, which has great importance in mathematical analysis 

and its applications. Using the generalized factorial function (Abramowitz and Stegun1968)orPochhammer 

symbol  𝑎 𝑛 defined as 

 𝑎 𝑛 =   𝑎 + 𝑘 − 1 ,  𝑎 0 = 1,    𝑎 ≠ 0

𝑛

𝑘=1

.            

By using the Pochhammer symbol we can simplify the series(1) in the form 

 
 𝛼 𝑛 𝛽 𝑛

 𝛾 𝑛

∞

𝑛=0

𝑧𝑛

𝑛!
 .                                                                                            (2) 

This series can be written in terms of the gamma function using the following relation between the Pochhammer 

symbol and the gamma function (Abramowitz and Stegun1968)defined as 

 𝑎 𝑛 =
Γ 𝑎 + 𝑛 

Γ 𝑎 
, 𝑎 ≠ 0, 𝑛 = 0,1,2, …                                                 (3)  

 

 

Hence, one has 
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 𝛼 𝑛 𝛽 𝑛

 𝛾 𝑛

∞

𝑛=0

𝑧𝑛

𝑛!
=

Γ 𝛾 

Γ 𝛼 Γ 𝛽 
 

Γ 𝛼 + 𝑛 Γ 𝛽 + 𝑛 

Γ 𝛾 + 𝑛 Γ 𝑛 + 1 

∞

𝑛=0

𝑧𝑛  . 

By using the ratio test, it can be easily proved that the radius of convergence of the hypergeometric series (1)is 

unity 1z , except when the parameters α or β is zero or a negative integer, in which case the series 

(1)terminates and turns to a polynomial where the convergence has no sense. Also using the Gauss test, it can be 

shown that the hypergeometric seriesconverges absolutely for 1z provided that   0      (Rainville 

1960;Lebedev 1965;Rainville 1964).We shall denote the convergent hypergeometric series by the notation 

𝐹 𝛼, 𝛽; 𝛾; 𝑧  that is, 

 

𝐹 𝛼, 𝛽; 𝛾; 𝑧 =  
 𝛼 𝑛 𝛽 𝑛

 𝛾 𝑛𝑛!

∞

𝑛=0

𝑧𝑛 ,        𝑧 < 1, 𝛾 ≠ 0, −1, −2, … 

 

That is there exists a complex function which is analytic in the complex z-plane cutalong the real axis from the 

point z = 1 tothe point z = ∞and coincides with 𝐹 𝛼, 𝛽; 𝛾; 𝑧 inside the unit disc. Moreover 𝐹 𝛼, 𝛽; 𝛾; 𝑧 is an 

analytic function of its parametersαor β and ameromorphic function of its parameter 𝛾, with simple poles at the 

points 𝛾 ≠ 0, −1, −2, …(Lebedev 1965).  

 

III.    The associated Legendredifferential equation 

 
The linear, second-order, homogeneous, spherical harmonic differential equation 

 

 
is called the generalized associated Legendre differential equation where z  is a complex variable. The parameters ν 

and μ are arbitrary complex constants and called the order and the degree of the corresponding generalized 

associated Legendre functions, respectively. This equation arises from separation of variables in solving Laplace 

equation Δy = 0 in spherical coordinates. Kuipers and Meulenbeld(1957) obtained solutions of the generalized 

associated Legendre differential equation which are valid for unrestricted values of the parameters μ, η and ν. Their 

results have been expressed in terms of contour integrals and the hypergeometric functions. For some applications, 

it is often necessary to solve the associated Legendre differential equation for real values of the variable z in the 

interval (-1, +1), that is for z=cosθ, and for integral values of the parameters μ and ν. Hobson (1896) presented 

definitions of the associated Legendre functions for unrestricted values of the parameters ν, μ and the argument z 

by means of contour integrals. The generalized associated Legendre differential equationcan be reduced to the 

following classical associated Legendre differential equation aswe set the parametersη=ν=n, thus one hasfor 

arbitrary μ and nonnegative integral values of n, 

 

 1 − 𝑧2 𝑦″ − 2𝑧𝑦′ +  𝜇 𝜇 + 1 −
𝑛2

1 − 𝑧2
 𝑦 𝑧 = 0 , 𝑛 = 0,1,2, …                      (4)

 

 

This equationyieldsthe ordinary Legendre differential equation asn=0 and itis well known in mathematical physics 

to solve boundary value problems of potential theory, geodesy and quantum mechanics. To solve the differential 

equation (4), we assume that the variable z belongs to the complex z-plane cutalong the real axis from the point z = 

-∞ to the point z = 1,and introduce the following gauge transformation in terms of the new function w(z)which is 

related to the function by the following formula(Lebedev 1965; Bealsand Wong 2010), 

 
The derivatives ofthe function y are obtained as 

𝑦′ = (𝑧2 − 1)
𝑛

2𝑤 ′ + 𝑛𝑧𝑤(𝑧2 − 1)
𝑛

2
−1  , 

𝑦″ = (𝑧2 − 1)
𝑛

2𝑤″ + 2𝑛𝑧(𝑧2 − 1)
𝑛

2
−1𝑤 ′ + 𝑛𝑤(𝑧2 − 1)

𝑛

2
−1  

𝑧2 𝑛 − 1 − 1

𝑧2 − 1
 .

 

Substituting these derivatives in equation (4) leads to  

 

 1 − 𝑧2 𝑤″ − 2 𝑛 + 1 𝑧𝑤 ′ +  𝜇 − 𝑛  𝜇 + 𝑛 + 1 𝑤 = 0.                                (5)
  



Analytic Continuation of the First Kind Associated Legendre Functions. 

DOI: 10.9790/5728-1601021422                                  www.iosrjournals.org                                            17 | Page 

Now if u be a solution of the ordinary Legendre differential equation, then one has 

 1 − 𝑧2 𝑢″ − 2𝑧𝑢′ + 𝜇 𝜇 + 1 𝑢 = 0 .
 

Differentiating this equation n times withrespectto z , and letting𝑤 =
𝑑𝑛 𝑢

𝑑𝑧𝑛 leads to 

 1 − 𝑧2 𝑤″ − 2 𝑛 + 1 𝑧𝑤 ′ +  𝜇 − 𝑛  𝜇 + 𝑛 + 1 𝑤 = 0.  
Hence we showed that the function w is a solution of equation (5). It follows that the solutions of equation (4) 

are obtained as the following 

𝑦1 𝑧 = (𝑧2 − 1)
𝑛

2
𝑑𝑛 𝑢1

𝑑𝑧𝑛 ,and𝑦2 𝑧 = (𝑧2 − 1)
𝑛

2
𝑑𝑛 𝑢2

𝑑𝑧𝑛 , 

 

where 𝑢1 = 𝑃𝜇  𝑧 , and  𝑢2 = 𝑄𝜇  𝑧 are solutions of the ordinary Legendre differential equation. The single-

valued functions 1( )y z and 2 ( )y z are denoted by  nP z and  nQ z
respectively, and are called the associated 

Legendre functions (or spherical functions)of the first and second kinds, respectively, of order μ and degree 

nthat is, 

 

 
Sometimes equations (6) and (7) are called by Hobson definition of the associated Legendre functions 

(Whittaker and Watson 1952; Hobson and Barnes 1908).  For general values of μ the Legendre 

functions𝑃𝜇  𝑧 and𝑄𝜇  𝑧 of the first and second kinds, respectively, are analytic in the complex z-plane cutalong 

the segments (-∞, -1] and(-∞, 1], respectively. It follows that from equations (6) and (7) that𝑃𝜇
𝑛 𝑧 and𝑄𝜇

𝑛 𝑧 are 

entire functions of the variable z in the complex z-plane cutalong the the real axis from the pointz=-∞to the 

point z=+1(Lebedev 1965). We already know that the general solution of the ordinary Legendre differential 

equation defined as 

𝑢𝜇  z = 𝐴𝑃𝜇  𝑧 + 𝐵𝑄𝜇  𝑧 .                                                                (8) 

WhereA andB are constants. Differentiating relation (8)ntimes and multiplying by the factor  𝑧2 − 1 
𝑛

2 leads to 

 𝑧2 − 1 
𝑛

2
𝑑𝑛𝑢𝜇

𝑑𝑧𝑛
= 𝐴 𝑧2 − 1 

𝑛

2
𝑑𝑛𝑃𝜇  𝑧 

𝑑𝑧𝑛
+ 𝐵 𝑧2 − 1 

𝑛

2
𝑑𝑛𝑄𝜇  𝑧 

𝑑𝑧𝑛
. 

 

Hence the general solution of equation (4) is obtained as  

𝑦(𝑧) = A𝑃𝜇
𝑛 𝑧 + 𝐵𝑄𝜇

𝑛 (𝑧). 

 

Some of the associated Legendre functions of the first and second kindsare obtained as, 

 
Theassociated Legendre functions are defined in restricted regions of the complex z-plane forz ∉ (-∞, 1], next 

we show how they can be continued analytically to other regions by obtaining theirhypergeometric 

representation. 

 

IV. Linear Transformations of theKummer'ssolutions of the Hypergeometricequation 
In this section we shall derive someimportant linear combinations of Kummer's solutionsof the 

hypergeometricdifferential equation(Lebedev 1965; Rainville 1964) that will be used later in this article. 

Theorem:If  1z  and 1 1z  , if   Re 0     and  Re 1 0  , and if none of     ,  , 1   

is an integer, then we have 

 
   

   
 , ; ; , ; 1;1F z F z

   
       

   

   
    
   

 

   

   
   1 , ; 1;1 (9)z F z

     
      

 

    
       

 
. 
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This transformation gives the analytic continuation of the function  , ; ;F z    from the region  𝑧 < 1 in the 

complex z-plane into the region 11  z as shown in figure 1 below. 

 

Figure 1: From left to right the dotted regions are 𝑧 < 1and 11  z . 

If we replace z  by 
1z

z
in the transformation (9), then we get 

   

   

1
, ; ; , ; 1;

1 1

z
F F

z z

   
       

   

      
      

        

 

   

   
 

1
1 , ; 1; (10)

1
z F

z

     
      

 

      
       

   
 

Now recall the following relations (Lebedev 1965; Rainville 1964), 

   , ; ; 1 , ; ;
1

z
F z z F

z


      

  
   

 
,      1, (11)

1

z

z



 

Or 

   , ; ; 1 , ; ;
1

z
F z z F

z


      

  
   

 
,        1, (12)

1

z

z



 

which give the analytic continuation of  , ; ;F z    into the region 1
1

z

z



 as shown in figure 2. 

 

 

Figure 2: The dotted region 1
1


z

z
. 

Applying the transformation (11)tothe left hand side of equation (10), multiplying by  1 z


 and replacing    

by   in equation (10), leads to 

 
   

   
 

1
, ; ; 1 , ;1 ;

1
F z z F

z

  
       

  

    
     
    

 

   

   
 

1
1 , ;1 ; , (13)

1
z F

z

  
    

  

    
     
    
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which gives the analytic continuation of  , ; ;F z    into the region 11  z  as shown in figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: The dotted region 11  z . 

 

If we apply the transformations (11) and (12) to the first and second terms of the right hand side of (13) 

respectively, then we get  

 
   

   
 

1
, ; ; ,1 ;1 ;F z z F

z

  
       

  

    
      
    

 

   

   
 

1
1 , ;1 ; (14),z F

z

  
    

  

    
      
    

 

where 1z  , and 0, 1, 2, ,      .This transformation gives the analytic continuation of  , ; ;F z    

into the region 1z   as shown in figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: The dotted region 1z . 

 

Next we will show how to make use of these transformations to gain the analytic continuation of the first kind 

associated Legendre functions. 

 

V.   Analytic Continuations of the First Kind Associated LegendreFunctions 𝑃𝜇
𝑛 𝑧  

In this section we shall represent the first kind associated Legendre functionsPμ
n z in terms of the 

hypergeometric function to carry out their analytic continuation into different parts of the complex z-plane 

(Beals and Wong2010). This can be achieved with the aid of some linear as well as quadratic transformations of 

the hypergeometric functions. Starting by substituting the Murphy’s expression of 𝑃𝜇
𝑛 𝑧 given in (Whittaker and 

Watson 1952) as a hypergeometric function into equation (6) toobtain 

𝑃𝜇
𝑛 𝑧 =  𝑧2 − 1 

𝑛

2
𝑑𝑛

𝑑𝑧𝑛
𝐹  −𝜇, 𝜇 + 1;  1; 

1 − 𝑧

2
 ,                1 − 𝑧 < 2.                             (9) 

 

 

0 1 
 

1 

z − plane 

 
1 

 

0 

z − plane 
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Doing the n-fold differentiation of the hypergeometric functionand then carrying on some tedious calculations 

involving some relations between gamma function and the Pochammer symbol(Abramowitz and Stegun 

1968;Lebedev 1965), we end up at thehypergeometric form of the associated Legendre functions of the first 

kind as 

 

 
 

   
 2 2

1 1
1 , 1 ; 1; , 1 2.

22 1 1

n
n

n

n z
P z z F n n n z

n n



 



    
        

      
     (12) 

 

Also we can apply another transformationfor the hypergeometricrepresentation of𝑃𝜇
𝑛 𝑧 to obtain different forms 

of 𝑃𝜇
𝑛 𝑧 defined in different regions in the complex z-plane (Sneddon 1980).  

Henceif we apply the following quadratic transformation (Lebedev 1965; Rainville 1964) 

 

𝐹  𝛼, 𝛽; 𝛼 + 𝛽 +
1

2
;  𝑧 = 𝐹  2𝛼, 2𝛽; 𝛼 + 𝛽 +

1

2
; 

1 −  1 − 𝑧

2
 ,  1 −  1 − 𝑧 < 2,                    (15) 

 

to the hypergeometric function on the right-hand side of equation (12), then one has 

 

 
 

 
 2 2 22

! 1
1 , ; 1 ; 1 , 1 1, 1, 2,...

2 22 ! !

n
n

n

n n n
P z z F n z z n

n n


  



    
         

  
(16) 

 

In which we set the parametersof the hypergeometric function in equation (15)as the following: 

 

2

n 



 , 

1

2

n 


 
  ,and 

1
1

2
n     . 

Furthermore if we apply the transformation(13) to the hypergeometric function on the right-hand side of 

equation (16), then one has 

 

𝑃𝜇
𝑛 𝑧 =

 −1 𝑛 2𝜇 !

2𝜇  𝜇!  𝜇 − 𝑛 !
 1 − 𝑧2 𝑛 2 𝑧𝜇−𝑛𝐹  

𝑛 − 𝜇

2
,
𝑛 − 𝜇 + 1

2
;
1

2
− 𝜇; 

1

𝑧2
 ,  𝑧 > 1.            (17) 

 

From the properties of gamma function, the resulting second term in equation (17) is vanishing due to the term 

Γ 𝛼 Γ 𝛾 − 𝛽  in the denominator of the pre-factor of the second term in (16) where 𝛼 =
𝑛−𝜇

2
, 𝛾 − 𝛽 =

𝑛−𝜇+1

2
. 

Also,if we apply the quadratic transformation (11) which is due to Euler (Beals and Wong2010), 

to the hypergeometric function on the right-hand side of equation (17), then one has 

 

𝑃𝜇
𝑛 𝑧 =

 −1  𝜇+𝑛 2  2𝜇 !

2𝜇  𝜇!  𝜇 − 𝑛 !
 1 − 𝑧2 𝑛 2 𝐹  

𝑛 − 𝜇

2
, −

 𝑛 + 𝜇 

2
;
1

2
− 𝜇; 

1

1 − 𝑧2
 ,  1 − 𝑧2 > 1.            (18) 

 

Another application of the quadratic transformation (11) to equation (18) yields the following new 

hypergeometric representation as, 

 

𝑃𝜇
𝑛 𝑧 =

 −1  𝜇 +𝑛 2  2𝜇 !

2𝜇  𝜇!  𝜇 − 𝑛 !
 1 − 𝑧2 𝑛 2 𝐹  𝑛 − 𝜇, −𝑛 − 𝜇;

1

2
− 𝜇; 

 𝑧2 − 1 − 𝑧

2 𝑧2 − 1
 ,

 
 𝑧2 − 1 − 𝑧

2 𝑧2 − 1
 < 1.    (19) 

 

Another application of the quadratic transformation (11) to equation (19) yields another new hypergeometric 

representation as, 

 

𝑃𝜇
𝑛 𝑧 =

 −1 𝑛 2  2𝜇 !

22𝜇−𝑛  𝜇!  𝜇 − 𝑛 !
 1 − 𝑧2 𝑛 2  𝑧 +  𝑧2 − 1 

𝜇−𝑛

𝐹  𝑛 − 𝜇,
1

2
+ 𝑛;

1

2
− 𝜇; 

𝑧 −  𝑧2 − 1

𝑧 +  𝑧2 − 1
 ,

 
𝑧 −  𝑧2 − 1

𝑧 +  𝑧2 − 1
 < 1.                                                                                                                  (20) 
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 Further hypergeometric representations of the first kind associated Legendre functionscan be found in 

the references (Abramowitz andStegun 1968;Laham and Abdallah 1996;Rainville 1960;Lebedev 1965; 

Rainville 1964; Gradshteynand Ryzhik 2007; Erdelyiet al.1953-55).Primarily, we are not interested in deriving 

the hypergeometric forms of theassociated Legendre functions rather we aim to show that the transformations 

approach is simple and convenient because it only calls some transformations and then carry out appropriate 

passages to the limit.  

 

VI.    Discussion 
We know that the associated Legendre functions of the first kindare defined for values of the complex 

variable z lie in the complement of the segment (-∞, 1]. Section 4 presents different forms of the hypergeometric 

representation of the associated Legendre functions of the first kind  𝑃𝜇
𝑛 𝑧 which were obtained by means of 

linear and quadratic transformation of the hypergeometric function and being away from any integral 

representation.For example, the hypergeometricrepresentation provided by equation (12) gives the analytic 

continuation of 𝑃𝜇
𝑛 𝑧 into the complex region 1 − 𝑧 < 2,with a cut is made along the real axis from the point 

z=-∞ to the point z=+1, whereas the hypergeometricrepresentation given by equation (16) analytically 

continued𝑃𝜇
𝑛 𝑧 into the region 1 − 𝑧2 < 1with the same cut mentioned above.Furthermore, the 

hypergeometricrepresentations given by equation (17) and (18) carries out the analytic continuation of𝑃𝜇
𝑛 𝑧 into 

the complex regions 𝑧 > 1 and  1 − 𝑧2 > 1. Repeated applications of the linear or the quadratic 

transformations yields many more hypergeometricrepresentationsof𝑃𝜇
𝑛 𝑧 .Thus we obtain different 

representations of𝑃𝜇
𝑛 𝑧 which are defined in different parts of the complex z-plane, for example the 

hypergeometricrepresentations given by equation (19) and (20) carries out the analytic continuation of𝑃𝜇
𝑛 𝑧 into 

the complex regions 
 𝑧2−1−𝑧

2 𝑧2−1
 < 1 and 

𝑧− 𝑧2−1

𝑧+ 𝑧2−1
 < 1.  

 

 

VII.    Conclusion
 

It was observed that the associated Legendre functions can be expressed by the hypergeometricseries in 

suitably restricted regions of the complex z-plane cut along the real segment(-∞, +1].By rewriting the associated 

Legendre functions in terms of thehypergeometric function, more regions in the complex z-planewere 

obtainedfor the analytic continuation. Therefore, to conclude it is very informative to express the associated 

Legendre functions in terms of the hypergeometric function as shownin the discussion.It is worth to emphasize 

that the hypergeometricrepresentation enables us to develop the theory of spherical functions by implementing 

the general theory of the hypergeometric function. Specifically, this approach is very helpful to gain the 

generalization of the spherical functions for arbitraryvalues of the degree n. It is remarkable to note that the 

regions of validity so often pass through a singular point of the differential equation where the regular singular 

points of the hypergeometric differential equation are z = 0, 1, ∞. To sum up, one could claim that the linear and 

quadratic transformations approach of obtaining the hypergeometricrepresentation is more convenient and less 

complicated than the integral representation approach. 
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