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l. Introduction, Preliminaries And Lemma
Let A denote the class of functions of the form

f(z)=2+> az"
k=2 1

which are analytic in the open unit disk U ={z:z € Cand |Z| <1}

and normalized by the condition f(0) =0= f'(0)—1. Also let H € A be the class of analytic univalent

functionin U . A function f € A is called a starlike function denoted with S if and only if

Re{m} >0
f(2) @

A function f € A which maps U onto a convex domain is called convex function denoted by K if and only
if

Re{l+m}>0, Zeu

f'(2) 3)

Generally, S (0)=S" and k(0) =k

A function T € H is called a close-to-convex in U if the range f (U) is close to convex and this is the
compliment of f (U) which is written as the union of non-intersecting half lines.

Moreover, a function f € H is said to be close-to-convex with respect to a fixed Starlike functions g (g not

necessarily normalized) denoted by Cg ,if and only if

’
{Zf (Z)}>O, zeU.
9(2)

It is known that very close-to-convex function in U is also univalent in U (Prajapat et al 2015). The
decompositional approach to matrix computation, one of the top ten algorithms of the 20" century had been
employed by many researchers severally. These include the Hankel and Teoplitz determinants ant their
applications know no bound. For example, they provide a platform on which a variety of scientific and
engineering problems can be solved and furthermore, they permit reasonably simple rounding-error analysis and
afford high quality software implementations. Hankel determinants play a vital role in different branches and
have many applications (Pommereke, 1975).

The study of Hankel determinant began with Noonan and Thomas in 1976, when they defined the gth Hankel
determinant of the function in (1) by:

DOI: 10.9790/5728-1601031222 www.iosrjournals.org 12 | Page



Hankel Determinant For A Subclass Of Generalized Distribution Function Involving Jackson’s ..

a‘n an+l an-¢—q—l
an+1 an+2 Tt an+q
H (f)=H,(n) =| . : . (ngeN;a =1) (4)
an+q—l a‘n+q e an+2q—2

Since then, various researchers had investigated the Hankel determinant for different univalent and bi-
univalent functions, excluding generalized distribution function which is a new research area in the field of
geometric function theory. Beginning with Porwal (2018) who investigated the geometric properties of
generalized distribution associated with univalent functions, Oladipo (2019a) and (2019b) who investigated
bonds for probabilities of the generalized distribution polylogarithm and generalized distribution associated with
univalent functions in conical domain respectively. In this work, we aim at filling the vacuum created by Porwal
and Oladipo thus finding the Hankel determinant for the generalized distribution involving Jackxon’s q-
derivative operator.

Let the series Zak ,8, 20,ne N be convergent and its sum is denoted by S such that S = Z a,
k=0 k=0

(5)
We now introduce the generalized discrete probability distribution whose probability mass function is

p(k):a?k,k ~012 (6)

Obviously, p(k) is a probability mass function because p(k) > Oand Zk p, =1
We then introduce a power series whose coefficients are probabilities of the generalized distribution, that is

Gd(z)=z+ia"—_lzk (7)
k2 S

Applying the g-derivative [K], operator as defined in (14) on (7) we
a, —1Zk

D,G,(z)=2+ i[k]q S

Noor (1983) determined the rate of growth of H_(n) as N — oo for functions f given by (1) with bounded
boundary and also studied the Hankel determinant for Bazilevic functions in Noor (1983) and sharp upper bond
for H, (2) were obtained in the recent works Noor and Banny(1987) and Hayani and Owa (2010) for different
classes of functions. We note in particular that

a1 a2

(8)

H,@) = —a,—a, ©)

2 3

Moreover, the Hankel determinant H,(1) = a, — a22 is the well-known Fekete-Szego functional (see details in

Fekete & Szego; 1933) . Very recently, the upper bounds of H2(2) for some analytic function classes were

discussed by Deniz et al (2015).

The applications of Hankel determinant have been investigated by various researchers. Examples include
Wilson (1954) who studied its application in meromorphic functions and Cantor (1963) who showed its
application in function of bounded characteristic in U, that is, a function in which a ratio of two bounded
analytic functions with its Laurent series around the region having integral coefficients as rational. Pommereke
(1966) investigated the Hankel determinant of a really mean p-valent functions as well as of Starlike functions
and proved that the determinants of univalent functions satisfy.

Hon (D] <kn 7" for n=1,2,..) and (q=2,3,... (10)

where f# > and k depends only on q.

Hankel determinant of f € A for q=2 and n=2 (H 2]Z(f)) is known as the second Hankel
determinant and is given by
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a, &
Hz,z(f): H2(2) = a

—a,a,-a, (11)

3 4

1
Janteng et al (2006) have found out that a, a, —as2 <1 and a, 3, —a,f < 3 for starlike and convex

functions respectively. See also Al-Refai and Darus (2009), Al-Abbadi and Darus (1933) for details..
The third Hankel determinant H, , (f)or H;(1) is defined by

a a,
2 2
H3,1(f): a, a4a; aq, :aa(a2a4_a3 )_a4(a4_a2a3)+a5(a3_a2 ) (12)
a;, a, as

for f € Aand @, =1
Applying triangle inequality, we obtain

‘Hs, 1( f )‘ < |a3”(a2 a, - aszl - |a4||(a4 - azasx + |a5”(a3 - 3-22] (13)

Recently, H 3(1) have been investigated by Babalola (2010) and Prajapat et al (2015).

In the field of Geometric function theory, various subclasses of the normalized analytic function class A have
been studied from different points of view. The g-calculus as well as the fractional g-calculus such as fractional
g-integral and fractional g-derivative operators are used to investigate several subclasses of analytic functions
(Details are found in Aydogan et al;2013, Aldweby & Darus; 2013, Ozkan; 2016 and Polatoglu; 2016). The
application of g-calculus which plays vital role in the theory of hyper-geometric series, quantum physics and
operator theory was initiated by Jackson (1908). He was the first Mathematician who developed g-derivative
and g-integral in a systematic way. Both operators play crucial role in the theory of relativity, usually
encompasses two theories by Einstein, one in special relativity and the other in general relativity.

While special relativity applies to the elementary particles and their interactions, general relativity on the other
hand applies to the cosmological and astrophysical realm including astronomy. Of interest is the fact that special
relativity theory had rapidly become a significant and necessary tool for theorists and experimentalists in the
new fields of atomic physics, nuclear physics and quantum mechanics.

Later the Hankel determinant of exponential polynomials were studied by Ehrenbog (2000) and Layman (2001)

discussed one of its properties. Fekete-Szego (1933) made an early study for the estimates of ‘as - ,uag‘

when &, =1 and M real and obtained that if feS , then

4u—3, if u>1
=)
\aa—yaj\g 1+2e\ "/ if 0< <1 (14)
3—4u if ©<0

In this present work, we studied the Hankel determinant of generalized distribution function involving the g-
derivative (Jackson) operator via Chebyshev polynomials.

Definition 1.1  Let q € (0,1) and define

1_ k
[k, ="
-q
Definition 1.2 The Jackson’s g-derivative of a function feA O< g< 1 is defined as follows:
f(z)- f(gz), forz=0
. (=] F@- 1@
f'(0), for z=0
and

D, f(2)=A, (A, f(2) (16)
We note that Limq_)l, (Dq f (Z)): f'(z) iff is differentiable at z.

, for K e N (15)

DOI: 10.9790/5728-1601031222 www.iosrjournals.org 14 | Page



Hankel Determinant For A Subclass Of Generalized Distribution Function Involving Jackson’s ..

From (15) and (1) we deduce that
D, f(z) =1+ [k],a,z"" (17)
k=2

Definition 1.3 The symmetric g-derivative Zq f of afunction f given by (1) is defined as follows:

f(q2)- fla* ()

forz=0

Dqf(z) = (9-q*)z (18)
f'(0) forz=0
From (17), we deduce that [~)q ¢ = [E]q z¢ and a power series of

D, f is D, f(z) =1+ [k],a,z""
k=2

when f has the form (1) and the symbol (k )q denotes the number k], = %

a-q
Chebyshev polynomials have become increasingly important in numerical analysis from both the theoretical and
practical points of view. They are sequences of orthogonal polynomials which are practically related to De-
Moivres formular and which are defined recursively. There exists four kinds though, the first and second kinds

T,(X) and U, (X) are well known having more results, uses and applications (Doha;1994 and Mason; 1967)
In this work we shall limit ourselves to the second kind given as

sin(k+1)a
u, @ =ka (g ) (19)
SN
where k denotes the degree of the polynomial and t = COSx
The Chebyshev polynomials of the second kind U, (t);t € (— 1, 1) have the generating function of the form

1 zsin(k+Da
Hiz,t)=——=1 _— D,[t| <1
@) 1— 2tz + z° +k§‘ sina ‘ (ZE < )

- T
Note that t = cOSx, & € (?,5) then

H(z,t)= 1 zsm(k+1)a K
1-2cosaz +2° = Sina (20)

Thus,

H(z,t)=1+2cosaz +(3cos® @ —sin? a )z +... (21)
Following the relationship in Fadipe et al (2003), we have

H(z,t)=1+u,(t)z +u,(t)z* +..... (22)

: -1
where U, :M,k eN
V1-t?

are the Chebyshev polynomials of the second kind. It is known that

U k (t) =2tV k-1 (t) -U k-2 (t)
So that

U,(t)=2t,, U,(t) =4t* =1 and U, (t) = 8t> — 4t 023)

Definition 1.4 If f(z)and g(z) are analytic in U, we say that f(z) is subordinate to g(z) written
symbolicallyas f < gor f(z) <g(z), z €U if there exists a Schwarz function W(z) which by definition
is analytic in U such that

f(2) =g(w(2))
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Definition 1.5  The Convolution (or Hadamard product) of two series

f(z)=> a,z"and g(z) = > b, z" is defined by
k=0 k=0

f*g(z)=> ab,z"
k=0

A Set of Lemmas:
For this study, the following existing lemmas are established:

Let P be the class of functions p(z) with positive real part consisting of all analytic function p:U —C
satisfying the following conditions
p(0) =1and R(p(z))>0
Lemma 1.1 (Pauzi, Darus and Siregar): If the function p € P is defined by
p(z) =1+cz+c,z° +c,z° +...
then  |c,|<2 neN={123.)
Lemma 1.2 (Pauzi, Darus and Siregar): If the function p € P is defined by
c(z)=1+c,,z+cC,, 2% +¢C;,2° +...
then
2c, =¢, + x(4— clz)
and

4e, =c° + 201(4—c12)><—cl(4—c12)x2 + 2(4—012X;l—|x|2)z

for some values of Z, |Z| <1

Il.  Main Results
Definition 2.1 A function f e A is said to be in class Gy(@,u, H(z,t)) if

Re{(l—e)G «(2) 106G, (2) + 146, (z)} < H(z,1)
Z
(24)
where 0<@<1, g>1and H (Z,t) is the Chebyshev polynomial

Remark 2.2. if 0=0 , we have
Re{G () + 12G, (z)} <H(z,1)
z

Remark 2.3. if ‘9:1, we have
Re{Gd (2) + 142G, (z)}< H(z,t)

(25)

(26)

Theorem 1: Let T eG,(0, 1, H(z,1)) , the generalized distribution which satisfies the subordination
principle. Then

a_ 2t
T (+0+2u)2],
3| _ 2t° -1
S|” (@+20+6u)3],
at(2t? —1)
T (1+30+12u)4],

(27)

(28)
&<
S

(29)
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Proof:
Let f eG, (0, i, H(z,1)). Then there exists a Chebyshev polynomial H (U(Z), t) such that

Re{(l—e)GdT(z)+HGd'(z)+,uzGd"(z)} < H(u(2),t) (30)
where H(z,t)=1+%U1(t)clz+[U1(t)c2 Uit +U2(t)c12}2
2 4 4
+(Ul(t)c3 _Ul(t)cch +U1(t)cl3 +U2(t)clcz _Uz(t)cl3 +U3(t)clsjz3+
2 2 8 2 4 8 (31)

Next, define the function p € P by

p(2) = 1+u@@) =1+ P2+ P,yz° +...
1-u(z) (32)
In the following, we can derive U(Z) = p(z)-1 (33)
p(z) +1

(1-6) [1+ Skl % z“j+ 9[1+ S KK, % z“j +3 (k- 1)K], % 7k _

k=2
U,t)c, Uie” | Use” |
2 4 4

1+(%U1<t))clz+[

J[Uies _Uice, UiMe’ U,@ec, U,@®e’ Us®e’ | o
2 2 8 2 4 8 (34)

Expanding and equating the coefficientsof Z, z Zand z° in both sides of (34) gives:

a
(1+49+2,ul2]q§1=%ul(t)cl (35)
a, U,(t)c, U, ()’ U,(t)c,’
1+20+6u)3], 22 =—r2 _—ailn | Z2iii 36
(1+20+6u)3], ) R (36)
a, U,(t)c, U,(t)c,c, U, (e’
(1+39+12#l4]q§3: 12 =t 21 2 4 18 1
LUacc, Uy@e” | Us(te
2 4 8 (37)
which yields:
a__ U®g
- (38)
S 2(1+o+2u)2],
a,_ UM U@ UM
% _ (39)
S 20+20+6u)3], 41+20+6u)3], 4L+20+6u)3],
% — Ul(t) Cy _ Ul(t) C,Cy + Ul(t) C13
S 2(+30+12u)4], 20+30+12u)4], 8(L+30+12u)4], o)

Applying lemmas 1.1 and 1.2 and (23) on (38), (39) and (40) together with triangle inequality we have:
a| 2t

S|” (Q+o+2u)2,
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3, _ 2t -1
S| (1+20+6u)3],
a, ar(2t? -1)

S| (1+30+12u)4],

completes the proof.

<

which

Remarks: With special choices of parameters involved in theorem 1, various interesting results could be

derived, these include:
Corollary 1.1 Let f € G, (0, 1, H(Z,t)) Then

a < 2t
S| (L+2u)2],
3| _ 2t -1
S| @+6u)3,
a|_ 42’ -1)
S|™ (@+12u)4],
Corollary 1.2 Let f e G, (1, 1, H(Z,1)) Then
ot
S| (@L+2u)2],
3, _ 2t2 -1
S| 3L+2u)3l,
a|_ ta’-1)
S| (L+3u)4l,

Corollary 13 Letf € G, (6, 1, H (Z%)) . Then

‘ﬁ <L
Y
B 1
S|”2v
8 1
S|TY
Corollary 1.4 Letf € G, (8,1, H(Z,t)) Then
aQ 2t
S| (3+6)2,
a, 2t° -1
S| (7+20)3,
a|_ atfe’-1)
S|~ (13+30)4],

where M = (1+6+2u)[2],,V =(1+20+6u)3], and Y = (1+30+12u)[4],
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. t
Theorem 2: Let f eH (6, 1) , the Hankel determinant for the generalized distribution which satisfies
the subordination principle. Then

aa, all_ 4 +2t(4t2—3)_(4t2—1)2
S S S? MY Y V?

where M =1+ 0+ 2u)[2],,V =(1+20 + 6 3], and Y = (1+30+12)[4], .

Proof:
Substituting for (27), (28), and (29) as obtained in Theorem 1 we have

aa _al_ U uMe  UMae,  U0¢
S'S S?| 20+6+2u)2], | 20+30+12u)4], 2(1+30+12u)f4], 8(1+30+12u)4],

LU, U, UsM)e]
20+30+12u)4], 4(1+30+12u)4], 8L+30+12u)4],

o uvwe,  uwer | ume’ T
20+20+6u)3], 4L+20+6u)3], 4(1+20+6u)3],

<

(41)

(42)
Fromlemmal2 2c, =c,’ + x(4— clz) and
4c, = 013 +2(4—C12 )tlx —Cl<4—012)>(2 +2(4—C12 )(1—|X|2)Z for some Z,|Z| <1
Thus
aa,_ar|_ UM I O]
S S S? 16(L+0+2u)1+30+12u)2],[4], 8(+0+2u)1+30+12u)2],[4],
) U M a-c’ k% L UlOk-c) - ke
16(1+ 0 + 24 )1+ 30 +12u)2],[4], 8+ 0+ 2u)1+30+12u)2],[4],

U0’ UoB-ctox | U0l-cfox | U0
8(1+30+12u)4], 4(1+30+12u)f4], 4(1+30+12u)4], 8(1+30+12u)4],
UMl X UMt U oU, Mt a-c?)x

A1+30+12u)4], 16@+20+6u)[3],°  8L+20+6u)[3],’

(43)
LetR=4— C12 and W = (l—|X|2)Z . Then (43) becomes

a3 3| U’ e’ . U,2(t)Rc,2x
16(1+ 0 +2u)1+30+12u)2],[4], 8(L+6+2u)1+30+12u)2],[4],

SS §°?
U,* (t) Re,*x? U," () Rwe, U, (t)c,’

16(1+ 0+ 2u)1+ 30 +12u)2],[4], ’ 8(1+ 0+ 2u)1+30+12u)2], [4], 8+ 30 +12u)4],

U, (t) Re,x U, (t) Re,x U,(t)c,’
+ +
A1+30+12u)4], 4A1+30+12u)4], 8(1+30+12u)4],
__USORXE UM U OU, 0 xR
16(1+20+64)°[3]," 16(1+20+6x)°[3],° 8(1+20+6u)'[3],”

(44)
By Lemma 1.1, we have |Cn| <2, neN-= {1, 2,3,...}. For convenience of notation we take C, =C and we

may assume without loss of generality that C € [0,2] . Applying the triangle inequality with R =4 — C12 .

DOI: 10.9790/5728-1601031222 www.iosrjournals.org 19 | Page



Hankel Determinant For A Subclass Of Generalized Distribution Function Involving Jackson’s ..

aa, a,
S S §?

Then

) ; U,* (t) Re*x
< ‘(ﬂl—iz)c +(2 =2 ) ‘+8(1+9+ 2u)1+30+12u)2],[4],

U, (t) Re?x? .\ U, (t) Rwe
16(1+ 0+ 24 )1+ 30 +124) 2] [4], 8L+ 0+ 24 )1+30+124)2],[4],
___U®Rex  U,(Rox U, (t) R?x?
A1+30+12u)4], 4L+30+12u)4], 16(1+20+64)[3],°
B U, (t)U, (t)c’Rx :¢qx|)
8(1+ 260 +64)°[3],
9 (45)

Trivially, we then show that this expression has a maximum value

ﬂﬁ_a_g < U - U,
S S ST (+0+2u)l+30+12u)2],[4], (L+30+12u)4],
U, (t) U, ()

+ - 46
(1+30+12u)4], (@+20+6u)[3], o

on [0, 2] whenc =2
Applying (23) on (46) gives the result

aa, a4t 2a4’-3) (4’ -1f
S S S’ MY Y V2
where M =(1+ 60 +2u)[2],,V = (1+20 +6u) 3], and Y = (1+30+12 )[4], .

<

which completes the proof.
Corollary 2.1:  Let f € H'(8, 1) in theorem 2. Then

2
a, a, a’ 4t 2t(4t* —3) 4% -1
————=< + +
S'S S (+2u)fi+12u)2][4], @+2u)f4], |@+6u)3],
Corollary 2.2 Let f e H'(L, z) in theorem 2. Then

2
a, a, a’ 2t t(4t* -3) 4% -1
——=——=|< + +
S'S S| AL+ p)l+3u)2],[4], 20+3u)f4l, | 31+2u)3],
Corollary 2.3 Let f e H'(8,1) intheorem 2. Then
2

a, a, a’ 4t 2t(4t* -3) 4% -1

< + —
S'S S| (3+0)13+30)2I,[41, (13+30)4], | (7+20)3],

1
Corollary 2.4 Let f e H2(6, ) intheorem 2. Then
2
a3 3 2 2

5SS ST MY Y

t . .
Theorem 3. Let f € H (9’:“), the Hankel determinant for the generalized distribution Which satisfies the
subordination principle. Then

a8, a_2t(a’-1) 4t(2®-1)
SS S| MV Y (47)
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where M =(1+0+2u)[2],,V =(1+20+6u)3], and Y = (1+30+12 )[4], .

P al a'2 a3 . .
Proof: Substituting the values of ? E and ? asin (27), (28) and (29) gives
a3 al_ U0 Uie, U U,@0)c]
SS S| 20+0+2u)2],|20+20+6u)3], AM1+20+6u)3], A1+20+6u)3],
_ Ul (t) Cy + U1 (t) C,Cy _ U1 (t) C13 _ U 2 (t) C,Cy
20+30+12u)4], 2(+30+12u)4], 81+30+12u)4], 2(1+30+12u)4],
u, (e’ U.®c,’

41+30+12u)4], 8(L+30+12u)4],
Applying lemma 1.2, we have
aa, &l UlOB-ctkx U,OU,0¢
SS S| 16(1+0+2u)1+20+6u)f2],[38], 8(L+60+2u)1+20+6u)2],[3],
~ Ul(t)(4—clz)clx ~ Ul(t)(4—clz)clx2 Ui (4—01211—|X|2)Z
A1+30+12u)4], B8L+30+12u)f4],  AL+30+12u)4],
L U0l-cTkx U
8(1+30+12u)4], 8(L+30+12u)4],

(48)

(49)
LetR= 4—c,” and W = (1—|x|2)z in (49). Then,
aa, &l U,* () Rex s U, (OU, ()¢’
S S S| 16(0+0+2u)1+20+6u)f2],[3], 81L+0+2u)l+20+6u)2],[3],
U ®Rex U MR x* U,(t)Rw
41+30+12u)4], 8(L+30+12u)f4], 4(1+30+12u)4],
__ _U,®Rex  U,M¢]
8(1+30+12u)4], 8(1+30+12u)4], 50)

By Lemma 1.1, we have |C,[<2, neN = {1,2,3,...}. For convenience of notation we take C, =C and we
may assume without loss of generality that C € [0,2] . Applying the triangle inequality with R =4 — C12 . Then
u,()U, )¢’ u,(t)c?
8L+ 0+2u)L+20+6u)2],[3], 8(L+30+12u)4],
. U, (t) Rex U (H)Rex U, (t) Rex?
16(1+ 0 +2u)1+20+6u)2],[3], 41+30+12u)4], 8(1+30+12u)4],
B U, (t)Rw B U, (t)Rex :¢q |)
41+30+12u)[4], 8(L+30+12u)4],

We can then show that this expression has a maximum value

< U,(0OU, (1) _ Us(®)

< (52)
SS S| (+0+2u)1+20+6u)2],[3], L+30+12u)4],

on [0,2] when ¢ =2

Applying (23) on (52) yields the expected result.

a a a
1 %2 3| <

SS S

(51)

DOI: 10.9790/5728-1601031222 www.iosrjournals.org 21 | Page



Hankel Determinant For A Subclass Of Generalized Distribution Function Involving Jackson’s ..

aa, a_aiat’-1) a2 -1)
SS S| MV Y
where M =1+ 60 +2u)[2],,V =(1+20+6u)3], and Y = (1+30+12 )[4], .

Thus the proof is completed.
Remarks: With special choices of parameters involved in theorem 1, various interesting results could be
derived.

Thus
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