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I. Introduction 
Differential geometry is a branch of mathematics using calculus to study the geometric properties of 

curves and surfaces. It arose and developed as a result of and in connection to the mathematical analysis of 

curves and surfaces [5]. The theory developed in this study originates from mathematicians of the 18th and 19th 

centuries, mainly; Euler (1707-1783), Monge (1746-1818) and Gauss (1777-1855).Mathematical study of 

curves and surfaces has been developed to answer some of the nagging and unanswered questions that appeared 

in calculus, such as the reasons for relationships between complex shapes and curves, series and analytic 

functions. Study of curvatures [2] is an important part of differential geometry. During study we have derived 

the equations of some topics such as surface, first and second fundamental forms, curvature, normal and 

principle curvature, Dupins indicatrix, asymptotic directions and Weingarten equations. This paper also deals 

with some important theorems and examples. 

 

II. Curvature 
Definition: The locus of a point whose Cartesian coordinates (𝑥, 𝑦, 𝑧) are functions of a single parameter is 

called curve and the locus of a point whose Cartesian coordinates (𝑥, 𝑦, 𝑧) are functions of two independent 

parameters u, v (say) is defined as a surface. 

Definition: Let 𝐶 be a curve on the surface passing through a point 𝑃 and 𝑡 is the unit tangent of 𝐶. Let 
𝑑𝑡

𝑑𝑠
= 𝑘. 

We now decompose 𝑘  into a component 𝑘𝑛  in the direction of the normal 𝑁  and a component 𝑘𝑔  in the 

tangential direction to the surface. 

The vector 𝑘𝑛  is called the normal curvature vector and can be expressed in terms of the unit surface normal 

vector  𝑁.               

 

 
where 𝑘𝑛  is called the normal curvature. 

Definition: The normal to the surface at the point  𝑃 is a line passing through  𝑃 and perpendicular to the 

tangent line at 𝑃. 
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Theorem (Meusnier): If 𝜑 is the angle between the principal normal and the surface normal to a curve 𝐶 at any 

point 𝑃, then 𝑅 = 𝑅𝑛 cos𝜑, where 

𝑅 =
1

𝑘
,   𝑅𝑛 =

1

𝑘𝑛
. 

Proof: Let 𝑃 be a point (𝑢, 𝑣) on the surface 𝑋 = 𝑋(𝑢, 𝑣). Suppose 𝑛 and 𝑁 denote the principal normal to the 

curve on the surface and surface normal [1] at 𝑃 respectively. Since 𝜑 is the angle between 𝑛 and 𝑁 , therefore, 

cos 𝜑 = 𝑛.𝑁 

Now, suppose 𝑘 is the curvature vector of the given curve at 𝑃. Then  

𝑘 = 𝑘𝑛 

𝑘 = 𝑘𝑛 + 𝑘𝑔  

                                                                    𝑘𝑛 = 𝑘𝑛 .𝑁 + 𝑘𝑔     [ 𝑘𝑛 = 𝑘𝑛 . 𝑁] 

 𝑘𝑛 .𝑁 =  𝑘𝑛 .𝑁 + 𝑘𝑔 .𝑁 

𝑘𝑛.𝑁 = 𝑘𝑛 . 𝑁.𝑁 + 𝑘𝑔 .𝑁 

𝑘 cos𝜑 = 𝑘𝑛 + 0 
1

𝑅
cos𝜑 =

1

𝑅𝑛
 

𝑘 cos𝜑 = 𝑘𝑛  

𝑅 = 𝑅𝑛 cos𝜑 
which is called the Meusnier’s theorem. 

Remark We have 𝑘𝑛 = 𝑘 if and only if 𝜑 = 0. Thus the necessary and sufficient condition for the curvature of 

a curve at 𝑃 to be equal to the normal curvature at 𝑃 in the direction of that curve is that the principal normal to 

the curve is along the surface normal at the point. 

Definition: Let 𝑥 = 𝑥 𝑢, 𝑣  be the equation of the surface. The quadratic differential equation of the form  

𝑑𝑠2 = 𝐸(𝑑𝑢)2 + 2 𝐹𝑑𝑢 𝑑𝑣 + 𝐺(𝑑𝑣)2  where 

𝐸 = 𝑥𝑢 . 𝑥𝑢 ,   𝐹 = 𝑥𝑣 . 𝑥𝑣 ,   𝐺 = 𝑥𝑢 . 𝑥𝑣 

is called first fundamental form. 

Definition: Let 𝑥 = 𝑥 𝑢, 𝑣  be the equation of the surface and  𝑁 = 𝑁 𝑢, 𝑣  be unit surface normal. Then the 

second fundamental form II is defined by  

II−𝑑𝑥. 𝑑𝑁 = 𝑒(𝑑𝑢)2 + 2𝑓𝑑𝑢𝑑𝑣 + 𝑔(𝑑𝑣)2 

is called the second fundamental form. 

 

III. Curvature Directions and Quadratic form of curvature directions 
We have 𝑁. 𝑡 = 0, we obtain by differentiation, 

𝑑𝑁

𝑑𝑠
. 𝑡 + 𝑁.

𝑑𝑡

𝑑𝑠
= 0 

                                    𝑁.
𝑑𝑡

𝑑𝑠
= −

𝑑𝑁

𝑑𝑠
. 𝑡 =

𝑑𝑁

𝑑𝑠
.
𝑑𝑥

𝑑𝑠
      [∵ 𝑡 =

𝑑𝑥

𝑑𝑠
] 

                                𝑘. 𝑁 = −
𝑑𝑥.𝑑𝑁

(𝑑𝑠)2 = −
𝑑𝑥.𝑑𝑁

𝑑𝑥.𝑑𝑥
  [∵  𝑑𝑠 2 = 𝑑𝑥. 𝑑𝑥] 

                                        𝑘𝑛 . 𝑁 + 𝑘𝑔 .𝑁 = −
𝑑𝑥.𝑑𝑁

𝑑𝑥.𝑑𝑥
 [∵ 𝑘 = 𝑘𝑛 + 𝑘𝑔  𝑎𝑛𝑑  𝑘𝑛 = 𝑘𝑛 . 𝑁] 

                                                𝑘𝑛 . 𝑁.𝑁 + 0 = −
𝑑𝑥.𝑑𝑁

𝑑𝑥.𝑑𝑥
=

𝐼𝐼

𝐼
  

𝑘𝑛 =
𝑒(𝑑𝑢)2+2𝑓𝑑𝑢𝑑𝑣 +𝑔(𝑑𝑣)2

𝐸(𝑑𝑢)2+2𝐹𝑑𝑢𝑑𝑣 +𝐺(𝑑𝑣)2     [Using first and second fundamental theorem] 

=
𝑒+2𝑓

𝑑𝑣

𝑑𝑢
+𝑔 

𝑑𝑣

𝑑𝑢
 

2

𝐸+2𝐹
𝑑𝑣

𝑑𝑢
+𝐺 

𝑑𝑣

𝑑𝑢
 

2   

=
𝑒+2𝑓𝜆+𝑔𝜆2

𝐸+2𝐹𝜆+𝐺𝜆2       [where 𝜆 =
𝑑𝑣

𝑑𝑢
] 

here, 
𝑑𝑣

𝑑𝑢
 gives the directions, i.e. 𝜆 determines the direction. 

Definition: The directions for which 𝑘𝑛  is either maximum or minimum are called curvature directions. 

𝑘𝑛 = 𝑘𝑛(𝜆) is a function of 𝜆,  

Where 𝑘𝑛 =
𝑒+2𝑓𝜆+𝑔𝜆2

𝐸+2𝐹𝜆+𝐺𝜆2  

      ∴   
𝑑𝑘𝑛

𝑑𝜆
=

 𝐸+2𝐹𝜆+𝐺𝜆2  2𝑓+2𝑔𝜆 − 𝑒+2𝑓𝜆+𝑔𝜆2 (2𝐹+2𝐺𝜆)

 𝐸+2𝐹𝜆+𝐺𝜆2 2   

For extreme values (maximum or minimum) of 𝑘𝑛  , 
𝑑𝑘𝑛

𝑑𝜆
  should be zero 
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𝑑𝑘𝑛

𝑑𝜆
= 0  

Therefore, extreme values of 𝑘𝑛  , we have, 
 𝐸 + 2𝐹𝜆 + 𝐺𝜆2  2𝑓 + 2𝑔𝜆 −  𝑒 + 2𝑓𝜆 + 𝑔𝜆2  2𝐹 + 2𝐺𝜆 = 0  
 𝐸 + 2𝐹𝜆 + 𝐺𝜆2  𝑓 + 𝑔𝜆 =  𝑒 + 2𝑓𝜆 + 𝑔𝜆2 (𝐹 + 𝐺𝜆)  
𝑓+𝑔𝜆

𝐹+𝐺𝜆
=

𝑒+2𝑓𝜆+𝑔𝜆2

𝐸+2𝐹𝜆+𝐺𝜆2  

𝑘𝑛 =
𝑒+𝑓𝜆+𝜆(𝑓+𝑔𝜆)

𝐸+𝐹𝜆+𝜆(𝐹+𝐺𝜆)
=

𝑓+𝑔𝜆

𝐹+𝐺𝜆
  

𝑓+𝑔𝜆

𝐹+𝐺𝜆
=

−𝜆(𝑓+𝑔𝜆)

−𝜆(𝐹+𝐺𝜆)
=

𝑒+𝑓𝜆+𝜆(𝑓+𝑔𝜆)

𝐸+𝐹𝜆+𝜆(𝐹+𝐺𝜆)
  

=
−𝜆(𝑓+𝑔𝜆)+𝑒+𝑓𝜆+𝜆(𝑓+𝑔𝜆)

−𝜆(𝐹+𝐺𝜆)+𝐸+𝐹𝜆+𝜆(𝐹+𝐺𝜆)
  

𝑓+𝑔𝜆

𝐹+𝐺𝜆
=

𝑒+𝑓𝜆

𝐸+𝐹𝜆
  

Since 𝑘𝑛 =
𝑒+𝑓𝜆+𝜆(𝑓+𝑔𝜆)

𝐸+𝐹𝜆+𝜆(𝐹+𝐺𝜆)
=

𝑓+𝑔𝜆

𝐹+𝐺𝜆
  and considering (3.01) & (3.02), we have 

𝑘𝑛 =
𝑓+𝑔𝜆

𝐹+𝐺𝜆
=

𝑒+𝑓𝜆

𝐸+𝐹𝜆
  

∴    𝑒𝐹 + 𝑒𝐺𝜆 + 𝑓𝐹𝜆 + 𝑓𝐺𝜆2 = 𝑓𝐸 + 𝑔𝐸𝜆 + 𝑓𝐹𝜆 + 𝑔𝑓𝜆2  

Or,  𝑔𝐹 − 𝐹𝐺 𝜆2 +  𝑔𝐸 − 𝑒𝐺 𝜆 +  𝑓𝐸 − 𝑒𝐹 = 0  

This is a quadratic equation in 𝜆. 

Definition: The normal curvature of a surface which have greatest and least curvatures are called principal 

curvatures. 

Definition: The two perpendicular directions for which the values of 𝑘𝑛  take on maximum or minimum values 

are called principal directions. 

Definition: The normal curvatures in the curvature directions are called principal curvature. 

Definition: The lines in the curvature directions are called lines of curvature [8]. 

Theorem (Rodrigues Formula):  In the direction of a principal direction, the vector 𝑑𝑁 is parallel to 𝑑𝑥 and is 

given by  

𝑑𝑁 = −𝑘𝑛𝑑𝑥 

Where 𝑘𝑛  is the principal curvature in that direction. 

Proof: We know that the principal curvatures are given by 

𝑘𝑛 =
𝑓+𝑔𝜆

𝐹+𝐺𝜆
=

𝑒+𝑓𝜆

𝐸+𝐹𝜆
  ,   𝜆 =

𝑑𝑣

𝑑𝑢
 

Or, 𝐹𝑘𝑛 + 𝐺𝑘𝑛𝜆 = 𝑓 + 𝑔𝜆  and  𝐸𝑘𝑛 + 𝐹𝑘𝑛𝜆 = 𝑒 + 𝑓𝜆  

Or,  𝐸𝑘𝑛 − 𝑒 +  𝐹𝑘𝑛 − 𝑓 𝜆 = 0 and  𝐹𝑘𝑛 − 𝑓 +  𝐺𝑘𝑛 − 𝑔 𝜆 = 0 

 Or,  𝐸𝑘𝑛 − 𝑒 +  𝐹𝑘𝑛 − 𝑓 
𝑑𝑣

𝑑𝑢
= 0 and  𝐹𝑘𝑛 − 𝑓 +  𝐺𝑘𝑛 − 𝑔 

𝑑𝑣

𝑑𝑢
= 0  

Or,  𝐸𝑘𝑛 − 𝑒 𝑑𝑢 +  𝐹𝑘𝑛 − 𝑓 𝑑𝑣 = 0 and  𝐹𝑘𝑛 − 𝑓 𝑑𝑢 +  𝐺𝑘𝑛 − 𝑔 𝑑𝑣 = 0 

Or,  𝑥𝑢 . 𝑥𝑢𝑘𝑛 + 𝑥𝑢 . 𝑁𝑢 𝑑𝑢 +  𝑥𝑢 . 𝑥𝑣𝑘𝑛 + 𝑥𝑢 . 𝑁𝑣 𝑑𝑣 = 0   and  

        𝑥𝑢 . 𝑥𝑣𝑘𝑛 + 𝑥𝑣. 𝑁𝑢 𝑑𝑢 +  𝑥𝑣 . 𝑥𝑣𝑘𝑛 + 𝑥𝑣 . 𝑁𝑣 𝑑𝑣 = 0  

Or, [ 𝑥𝑢𝑘𝑛 + 𝑁𝑢 𝑑𝑢 +  𝑥𝑣𝑘𝑛 + 𝑁𝑣 𝑑𝑣]. 𝑥𝑢 = 0   and  

       [ 𝑥𝑢𝑘𝑛 + 𝑁𝑢 𝑑𝑢 +  𝑥𝑣𝑘𝑛 + 𝑁𝑣 𝑑𝑣]. 𝑥𝑣 = 0  

Or,   𝑁𝑢𝑑𝑢 + 𝑁𝑣𝑑𝑣 + 𝑘𝑛 𝑥𝑢𝑑𝑢 + 𝑥𝑣𝑑𝑣  . 𝑥𝑢 = 0  and 

        𝑁𝑢𝑑𝑢 + 𝑁𝑣𝑑𝑣 + 𝑘𝑛 𝑥𝑢𝑑𝑢 + 𝑥𝑣𝑑𝑣  . 𝑥𝑣 = 0   

Or,  𝑑𝑁 + 𝑘𝑛𝑑𝑥 . 𝑥𝑢 = 0  and   𝑑𝑁 + 𝑘𝑛𝑑𝑥 . 𝑥𝑣 = 0  

Since, 𝑥𝑢   and  𝑥𝑣  are linearly independent [i.e. 𝑑𝑁 + 𝑘𝑛𝑑𝑥  is the tangent plane], we must have, 

𝑑𝑁 + 𝑘𝑛𝑑𝑥 = 0  

Or, 𝑑𝑁 = −𝑘𝑛𝑑𝑥     

∴  𝑑𝑁 = −𝑘𝑛𝑑𝑥  

which is called the Rodrigues formula.  

IV. Mean & Gaussian curvature 

We know that the roots of   𝐸𝐺 − 𝐹2 𝑘𝑛
2 +  𝑒𝐺 + 𝑔𝐸 − 2𝑓𝐹 𝑘𝑛 + 𝑒𝑔 − 𝑓2 = 0  are called principal 

curvatures.  

Definition: The arithmetic mean of principal curvatures 𝑘𝑛1  and  𝑘𝑛2  is called the mean curvature [3] and is 

defined as 

𝑀 =
1

2
 𝑘𝑛1 + 𝑘𝑛2 =

𝑒𝐺 + 𝑔𝐸 − 2𝑓𝐹

2(𝐸𝐺 − 𝐹2)
 

Definition: The product of principal curvatures 𝑘𝑛1  and  𝑘𝑛2  is called the Gaussian curvature and is defined as 
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𝐾 = 𝑘𝑛1𝑘𝑛2 =
𝑒𝑔 − 𝑓2

𝐸𝐺 − 𝐹2
 

Theorem (Eulers): The normal curvature 𝑘𝑛  in any direction can be expressed as, 

𝑘𝑛 = 𝑘𝑛1 cos2 𝛼 + 𝑘𝑛2 sin2 𝛼 

Where 𝑘𝑛1 and 𝑘𝑛2 are the principal curvature and 𝛼 is the angle between the 𝑢 parametric curve and arbitrary 

directions. 

Proof : We know that the normal curvature is given by  

𝑘𝑛 =
𝑒(𝑑𝑢)2 + 2𝑓𝑑𝑢𝑑𝑣 + 𝑔(𝑑𝑣)2

𝐸(𝑑𝑢)2 + 2𝐹𝑑𝑢𝑑𝑣 + 𝐺(𝑑𝑣)2
 

When the parametric lines coincide with curvature directions then we have 𝑓 = 0, 𝐹 = 0.In this case 

𝑘𝑛 =
𝑒(𝑑𝑢)2 + 𝑔(𝑑𝑣)2

𝐸(𝑑𝑢)2 + 𝐺(𝑑𝑣)2
 

 

                                  v-variable curve                                                     u- variable curve 
𝜋

2
 

𝑘𝑛2                                                             𝑘𝑛1 

u= constant curve                                                   v=constant curve 

 

 

Let us suppose that for 𝑢- variable curve the principal curvature is 𝑘𝑛1 and for 𝑣- variable curve the principal 

curvature is 𝑘𝑛2 . Therefore 𝑘𝑛1 is obtained from 

𝑘𝑛 =
𝑒(𝑑𝑢 )2+𝑔(𝑑𝑣)2

𝐸(𝑑𝑢)2+𝐺(𝑑𝑣)2     

By setting 𝑑𝑣 = 0, we get,  

𝑘𝑛1 =
𝑒(𝑑𝑢)2

𝐸(𝑑𝑢)2 =
𝑒

𝐸
     

And 𝑘𝑛2  is obtained by setting 𝑑𝑢 = 0 

       𝑘𝑛2 =
𝑔(𝑑𝑣)2

𝐺(𝑑𝑣)2 =
𝑔

𝐺
          

Therefore when the parametric lines coincide with curvature directions then we have 

 
Let us suppose that any arbitrary direction makes angle 𝛼 with the parametric curve v=constant. 

cos𝛼 =
𝑑𝑥.𝛿𝑥

 𝑑𝑥.𝛿𝑥 
=

𝐸𝑑𝑢𝛿𝑢 +𝐹 𝑑𝑢𝛿𝑣 +𝑑𝑣𝛿𝑢  +𝐺𝑑𝑣𝛿𝑣

 𝐸(𝑑𝑢)2+2𝐹𝑑𝑢𝑑𝑣 +𝐺(𝑑𝑣)2 . 𝐸(𝛿𝑢)2+2𝐹𝛿𝑢𝛿𝑣 +𝐺(𝛿𝑣)2
    

Since, the parametric curves coincide with the curvature directions, we have 𝑓 = 0, 𝐹 = 0 and 

cos𝛼 =
𝐸𝑑𝑢𝛿𝑢 +𝐺𝑑𝑣𝛿𝑣

 𝐸(𝑑𝑢)2+𝐺(𝑑𝑣)2 . 𝐸(𝛿𝑢)2+𝐺(𝛿𝑣)2
      

Here, 𝛼 is the angle between 𝑣 = constant curve and any arbitrary direction. So, we set 𝛿𝑣 = 0 and cos𝛼 =
𝐸𝑑𝑢𝛿𝑢

 𝐸(𝑑𝑢)2+𝐺(𝑑𝑣)2 . 𝐸(𝛿𝑢)2
=

 𝐸𝑑𝑢

 𝐸(𝑑𝑢 )2+𝐺(𝑑𝑣)2
  

For 𝑢 = constant curve  

cos(
𝜋

2
− 𝛼) =

𝐸𝑑𝑢𝐷𝑢 +𝐺𝑑𝑣𝐷𝑣

 𝐸(𝑑𝑢 )2+𝐺(𝑑𝑣)2  .   𝐸(𝐷𝑢)2+𝐺(𝐷𝑣)2
   

Since 𝐷𝑢 = 0  

sin 𝛼 =
𝐺𝑑𝑣𝐷𝑣

 𝐸(𝑑𝑢)2+𝐺(𝑑𝑣)2  .   𝐺(𝐷𝑣)2
=

 𝐺𝑑𝑣

 𝐸(𝑑𝑢)2+𝐺(𝑑𝑣)2
   

Now,  

𝑘𝑛1 cos2 𝛼 =
𝑒

𝐸
.

𝐸(𝑑𝑢)2

𝐸(𝑑𝑢 )2+𝐺(𝑑𝑣)2 =
𝑒(𝑑𝑢 )2

𝐸(𝑑𝑢)2+𝐺(𝑑𝑣)2    

𝑘𝑛2 sin2 𝛼 =
𝑔

𝐺
.

𝐺(𝑑𝑣)2

𝐸(𝑑𝑢)2+𝐺(𝑑𝑣)2 =
𝑔(𝑑𝑣)2

𝐸(𝑑𝑢)2+𝐺(𝑑𝑣)2    

𝑘𝑛1 cos2 𝛼 + 𝑘𝑛2 sin2 𝛼 =
𝑒(𝑑𝑢)2+𝑔(𝑑𝑣)2

𝐸(𝑑𝑢)2+𝐺(𝑑𝑣)2 = 𝑘𝑛   

𝑘𝑛 = 𝑘𝑛1 cos2 𝛼 + 𝑘𝑛2 sin2 𝛼             
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where 𝛼 is the angle between any curvature direction and any arbitrary direction. This is called Euler’s theorem. 

Definition: The points where 𝑒𝑔 − 𝑓2 > 0  are called elliptic points.  Here either 𝑘𝑛1 < 0  and 𝑘𝑛2 < 0  or 

𝑘𝑛1 > 0 and  𝑘𝑛2 > 0. 

Definition: The points where 𝑒𝑔 − 𝑓2 < 0 are called hyperbolic points.  Here either 𝑘𝑛1 < 0 or 𝑘𝑛2 < 0 i.e.  

𝑘𝑛1  and  𝑘𝑛2  have opposite sign. 

Definition: The points where 𝑒𝑔 − 𝑓2 = 0 are called parabolic points.  Here either 𝑘𝑛1 = 0 or 𝑘𝑛2 = 0 also,  

𝑘𝑛1  and  𝑘𝑛2  are both zero. 

 

V. Dupin Indicatrix and Asymptotic Direction 
If the x-axis represents one of the curvature of the directions of curvature, then the distance of any point on the 

ellipse to the curve is the square root of the radius of the curvature in the corresponding direction on the surface. 

The Form of the Dupin Indicatrix for ellipse: Let us draw an ellipse where principal semi axes are 

 𝑅𝑛1 =
1

 𝐾𝑛1
      and    𝑅𝑛2 =

1

 𝐾𝑛2
 

∴  The equation to the ellipse will be  𝑘1𝑥
2 + 𝑘2𝑦

2 = 1   

 

 
 

Let A is at (𝑥1, 𝑦1) and  𝑂𝐴 =  𝑥1
2 + 𝑦1

2  

                                                 =  𝑥1
2 + 𝑥1

2 tan2 𝛼  

                                                 = 𝑥1 sec 𝛼  

Again,  𝑘1𝑥1
2 + 𝑘2𝑦2

2 = 1   

Or,   𝑘1𝑥1
2 + 𝑘2𝑥1

2 tan2 𝛼 = 1    

Or,   𝑘1𝑥1
2 cos2 𝛼 + 𝑘2𝑥1

2 sin2 𝛼 = cos2 𝛼    

Or,  𝑥1
2 =

cos 2 𝛼

𝑘1 cos 2 𝛼+𝑘2 sin 2 𝛼
     

Or,   𝑂𝐴 = 𝑥1 sec 𝛼 =
cos 𝛼

 𝑘1 cos 2 𝛼+𝑘2 sin 2 𝛼
. sec 𝛼  

                                    =
1

 𝑘1 cos 2 𝛼+𝑘2 sin 2 𝛼
          

 

But according to Euler’s theorem,  

𝑘𝑛 = 𝑘1 cos2 𝛼 + 𝑘2 sin2 𝛼         

From  above,   

𝑂𝐴 =
1

 𝑘𝑛
=  𝑅𝑛     

Hence, 𝑂𝐴 gives the normal curvature in the direction of 𝑂𝐴, where the curvature directions are in the direction 

of the coordinate axes. 

In this case 𝑘𝑛1 > 0 and  𝑘𝑛2 > 0, i.e. we have considered the case for ellipse points. 

The ellipse    𝑘𝑛1𝑥
2 + 𝑘𝑛2𝑦

2 = 1   is called Dupin Indicatrix. 

At the point where, 𝑘𝑛1 < 0 and 𝑘𝑛2 < 0, i.e. we have considered the case for hyperbolic points and we get the 

equation of hyperbola. 

At the parabolic points, say 𝑘𝑛2 = 0, we get   𝑘𝑛1𝑥
2 = 1, 

𝑥 = ±
1

 𝑘𝑛1
= ± 𝑅𝑛1    

𝑘𝑛 = 𝑘𝑛1 cos2 𝛼            

The asymptotes of Dupin Indicatrix corresponds to the asymptotic directions on the surface, the axes of 

indicatrix to the directions of the curvature. 

Definition:  A direction at a point on a surface for which  𝐼𝐼 = 𝑒𝑑𝑢2 + 2𝑓𝑑𝑢𝑑𝑣 + 𝑔𝑑𝑣2 = 0  

is called an asymptotic direction.  
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Since, 𝑘𝑛 =
𝐼𝐼

𝐼
  and I is positive definite, the asymptotic directions are also the directions in which  𝑘𝑛 = 0. At 

an elliptic point there are no asymptotic directions, at a hyperbolic point there are two distinct asymptotic 

directions, at a parabolic point there is one asymptotic direction. 

Theorem : The curvature directions bisect the asymptotic directions. 

Proof. Consider the Dupin indicatrix at the parabolic points. We have =  𝑅𝑛  . If the straight line OA be the 

asymptote of the hyperbola then A is at infinity and 𝑂𝐴 = ∞. 

 
 

𝑘𝑛 =
1

 𝑂𝐴
= 0 

∴  The asymptotes of this hyperbola give the asymptote directions. But the coordinate axes directions are in the 

direction of the coordinate axes. 

Therefore, the curvature directions bisect the asymptotic directions.  

Theorem:  Binormal of asymptotic line is the normal to the surface. 

Proof. We know, 

 𝑘𝑛 = −
𝑑𝑥.𝑑𝑁

𝑑𝑥.𝑑𝑥
  

       = −
𝑑𝑥.𝑑𝑁

(𝑑𝑠)2   

= −
𝑑𝑥

𝑑𝑠
.
𝑑𝑁

𝑑𝑠
  

= −𝑡.
𝑑𝑁

𝑑𝑠
  

But for asymptotic curve, 𝑘𝑛 = 0 

∴ for asymptotic curve,  

                  −𝑡.
𝑑𝑁

𝑑𝑠
= 0 

Again,           𝑡. 𝑁 = 0 

                
𝑑𝑡

𝑑𝑠
. 𝑁 + 𝑡.

𝑑𝑁

𝑑𝑠
= 0   

 Or,          𝑘𝑛 . 𝑁 + 𝑡.
𝑑𝑁

𝑑𝑠
= 0  

Since,  𝑡.
𝑑𝑁

𝑑𝑠
= 0 , we have for asymptotic curve, 𝑘𝑛.𝑁 = 0  

Therefore, for asymptotic curve either 𝑘 = 0 or,  𝑛.𝑁 = 0. 

∴  The straight line on a surface are asymptotic lines. 

Since  𝑡. 𝑁 = 0  and  𝑛. 𝑁 = 0.  

𝑁  is perpendicular to 𝑡  and  𝑛 ,so 𝑁 is parallel to 𝑏 . 

Hence,  𝑁 = 𝑏  

Hence, for curved asymptotic lines, surface normal coincides with the binormal of the asymptotic lines. 

 

VI. Weingarten Equations 
These equations were first investigated by J. Weingarten. The Weingarten equations express the derivatives of 

the vectors 𝑥𝑢  , 𝑥𝑣  and  𝑁  as linear combinations of these vectors with coefficients which are functions of the 

first and second fundamental coefficients.  

Theorem: On a surface 𝑥 = 𝑥(𝑢, 𝑣) , the vectors 𝑥𝑢  , 𝑥𝑣  , 𝑁𝑢  and  𝑁𝑣  lie on the tangent plane, then the 

Weingarten equations will be of the form 

𝑁𝑢 =
𝑓𝐸−𝑒𝐺

𝐸𝐺−𝐹2  𝑥𝑢 +
𝑒𝐹−𝑓𝐸

𝐸𝐺−𝐹2  𝑥𝑣    

𝑁𝑣 =
𝑔𝐹−𝑓𝐺

𝐸𝐺−𝐹2  𝑥𝑢 +
𝑓𝐹−𝑔𝐸

𝐸𝐺−𝐹2  𝑥𝑣   
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Proof: We know 𝑥𝑢  , 𝑥𝑣 are linearly independent and lie on the tangential plane. Since, 𝑁𝑢  and  𝑁𝑣 lie on the 

tangential plane, then 𝑁𝑢  and  𝑁𝑣 can be written as a linear combination of 𝑥𝑢  , 𝑥𝑣 . 

𝑁𝑢 = 𝑎1𝑥𝑢 + 𝑎2𝑥𝑣 ;  𝑁𝑣 = 𝑏1𝑥𝑢 + 𝑏2𝑥𝑣  

∴  𝑁𝑢  . 𝑥𝑢 = 𝑎1𝑥𝑢  . 𝑥𝑢 + 𝑎2𝑥𝑣  . 𝑥𝑢   

Or, −𝑒 = 𝑎1 𝐸 + 𝑎2 𝐹  

∴  𝑁𝑢  . 𝑥𝑣 = 𝑎1𝑥𝑢  . 𝑥𝑣 + 𝑎2𝑥𝑣  . 𝑥𝑣   

Or, −𝑓 = 𝑎1 𝐹 + 𝑎2  𝐺  

Or,   𝑎1 𝐸 + 𝑎2 𝐹 + 𝑒 = 0 

        𝑎1 𝐹 + 𝑎2 𝐺 + 𝑓 = 0  
 𝑎1

𝑓𝐸−𝑒𝐺
=

𝑎2

𝑒𝐹−𝑓𝐸
=

1

𝐸𝐺−𝐹2  

Or,   𝑎1 =
𝑓𝐸−𝑒𝐺

𝐸𝐺−𝐹2   ,  𝑎2 =
𝑒𝐹−𝑓𝐸

𝐸𝐺−𝐹2    

Again,   𝑁𝑣  . 𝑥𝑢 = 𝑏1𝑥𝑢  . 𝑥𝑢 + 𝑏2𝑥𝑣  . 𝑥𝑢   

Or,  −𝑓 = 𝑏1 𝐸 + 𝑏2  𝐹  

∴  𝑁𝑣  . 𝑥𝑣 = 𝑏1𝑥𝑢  . 𝑥𝑣 + 𝑏2𝑥𝑣  . 𝑥𝑣  

Or,  −𝑔 = 𝑏1  𝐹 + 𝑏2  𝐺 

Or,     𝑏1 𝐸 + 𝑏2  𝐹 + 𝑓 = 0  

          𝑏1  𝐹 + 𝑏2 𝐺 + 𝑔 = 0  
 𝑏1

𝑔𝐹−𝑓𝐺
=

𝑏2

𝑓𝐹−𝑔𝐸
=

1

𝐸𝐺−𝐹2   

𝑏1 =
𝑔𝐹−𝑓𝐺

𝐸𝐺−𝐹2   ,  𝑏2 =
𝑓𝐹−𝑔𝐸

𝐸𝐺−𝐹2  

Therefore,     𝑁𝑢 =
𝑓𝐸−𝑒𝐺

𝐸𝐺−𝐹2  𝑥𝑢 +
𝑒𝐹−𝑓𝐸

𝐸𝐺−𝐹2  𝑥𝑣            (4.01) 

                        𝑁𝑣 =
𝑔𝐹−𝑓𝐺

𝐸𝐺−𝐹2  𝑥𝑢 +
𝑓𝐹−𝑔𝐸

𝐸𝐺−𝐹2  𝑥𝑣           (4.02) 

The equations (4.01) and (4.02) are called Weingarten equations. 

Theorem: (Beltrami Enneper) The torsion of the asymptotic lines through point of surface [7] is                  

                                                     𝜏 = ± −𝑘 . 

Where k is the Gaussian curvature at the point. 

Proof: We know, for asymptotic curve,  

𝑘𝑛 = −
𝑑𝑥.𝑑𝑁

𝑑𝑥.𝑑𝑥
  =

𝐼𝐼

𝐼
  = 0 

Hence, for asymptotic curve, 𝐼𝐼 = 0  and  𝑁 = 𝑏 . 

Again, we have, 𝑑𝑁. 𝑑𝑁 − 2𝑀𝐼𝐼 + 𝑘𝐼 = 0 

Where, 𝐼, 𝐼𝐼  and 𝐼𝐼𝐼 =  first, second and third fundamental form, 𝑀 =  Mean curvature & 𝑘 =  Gaussian 

curvature. 

Or,  𝑑𝑁. 𝑑𝑁 + 𝑘𝐼 = 0   [∵ 𝐼𝐼 = 0] 
Or,  𝑑𝑁. 𝑑𝑁 + 𝑘 𝑑𝑥. 𝑑𝑥 = 0    

Or,  𝑑𝑏. 𝑑𝑏 + 𝑘 𝑑𝑠 2 = 0                            [∵ 𝑑𝑥. 𝑑𝑥 =  𝑑𝑠 2] 

Or,  
𝑑𝑏

𝑑𝑠
.
𝑑𝑏

𝑑𝑠
+ 𝑘 = 0 

Or,  𝜏2 + 𝑘 = 0    [∵  
𝑑𝑏

𝑑𝑠
= −𝜏𝑛 ,

𝑑𝑏

𝑑𝑠
.
𝑑𝑏

𝑑𝑠
= 𝜏2 𝑎𝑠  𝑛. 𝑛 = 1]  

Or,  𝜏2 = −𝑘 

∴  𝜏 = ± −𝑘   

 

VII. Conclusion 
Here we have discussed curvature elaborately. We have solved some examples and also problems related to this 

topic.  
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