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Abstract: The triangle group 43,4, k) can be defined as < r,s: 73 = s* = (rs)¥ = 1 >, where r,s are the
generators of the group. In this paper, we have discussed conjugacy classes that arises from the actions of
A3,4,k) on PL(F;). Here, F, is a finite field for any prime q and PL(F,) = F, U c. A relation between
conjugacy classes of a homomorphism and parameters of F; has also drawn by using computer coding scheme.
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I.  Introduction
It is well known [2, 3] that /"= G>*(2, Z) is the group of linear-fractional transformations of the form
z- %, where a, b, c,d € Z, ad — bc # 0. This group is generated by r, s satisfying the relations
rd=st=1. (1.2)
It is also proved in [2, 3] that if a linear-fractional transformation t inverts both r and s, that is, t* = (rt)? =
(st)? =1, then we get an extended group /7~ = G*>*(2,Z) which is again a group of transformations having
form

az+b
CHd;a,b,c,d ez

The defining relations of this extended group are:
I =<rstri=st=t2=0t) =(st) =1> (1.2

Thus we can define the group G*3#(2, q) as the group of linear-fractional transformations of the form z — Z:Z
where a, b, c,d € F, and ad — bc # 0. We can also define a group G**(2, q) as a subgroup of G*3*(2,q) such
that ad — bc is a non-zero square in F, [5]. It is well known in [7, 8] that triangle group Ak, [, m) is finite
precisely when %+ % +% > 1, and infinite in case of % + % + % < 1. 42,4, k) is infinite for k > 4, whereas for
k = 1,2,3 triangle group 42,4,k) is C,,Dg, S, respectively [8, 9]. A general description of triangle group
A3,4, k) having representation < r,s:73 = s* = (rs)¥ = 1 > can be found in [1, 4, 6]. It is also known that by
adjoining an involution ¢, which inverts both r and s, the groups 43,4, k) can be extended to the triangle
groups 4 (3,4, k) = <r,s,t:73 =s* = (rs)* = t? = (rt)? = (st)? = 1 >. The triangle group A3,4, k) is of
index 2 in 43,4, k) and so is normal in £ (3,4, k).

I1. Parameters of Conjugacy Classes for /* = G*3*(2,2)

Let & G*(2,Z) - G*(2, q) be ahomomorphism. Choose r = ra,s = sa and t = ta, in G*(2, q) satisfying
r’=s"=t'=0t)’=(*=1 (21)

This homomorphism «is termed as ’non-degenerate’ if r and s have same orders as that of (r)a and (s)a

respectively. It means none of the generators r, s lies in kernel of @'so that their images r = ra, s = sa are of

orders 3 and n respectively.

If a natural map GL(2,q) » G*(2,q) maps matrix M to an element g of G*(2,q), then &=
(trace(M))? /det(M) is called invariant of conjugacy class of g. It can be pertained as parameter of element g
or of conjugacy class. Actions of G(2,Z) on PL(F,), via « will be considered so that g be taken as (rs)a = s.
Hence, #is the parameter of the class containing r s. We can also establish a relation between @and € F,. It
can be proved very easily that if R and S are two non-singular 2 x 2 matrices corresponding to the generators r
and s of /7 with det(RS) = I and trace(RS) = m,, then RS satisfy the following characteristic equation:

(RS)? —myRS+1=0
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(RS)? = myRS — 1 (2.2)
Multiplying both sides of this equation by S , we get:
(RS)® = m,(RS)? — (RS)I (2.3)

By putting equation (2.2) in equation (2.3), we obtain
(RS)* = (mj — 1) —myl

On recursion, we get

(RS)* =
{((k=10)mk 1 —(k—21)ms3. . JRS—{(k —=20)mk2 — (k =3 1)mk~*+...}1 (2.4)
Furthermore, if

fmy) ={(k—10)mk1 —(k—21)mk=3...3JRS — {(k —2 0 )m&k=2 — (k —
31 m2k—4+.} (2.5)
and substituting m = @ in the polynomial f(m,) if k is odd and m, = v/ otherwise, we obtain a polynomial
f(8). We can find a minimal polynomial for positive integer k by using equation (2.5).

I11. Main Results
Following important result is necessary to prove Theorem 3.2.
Lemma 3.1: For a non-singular 2 x 2 matrix, if its trace is zero then it represents an involution provided its
entries are from F,.

Theorem 3.2: Let r,s be any two elements of G*3*(2,q) and R, S be their corresponding matrices
respectively, then m3 —+/2m, — 1 = 0, where m, is the trace of matrix RS.
Proof: Consider two elements r,s of G*34(2,q), such that order of r is 3 whereas that of s is 4.Let R =
[ry7ry7r37, ] and S = [s; s, 53 54 ] be their corresponding matrices and are the elements of GL(2,q). Since
r3 =1, so R® will be a scalar matrix and its determinant will be a square in F,. Since, for any matrix M,
M3 = Al if and only if (trace(M))? = det(M), so we may assume that trace(R) = r; + r, = —1. Replacing R
by a suitable scalar, we can also assume that det(R) = 1. Thus R = [r; r, 3 — r; — 1 ]. Therefore we have
det(R) = —r? — 1, — krZ. Since det(R) = 1, so

1+rf+n +krf =0(3.1)
As r3 =1 and trace(R) = —1, so every element of GL(2,q) with trace equal to —1 has up to scalar
multiplication, a conjugate of the form [0 k1 — 1 ]. Therefore, we can assume that R has the form [0k 1 —
1.Similarly , S=s1 £53 53 —s1—2 giving det(S)=—s12—2s1—ks32=1, s0 that

1+ s? ++2s; +ksi =0. (3.2)
Consider an invertible element t in G*3*(2, q) such that it satisfies the relation:
=’ =6 =1 (33)

Let T = [t, t, t5 t, | be a matrix representing t. Then, since t is an involution, therefore t, = —t; yields T =
[ty t, t5 — t; ]. Let RT be the matrix representing rt of G*3*(2,q). Then RT = [kt; —kt; t; —ts t; + t; ],
which again by lemma 3.1, and (rt)? = 1, implies that
t1 +t; = —kt;. (3.4)
Similarly, if ST is a matrix that represents an element st of G*3*(2, q), then we get
ST = [s1ty + Spt3 1ty — Sty s3ty + t3(V2 — 51) s3t, — £(V2 — 51) |. Since st is also an involution therefore
by the arguments given above, we have s;t; + s,t; + s3t, — t;(v2 — ;) = 0, which together with equation
(3.4) yields 2s,t; + syt; — s3t; — ksst; —v/2t; = 0. That is,
t1(251 — 53+ V2) + t3(s; — ks3) = 0. (3.5)

Now for a non-singular matrix T, we must have det(T) # 0, that is

—t? + tit; + kt? # 0.(3.6)
Therefore, necessary and sufficient conditions for the existence of ¢ in G*3*(2, q) are the equations (3.4) , (3.5)
and (3.6). Hence t exists in G*>*(2,q) unless kt? —t? + t;t; = 0. If both 2s; —s; + V2 and s, — ks; are
equal to zero, then the existence of t is trivial. If not, then t,/t; = —(s, — ks3)/(2s; — s3 —V/2), and so
equation (3.6) is equivalent to (s, — ks3)? — (2s; — s3 +V2)(2ks; +V2k —s,) # 0. Thus t exists in
G*3*(2,q) satisfying equation (3.3) unless (s, — ks3)? = (2s; — s3 +V2)(2ks; + V2k — s;). Which after
simplification gives

(sy — ks3)(sy — kss + 2s; +V2) = —4k + 5,55 — 2.
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Now RS = [ks; k(v/2 — 51) 5, — 535, —V2 + 51 | , this implies that the ¢r(RS) = s; + s, + ks; — V2. Let
tr(RS) = m,. Also, using equation (3.7),we have det(RS) = k(s,s3 —V2s; + s?). Since det(RS) = 1. So
k = —1. Hence we have
1 =+/2s; — s? — 5,55 (3.8)
Also, we have
m, =5s; +5, — 53 —V2 (3.9)
Substituting k = —1 and values from equations (3.8) and (3.9) in equation (3.7), we get,

mj —V2m, +2=3

mé —+v/2m, — 1 = 0. (3.10)

Theorem 3.3: Let g be any non-trivial element of G*3*(2,q), such that order of both g and its dual not equal
to 2, then g is the image of rs under some non-degenerate homomorphism of /” into G*34(2, q).
Proof: To prove this result, we show by using theorem 3.2, that every non-trivial element of G*34(2, q) is the
product of two elements, one having order 3 whereas other of order 4. In fact we must find elements r,s and ¢t
belong to G*34(2, q) and satisfy the relations (2.1), too.
For this, consider the elements r, s and t of G*3*(2, q) represented by the matrices R = [ry kryry3 — 1, — 1],
S=s1ksys; —VZ—s;]and T =1[0 —k 1 0], where ry,73,5y, 53, k are in F,, with k = 0, so that

1+mn +1rf +krf =0.3.11)
Further, let assume the determinant of S be equal to 1, we have

1+ ks +s? ++2s; =0. (3.12)
We take r s in a given conjugacy class. A matrix representing r s is given by
RS = [T151 + kT3S3 kT'153 + kT3(—\/§ - Sl) 7'351 - S3(T1 + 1) k7'353 - 7'1(_\/2 - Sl) + \/E + Sl ]

Its trace, which we denote by m,, is given by
m, = trace(RS) = 2krys; + (25, +V2) + (51 + V2). (3.13)
As determinant of R and S is 1, therefore det(RS) = det(R)det(S) = 1,. Hence, we have
RST = [kr153 —V2kry — krys; — krys; — k?13s5 krysy + V21 +rys; V2 +5; — krys; + krysy + ks, ]

So, trace(RST) = k(2r S5 — 21351 + S3 — V2r3). Let trace(RST) = kms, then
my = 2153 —13(25; +V2) +55.  (3.14)
Hence, we have
mé + kmé —v2m, —1=0. (3.15)
Since g =r s (or its dual r st) are not of order 2, so we must have (r s)? # 1 and (r st)? # 1. Thus by lemma
3.1, the traces of the matrices RS and RST are not equal to zero. Hence m, # 0, and ms # 0, so that &= m? #
0; and it is sufficient to show that we can choose 7,73, 51, 53, k In F;, so that m3 is indeed equal to &

From equation (3.15), we have km% = 1 — m3 + v2m,. If m3 —+/2m, # 1, we can select the value of k as per
same argument.

Theorem 3.4: For any non-degenerate homomorphism «and its dual a’l,
A+ ¢ =14++2m,,

where Zand gare the parameters of @and @ respectively.

Proof: Consider a non-degenerate homomorphism @/~ — G*3*(2, q) satisfies the relations ra = r,sa = s and
ta = t and @ is its dual. Consider the matrices R = [ry krs 73 —7, — 1], S =[s; ks3s3 —v2 —s; | and
T =[0 — k10 ], representing the elements r, s and t, of G*>*(2, q) respectively. By lemma 3.1, trace(RS) =
trace(RST) = 0 if and only if (r s)? = (r st)? = 1. As det(RS) = 1, so we can assume that parameter £ (say)
of r s equals to m3. Also since trace(RST) = km; and det(RST) = k (since det(R) =1, det(S) = 1 and
det(T) = k), we get the parameter ¢ of r st equals to km3. Therefore, we have &+ ¢ = m3 + kms.
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Substituting the value of m3 from equation (3.15), we get &+ ¢ = 1 + \/fmz. Hence if Zis the parameter of
the non-degenerate homomorphism « then ¢ = 1 + v/2m, — 6 is the parameter of the dual & of «

Corollary 3.5: If t inverts both r and s then order of rs is 12.
Proof: From theorem 3.2, we have m3 = 1 + v2m,. After rearranging this result, we get

mé—1=+2m, (3.16)
Taking square on both sides of equation (3.16), we get

m4 —2mé + 1 = 2m3 (3.17)

Replacing m3 by #in equation (3.17) , we get

#—-46+1=0 (3.18)
From table 1 given below, it is evident that this is the corresponding equation for k = 12. Hence order of rs is
12.

Table 1: Minimal Equations satisfied by &

Triangle Group 43,4, k) |Minimal Equation satisfied by &
A3,4,1) —4=0

A3,4,2) A=0

43,4,3) A—1=0

A3,4,4) —2=0

43,4,5) & -30+1=0

A3,4,6) A-3=0

43,4,7) & —502+60—-1=0

43,4,8) F—-40+2=0

43,4,9) & —602+90—-1=0

A3,4,10) #—-50+5=0

A3,4,11) & —90* + 2863 —3502 +150 —1 =0
A3,4,12) F—-40+1=0

43,4,13) & —116° + 450* — 8463 + 700 =210 +1 =0
43,4,14) & —70%4+1460 -7 =0

43,4,15) £ —90° +260*—240 +1=0
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1VV. Computational Approach to Calculate Conjugacy Classes
Flowchart and Algorithm

Following flowchart and algorithm help us to develop a computer coding scheme for drawing relation
between homomorphism and parameters of conjugacy classes.

Figure 1: Flow Chart

Input

k

Display list
Calculate g

Calculate
9,(0)=1.(9) Divisors of

k
Calculate
f, (6)
9,(0) = .
7 g,(d,,d,,...d,)(0)
Add Display
»! Resultto |«
List

Input integer values k, seti = 0.
Fori < k. If i is prime, calculate g, (8) = f(0)
Otherwise calculate divisors for k

_ f(6)
Calculate g, (0) = A @)
Add g, (6)) to the list.

Display list in table form.

IS

Coding Scheme
Following code written in Java programming language will generate the conditions in form of
equations f(8) = 0 for the existence of triangle groups 43,4,k) for 1 < k <n as shown in table 1 for
1<k<15.
(* Get Input from user *)
k = Input| Ber t he wilue of Kl
(* InitializedenominatortobeusedwhenKisnoprime *)

mylist = Rangelk];

resultlist = List[];
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denom = 1;
finalResult = 1;
r=2;

(* Functionthatimplementstheformula *)

r= \/5;
(kt1)
2
: _{)ynt (k —n)! k—(2n-1),
Sotverli-) ; o (((k —n)—(n—-D) (n- 1)!) (=

(* LoopfromltoinputRange *)
For[i=1i<k,i++,
(* checkkforprimecondition.*)
If[i == 1, finalResult = 6 — 4,
If[PrimeQ]i],
(* IfKisPrime *)
finalResult = solverl[i], (* g, (68) = f,(8) %)
divofK = Divisors[i]; (x IfKisNotPrime %)
length = Length[divofK];
newlist = Delete[divoﬂ(, {{13, {—1}}]; (* GetDivisorsofK *)

length2 = Length[newlist];

2
Do[denom = denom * solver[Part [newlist, n]], {n1, lengch,l}]; (* g, (8) = f L (8) %)
IGk|d1,d2,d3,...|
nalResult = solver[i]
finalResult = donom 1
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