Conjugacy Classes and Action of $\Delta(3,4,k)$ on $PL(F_q)$

Tahir Imran¹, Muhammad Ashiq¹

¹(Department of Humanities & Basic Sciences, MCS Campus, National University of Sciences & Technology, Islamabad, Pakistan)

Abstract: The triangle group $\Delta(3,4,k)$ can be defined as $\langle r,s:r^3=s^4=(rs)^k=1\rangle$, where r,s are the generators of the group. In this paper, we have discussed conjugacy classes that arises from the actions of $\Delta(3,4,k)$ on $PL(F_a)$. Here, F_a is a finite field for any prime q and $PL(F_a) = F_a \cup \infty$. A relation between conjugacy classes of a homomorphism and parameters of F_a has also drawn by using computer coding scheme. Keywords: Conjugacy classes, Linear-fractional transformations, Parameterization and Non-degenerate homomorphism.

Date of Submission: 26-12-2019

I. Introduction

It is well known [2, 3] that $\Gamma = G^{3,4}(2, Z)$ is the group of linear-fractional transformations of the form $z \to \frac{az+b}{cz+d}$, where $a, b, c, d \in Z$, $ad-bc \ne 0$. This group is generated by r, s satisfying the relations

$$r^3 = s^4 = 1. (1.1)$$

It is also proved in [2, 3] that if a linear-fractional transformation t inverts both r and s, that is, $t^2 = (rt)^2 =$ $(st)^2 = 1$, then we get an extended group $I^* = G^{*3,4}(2,Z)$ which is again a group of transformations having form

$$z \to \frac{az+b}{cz+d}$$
; $a, b, c, d \in Z$

$$z \to \frac{az+b}{cz+d}; a, b, c, d \in Z$$
The defining relations of this extended group are:
$$I'' = \langle r, s, t : r^3 = s^4 = t^2 = (rt)^2 = (st)^2 = 1 >. \quad (1.2)$$

Thus we can define the group $G^{*3,4}(2,q)$ as the group of linear-fractional transformations of the form $z \to \frac{az+b}{cz+d}$ where $a, b, c, d \in F_q$ and $ad - bc \neq 0$. We can also define a group $G^{3,4}(2,q)$ as a subgroup of $G^{*3,4}(2,q)$ such that ad - bc is a non-zero square in F_q [5]. It is well known in [7, 8] that triangle group $\Delta(k, l, m)$ is finite precisely when $\frac{1}{k} + \frac{1}{l} + \frac{1}{m} > 1$, and infinite in case of $\frac{1}{k} + \frac{1}{l} + \frac{1}{m} \le 1$. $\Delta(2,4,k)$ is infinite for $k \ge 4$, whereas for k=1,2,3 triangle group $\Delta(2,4,k)$ is C_2,D_8,S_4 respectively [8, 9]. A general description of triangle group $\Delta(3,4,k)$ having representation $\langle r,s:r^3=s^4=(rs)^k=1\rangle$ can be found in [1, 4, 6]. It is also known that by adjoining an involution t, which inverts both r and s, the groups $\Delta(3,4,k)$ can be extended to the triangle groups $\Delta(3,4,k) = \langle r, s, t : r^3 = s^4 = (rs)^k = t^2 = (rt)^2 = (st)^2 = 1 \rangle$. The triangle group $\Delta(3,4,k)$ is of index 2 in $\Delta(3,4,k)$ and so is normal in $\Delta(3,4,k)$.

II. Parameters of Conjugacy Classes for $I^* = G^{*3,4}(2.Z)$

Let $\alpha: G^*(2,Z) \to G^*(2,q)$ be a homomorphism. Choose $\underline{r} = r\alpha, \underline{s} = s\alpha$ and $\underline{t} = t\alpha$, in $G^*(2,q)$ satisfying $\underline{r}^3 = \underline{s}^n = \underline{t}^2 = (\underline{r}\underline{t})^2 = (\underline{s}\underline{t})^2 = 1$. (2.1)

This homomorphism α is termed as 'non-degenerate' if r and s have same orders as that of $(r)\alpha$ and $(s)\alpha$ respectively. It means none of the generators r, s lies in kernel of α so that their images $r = r\alpha$, $s = s\alpha$ are of orders 3 and n respectively.

If a natural map $GL(2,q) \to G^*(2,q)$ maps matrix M to an element g of $G^*(2,q)$, then $\theta =$ $(trace(M))^2/det(M)$ is called invariant of conjugacy class of g. It can be pertained as parameter of element g or of conjugacy class. Actions of $G(2, \mathbb{Z})$ on $PL(F_q)$, via α , will be considered so that g be taken as $(rs)\alpha = \underline{r} \underline{s}$. Hence, θ is the parameter of the class containing $\underline{r} \underline{s}$. We can also establish a relation between α and $\theta \in F_q$. It can be proved very easily that if R and S are two non-singular 2×2 matrices corresponding to the generators r and s of I^* with det(RS) = I and $trace(RS) = m_2$, then RS satisfy the following characteristic equation:

$$(RS)^2 - m_2 RS + I = 0$$

$$(RS)^2 = m_2 RS - I$$
 (2.2)

Multiplying both sides of this equation by S, we get:

$$(RS)^3 = m_2(RS)^2 - (RS)I (2.3)$$

By putting equation (2.2) in equation (2.3), we obtain

$$(RS)^3 = (m_2^2 - 1) - m_2 I$$

On recursion, we get

$$(RS)^k =$$

$$(RS)^{k} = \{(k-1\ 0\)m_{2}^{k-1} - (k-2\ 1\)m_{2}^{k-3}...\}RS - \{(k-2\ 0\)m_{2}^{k-2} - (k-3\ 1\)m_{2}^{k-4} + ...\}I$$
 (2.4)

Furthermore, if
$$f(m_2) = \{(k-1\ 0\)m_2^{k-1} - (k-2\ 1\)m_2^{k-3} \dots\}RS - \{(k-2\ 0\)m_2^{k-2} - (k-3\ 1\ m2k-4+\dots\}\ (2.5)$$

and substituting $m_2^2 = \theta$ in the polynomial $f(m_2)$ if k is odd and $m_2 = \sqrt{\theta}$ otherwise, we obtain a polynomial $f(\theta)$. We can find a minimal polynomial for positive integer k by using equation (2.5).

III. Main Results

Following important result is necessary to prove Theorem 3.2.

Lemma 3.1: For a non-singular 2×2 matrix, if its trace is zero then it represents an involution provided its entries are from F_a .

Theorem 3.2: Let r, s be any two elements of $G^{*3,4}(2,q)$ and R, S be their corresponding matrices respectively, then $m_2^2 - \sqrt{2}m_2 - 1 = 0$, where m_2 is the trace of matrix RS.

Proof: Consider two elements $\underline{r},\underline{s}$ of $G^{*3,4}(2,q)$, such that order of \underline{r} is 3 whereas that of \underline{s} is 4.Let R= $[r_1 \ r_2 \ r_3 \ r_4]$ and $S = [s_1 \ s_2 \ s_3 \ s_4]$ be their corresponding matrices and are the elements of GL(2,q). Since $\underline{r}^3 = 1$, so R^3 will be a scalar matrix and its determinant will be a square in F_q . Since, for any matrix M, $M^3 = \lambda I$ if and only if $(trace(M))^2 = det(M)$, so we may assume that $trace(R) = r_1 + r_4 = -1$. Replacing R by a suitable scalar, we can also assume that det(R) = 1. Thus $R = [r_1 \ r_2 \ r_3 - r_1 - 1]$. Therefore we have by a suitable scalar, we can use det(R) = 1, so $1 + r_1^2 + r_1 + kr_3^2 = 0$ (3.1)

$$1 + r_1^2 + r_1 + kr_2^2 = 0$$
 (3.1)

As $r^3 = 1$ and trace(R) = -1, so every element of GL(2,q) with trace equal to -1 has up to scalar multiplication, a conjugate of the form $[0 \ k \ 1 \ -1]$. Therefore, we can assume that R has the form $[0 \ k \ 1 \ -$ 1. Similarly, S = s1 ks3 s3 - s1 - 2 giving det(S) = -s12 - 2s1 - ks32 = 1, so that

$$1 + s_1^2 + \sqrt{2}s_1 + ks_2^2 = 0$$
 (3.2)

 $1 + s_1^2 + \sqrt{2}s_1 + ks_3^2 = 0.$ Consider an invertible element \underline{t} in $G^{*3,4}(2,q)$ such that it satisfies the relation: $\underline{t}^2 = (\underline{rt})^2 = (\underline{st})^2 = 1.$

$$t^2 = (rt)^2 = (st)^2 = 1.$$
 (3.3)

Let $T = [t_1 \ t_2 \ t_3 \ t_4]$ be a matrix representing \underline{t} . Then, since \underline{t} is an involution, therefore $t_4 = -t_1$ yields $T = t_1 \ t_2 \ t_3 \ t_4$ $\begin{bmatrix} t_1 & t_2 & t_3 & -t_1 \end{bmatrix}$. Let RT be the matrix representing \underline{rt} of $G^{*3,4}(2,q)$. Then $RT = \begin{bmatrix} kt_3 & -kt_1 & t_1 - t_3 & t_1 + t_2 \end{bmatrix}$, which again by lemma 3.1, and $(\underline{rt})^2 = 1$, implies that

$$t_1 + t_2 = -kt_3. \tag{3.4}$$

 $t_1 + t_2 = -kt_3$. (3.4) Similarly, if *ST* is a matrix that represents an element <u>st</u> of $G^{*3,4}(2,q)$, then we get

 $ST = [s_1t_1 + s_2t_3 \ s_1t_2 - s_2t_2 \ s_3t_1 + t_3(\sqrt{2} - s_1) \ s_3t_2 - t_1(\sqrt{2} - s_1)]$. Since <u>st</u> is also an involution therefore by the arguments given above, we have $s_1t_1 + s_2t_3 + s_3t_2 - t_1(\sqrt{2} - s_1) = 0$, which together with equation (3.4) yields $2s_1t_1 + s_2t_3 - s_3t_1 - ks_3t_3 - \sqrt{2}t_1 = 0$. That is,

$$t_1(2s_1 - s_3 + \sqrt{2}) + t_3(s_2 - ks_3) = 0.$$
 (3.5)

Now for a non-singular matrix T, we must have $det(T) \neq 0$, that is

$$-t_1^2+t_1t_3+kt_3^2\neq 0.\,(3.6)$$

Therefore, necessary and sufficient conditions for the existence of \underline{t} in $G^{*3,4}(2,q)$ are the equations (3.4), (3.5) and (3.6). Hence \underline{t} exists in $G^{*3,4}(2,q)$ unless $kt_3^2 - t_1^2 + t_1t_3 = 0$. If both $2s_1 - s_3 + \sqrt{2}$ and $s_2 - ks_3$ are equal to zero, then the existence of \underline{t} is trivial. If not, then $t_1/t_3 = -(s_2 - ks_3)/(2s_1 - s_3 - \sqrt{2})$, and so equation (3.6) is equivalent to $(s_2 - ks_3)^2 - (2s_1 - s_3 + \sqrt{2})(2ks_1 + \sqrt{2}k - s_2) \neq 0$. Thus \underline{t} exists in $G^{*3,4}(2,q)$ satisfying equation (3.3) unless $(s_2 - ks_3)^2 = (2s_1 - s_3 + \sqrt{2})(2ks_1 + \sqrt{2}k - s_2)$. Which after simplification gives

$$(s_2 - ks_3)(s_2 - ks_3 + 2s_1 + \sqrt{2}) = -4k + s_2s_3 - 2.$$
(3.7)

Now $RS = [ks_3 \ k(\sqrt{2} - s_1) \ s_1 - s_3 \ s_2 - \sqrt{2} + s_1]$, this implies that the $tr(RS) = s_1 + s_2 + ks_3 - \sqrt{2}$. Let $tr(RS) = m_2$. Also, using equation (3.7), we have $det(RS) = k(s_2s_3 - \sqrt{2}s_1 + s_1^2)$. Since det(RS) = 1. So k = -1. Hence we have

$$1 = \sqrt{2}s_1 - s_1^2 - s_2s_3$$
 (3.8)

Also, we have

$$m_2 = s_1 + s_2 - s_3 - \sqrt{2} \tag{3.9}$$

Substituting k = -1 and values from equations (3.8) and (3.9) in equation (3.7), we get,

$$m_2^2 - \sqrt{2}m_2 + 2 = 3$$

$$m_2^2 - \sqrt{2}m_2 - 1 = 0.$$
 (3.10)

Theorem 3.3: Let g be any non-trivial element of $G^{*3,4}(2,q)$, such that order of both g and its dual not equal to 2, then g is the image of rs under some non-degenerate homomorphism of I^* into $G^{*3,4}(2,q)$.

Proof: To prove this result, we show by using theorem 3.2, that every non-trivial element of $G^{*3,4}(2,q)$ is the product of two elements, one having order 3 whereas other of order 4. In fact we must find elements $\underline{r}, \underline{s}$ and \underline{t} belong to $G^{*3,4}(2,q)$ and satisfy the relations (2.1), too.

For this, consider the elements \underline{r} , \underline{s} and \underline{t} of $G^{*3,4}(2,q)$ represented by the matrices $R = [r_1 k r_3 r_3 - r_1 - 1]$, $S = [s_1 \ ks_3 \ s_3 - \sqrt{2} - s_1]$ and $T = [0 - k \ 1 \ 0]$, where r_1, r_3, s_1, s_3, k are in F_q , with $k \neq 0$, so that

$$1 + r_1 + r_1^2 + kr_3^2 = 0.(3.11)$$

Further, let assume the determinant of S be equal to 1, we have

$$1 + ks_3^2 + s_1^2 + \sqrt{2}s_1 = 0. (3.12)$$

We take r s in a given conjugacy class. A matrix representing r s is given by

$$RS = \left[r_1 s_1 + k r_3 s_3 \ k r_1 s_3 + k r_3 (-\sqrt{2} - s_1) \ r_3 s_1 - s_3 (r_1 + 1) \ k r_3 s_3 - r_1 (-\sqrt{2} - s_1) + \sqrt{2} + s_1 \right]$$

Its trace, which we denote by m_2 , is given by

$$m_2 = trace(RS) = 2kr_3s_3 + r_1(2s_1 + \sqrt{2}) + (s_1 + \sqrt{2}).$$
 (3.13)

As determinant of R and S is 1, therefore det(RS) = det(R)det(S) = 1. Hence, we have

$$RST = \left[kr_1s_3 - \sqrt{2}kr_3 - kr_3s_1 - kr_1s_1 - k^2r_3s_3 kr_3s_3 + \sqrt{2}r_1 + r_1s_1 + \sqrt{2} + s_1 - kr_3s_1 + kr_1s_3 + ks_3\right].$$

So,
$$trace(RST) = k(2r_1s_3 - 2r_3s_1 + s_3 - \sqrt{2}r_3)$$
. Let $trace(RST) = km_3$, then

$$m_3 = 2r_1s_3 - r_3(2s_1 + \sqrt{2}) + s_3.$$
 (3.14)

Hence, we have

$$m_2^2 + km_3^2 - \sqrt{2m_2 - 1} = 0.$$
 (3.15)

 $m_2^2 + km_3^2 - \sqrt{2}m_2 - 1 = 0. \qquad (3.15)$ Since $g = \underline{r} \underline{s}$ (or its dual $\underline{r} \underline{s}\underline{t}$) are not of order 2, so we must have $(\underline{r} \underline{s})^2 \neq 1$ and $(\underline{r} \underline{s}\underline{t})^2 \neq 1$. Thus by lemma 3.1, the traces of the matrices RS and RST are not equal to zero. Hence $m_2 \neq 0$, and $m_3 \neq 0$, so that $\theta = m_2^2 \neq 0$ 0; and it is sufficient to show that we can choose r_1, r_3, s_1, s_3, k in F_q so that m_2^2 is indeed equal to θ

From equation (3.15), we have $km_3^2 = 1 - m_2^2 + \sqrt{2}m_2$. If $m_2^2 - \sqrt{2}m_2 \neq 1$, we can select the value of k as per same argument.

Theorem 3.4: For any non-degenerate homomorphism α and its dual α ,

$$\theta + \phi = 1 + \sqrt{2}m_2$$

where θ and ϕ are the parameters of α and α respectively.

Proof: Consider a non-degenerate homomorphism $\alpha I^* \to G^{*3,4}(2,q)$ satisfies the relations $r\alpha = \underline{r}$, $s\alpha = \underline{s}$ and $t\alpha = \underline{t}$ and α' is its dual. Consider the matrices $R = [r_1 \ kr_3 \ r_3 - r_1 - 1]$, $S = [s_1 \ ks_3 \ s_3 - \sqrt{2} - s_1]$ and $T = [0 - k \ 1 \ 0]$, representing the elements r, s and t, of $G^{*3,4}(2,q)$ respectively. By lemma 3.1, trace(RS) =trace(RST) = 0 if and only if $(\underline{r}\underline{s})^2 = (\underline{r}\underline{s}\underline{t})^2 = 1$. As det(RS) = 1, so we can assume that parameter $\theta(say)$ of $\underline{r}\underline{s}$ equals to m_2^2 . Also since $trace(RST) = km_3$ and det(RST) = k (since det(R) = 1, det(S) = 1 and det(T) = k), we get the parameter ϕ of r st equals to km_3^2 . Therefore, we have $\theta + \phi = m_2^2 + km_3^2$. Substituting the value of m_2^2 from equation (3.15), we get $\theta + \phi = 1 + \sqrt{2}m_2$. Hence if θ is the parameter of the non-degenerate homomorphism α , then $\phi = 1 + \sqrt{2}m_2 - \theta$ is the parameter of the dual α' of α

Corollary 3.5: If \underline{t} inverts both \underline{r} and \underline{s} then order of \underline{rs} is 12.

Proof: From theorem 3.2, we have $m_2^2 = 1 + \sqrt{2}m_2$. After rearranging this result, we get $m_2^2 - 1 = \sqrt{2}m_2$ (3.16)

$$m_2^2 - 1 = \sqrt{2}m_2$$
 (3.16)

Taking square on both sides of equation (3.16), we get $m_2^4 - 2m_2^2 + 1 = 2m_2^2 \, (3.17)$

$$m_2^4 - 2m_2^2 + 1 = 2m_2^2 (3.17)$$

Replacing m_2^2 by θ in equation (3.17), we get

$$\hat{\theta} - 4\theta + 1 = 0 \quad (3.18)$$

From table 1 given below, it is evident that this is the corresponding equation for k = 12. Hence order of <u>rs</u> is 12.

Table 1: Minimal Equations satisfied by θ

Table 1. William Equations satisfied by b	
Triangle Group $\Delta(3,4,k)$	Minimal Equation satisfied by $ heta$
△ (3,4,1)	θ -4 = 0
△ (3,4,2)	$\theta = 0$
△ (3,4,3)	θ -1 = 0
△ (3,4,4)	θ -2 = 0
△ (3,4,5)	$\hat{\mathscr{S}} - 3\theta + 1 = 0$
∆ (3,4,6)	θ -3 = 0
∆ (3,4,7)	$\hat{\theta} - 5\theta^2 + 6\theta - 1 = 0$
∆ (3,4,8)	$\hat{\mathscr{S}} - 4\theta + 2 = 0$
∆ (3,4,9)	$\hat{\theta} - 6\theta^2 + 9\theta - 1 = 0$
∆ (3,4,10)	$\hat{\theta} - 5\theta + 5 = 0$
∆ (3,4,11)	$\theta - 9\theta^4 + 28\theta^3 - 35\theta^2 + 15\theta - 1 = 0$
∆ (3,4,12)	$\hat{\theta} - 4\theta + 1 = 0$
∆ (3,4,13)	$\theta^9 - 11\theta^5 + 45\theta^4 - 84\theta^3 + 70\theta^2 - 21\theta + 1 = 0$
∆ (3,4,14)	$\vec{\theta} - 7\theta^2 + 14\theta - 7 = 0$
△ (3,4,15)	$\theta^4 - 9\theta^3 + 26\theta^2 - 24\theta + 1 = 0$

IV. Computational Approach to Calculate Conjugacy Classes

Flowchart and Algorithm

Following flowchart and algorithm help us to develop a computer coding scheme for drawing relation between homomorphism and parameters of conjugacy classes.

Figure 1: Flow Chart

- 1. Input integer values k, set i = 0.
- 2. For i < k. If i is prime, calculate $g_k(\theta) = f(\theta)$
- 3. Otherwise calculate divisors for k
- 4. Calculate $g_k(\theta) = \frac{f(\theta)}{g_k(d_1, d_2, \dots, d_n)(\theta)}$.
- 5. Add $g_k(\theta)$) to the list.
- 6. Display list in table form.

Coding Scheme

Following code written in Java programming language will generate the conditions in form of equations $f(\theta) = 0$ for the existence of triangle groups $\Delta(3,4,k)$ for $1 \le k \le n$ as shown in table 1 for $1 \le k \le 15$.

$$(* Get Input from user *)$$

$$k = Input[Enter the value of K];$$

 $(*\ Initialized enominator to be used when K is no prime\ *)$

$$mylist = Range[k];$$
 $resultlist = List[];$

$$denom = 1;$$

$$finalResult = 1;$$

$$r = 2;$$

$$(*Functionthatimplementsthe formula*)$$

$$r = \sqrt{\theta};$$

$$Solver[k_-]: \sum_{n=1}^{(k+1)} (-1)^{n+1} \left(\frac{(k-n)!}{((k-n)-(n-1))! (n-1)!}\right) (r)^{k-(2n-1)};$$

$$(*Loop from 1 to input Range*)$$

$$For [i = 1, i \le k, i++,$$

$$(*checkk for prime condition.*)$$

$$If [i == 1, finalResult = \theta - 4,$$

$$If [PrimeQ[i],$$

$$(*If Kis Prime*)$$

$$finalResult = solver[i], (*g_k(\theta) = f_k(\theta)*)$$

$$div of K = Divisors[i]; (*If Kis Not Prime*)$$

$$length = Length[div of K];$$

$$new list = Delete[div of K, \{\{1\}, \{-1\}\}]; (*Get Divisors of K*)$$

$$length 2 = Length[new list];$$

$$Do[denom = denom * solver[Part[newlist, n]], \{n, 1, length 2, 1\}]; (* g_k(\theta) = f_k \frac{(\theta)}{g_{k|d1, d2, d3, \dots|}}(\theta) *)$$

$$finalResult = \frac{solver[i]}{denom};]]$$

References

- [1]. Anna Torstensson, Coset diagrams in the study of finitely presented groups with an application to quotients of the modular group, J. Commut. Algebra, 2, 4(2010), 501 514.
- [2]. M. Ashiq, T. Imran, M.A. Zaighum, Actions of $\Delta(3, n, k)$ on projective line, Transactions of A. Razmadze Mathematical Institute, 172(2018), 1-6.
 - [3]. M. Ashiq, T. Imran, M.A. Zaighum, Defining relations of a group $\Gamma = G^{3,4}(2, \mathbb{Z})$ and its action on real quadratic field, Bulletin of Iranian Mathematical Society (BIMS), 43(6)(2017), 1811 1820.
 - [4]. M. Ashiq, Q. Mushtaq and T. Maqsood, Parameterization of actions of a subgroup of the modular group, Quasigroups and Related System, 20(2012), 21-28.
 - [5]. M. Ashiq and Q. Mushtaq, Coset diagrams for a homomorphic image of ∠(3,3, k), Acta Mathematica Scientia, 28B(2)(2008), 363-370.
 - [6]. M.Ashiq and Q. Mushtaq, Parametrization of $G^*(2, \mathbb{Z})$ on $PL(F_q)$, Proc. of ICM Sattellite Conference in Algebra and Related Topics

$$(2002),264 - 270.$$

 $[7]. \qquad \text{M. D. E. Conder, Some results on quotients of triangle groups, Bull. Austral. Math. Soc. Vol., 29 (1984), 73 - 90.$

 [8]. H.S.M. Coxeter and W.O.J. Moser, Generators and relations for discrete groups, 4th. ed., Springer-Verlag, Berlin, 1980. [9]. W.W.Stothers, Subgroups of finite index in (2,3, n) – triangle groups, Glasg.Math.J. 54(3)(2012),693 – 714. 	
	ahir Imran. "Conjugacy Classes and Action of Δ(3,4,k) on PL(F_q)." <i>IOSR Journal of lathematics (IOSR-JM)</i> , 16(1), (2020): pp. 23-28.
L	