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I. Introduction 

 The maximum modulus ( )gM r of the entire function g defined in the open complex plane ℂ is defined as 

( )gM r max {|g(z)|:|z|=r}.  For meromorphic function f defined in the open complex plane ℂ,  ( )fM r  can  

not be defined as f is not analytic. In this case one may define another function ( ),fT r  which is known as 

Nevanlinna's Characteristic function of  f, playing the same role as maximum modulus.  

All the standard notations and definitions in the theory of entire and meromorphic functions are available in the 

books of Hayman (1964) and Valiron (1949). 

In this connection we just recall the following definitions which are relevant: 

 

II. Definitions 

Definition 1 The order f  and lower order  f of an entire function f are defined as 
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Bernal (1984, 1988)  introduced the definition of relative order of an entire function f with respect to another 

entire function g, denoted by   ( )g f   to avoid comparing growth just with exp z as follows: 

( ) inf{ 0: ( ) ( )g f gf M r M r     for all r>r₀(μ)>0.} 
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Similarly, one can define the relative lower order of an entire function f with respect to another entire function g 

denoted by ( )g f   as follows : 

( )g f
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Extending this notion, Lahiri et.al.(1999)  introduced the definition of relative order of a meromorphic function 

with respect to an entire function in the following way : 

Definition  2  Let f be any meromorphic function and g be any entire function. The relative order of f with 

respect to g is defined as 
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( ) inf{ 0: ( ) ( )g f gf T r T r     for all sufficiently large r } 
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Likewise, one can define the relative lower order of a meromorphic function f with respect to an entire function 

g denoted by  ( )g f  as follows : 
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It is known  that if g(z)=exp z then Definition 2 coincides with the classical definition of the order of a 

meromorphic function f . 

Let L≡L(r) be a positive continuous function increasing slowly i.e., L(ar)∼L(r) as r    for every positive 

constant a. Singh et. al. (1977)  defined it in the following way: 

Definition  3  A positive continuous function L(r) is called a slowly changing function if for ε(>0), 
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   for ( )r r   and uniformly for k(≥1). 

If further, L(r) is differentiable, the above condition is equivalent to 

( )
lim 0.

( )r

rL r

L r


  

 

 

Somasundaram et.al. (1988)  introduced the notions of  L-order and L-lower order for entire functions. 

Definition   4 The L-order 
L

f  and the L-lower order 
L

f   of a meromorphic function f are defined as 

follows: 
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The more generalised concept of L-order for a functions is L
 -order. 

Definition  5 [Somasundaram et.al. (1988)]The L
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In the line of Somasundaram et.al. (1988) and Bernal (1984, 1988), one may define the relative L-order and the 

relative L
-order of a meromorphic function in the following manner : 

Definition  5 The relative L-order ( )L

g f  and the relative L-lower order ( )L

g f  of a meromorphic function 

f with respect to an entire function g are defined as follows: 
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Definition  6 The relative  L
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III. Preliminaries 
In this section we present some lemmas which will be needed in the sequel. 

Lemma 1 [Bergweiler (1990)] Let f be meromorphic and g be entire and suppose that 0 g     . Then 

for a sequence of values of r tending to infinity, 



Some Relations Connected To Order of Composite Functions and Relative Order of Entire and .. 

DOI: 10.9790/5728-1601030105                            www.iosrjournals.org                                                    3 | Page 

( ) (exp( ))f g fT r T r  

Lemma  2 [Lahiri et.al. (1995)] Let f be meromorphic and g be entire such that 0 g     and 0 f . 

Then for a sequence of values of r tending to infinity, 

( ) (exp( ))f g gT r T r  where 0 g   . 

  

IV. Main Results 
In this section we present the main results of the paper. 

Theorem 1 If f be a meromorphic  function and g be an entire function such that 0 g     ,

( )g f   . Then for a sequence of values of r tending to infinity, 
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Proof  In view of Lemma 1, for 0 g      and for a sequence of values of r tending to infinity, 
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In the line of Theorem 1 and Lemma 2, the following theorem can be stated without its proof: 

Theorem 2 Let f be a meromorphic function and g be an entire function such that 0 g     ,

( )g f   and 0 f . Then for a sequence of values of r tending to infinity, 
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Theorem 3 If f be a meromorphic function and g be an entire function such that 0 g     ,

( )L
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Proof In view of Lemma 1, for 0 g     , ( )L

g f   and for a sequence of values of r tending to 

infinity, 

log ( ) log (exp( ))f g fT r T r  
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In the line of Theorem 3 and Lemma 2, the following theorem can be stated without its proof: 

Theorem 4 Let f be a meromorphic function and g be an entire function such that 0 g     , 0 f  

and ( ) .L
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Theorem 5 If f be a meromorphic function and g be an entire function such that 0 g     and 
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Proof In view of Lemma 1, for   0 g     , ( )L
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In the line of Theorem 5 and Lemma 2, the following theorem can be stated without its proof: 

Theorem 6 Let f be a meromorphic  function and g be an entire function such that 0 g     , 0 f  

and ( ) .L
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