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Abstract: In this paper a mathematical model is formulated to analyze the transmission of AIDS with drug 

resistance. The total population under consideration is divided into seven compartments viz., Susceptable, 

Primary, Asymptomatic, Symptomatic, Resistant, and AIDS compartments. The well-possedness of the 

formulated model isproved. The local stabilities of the model are analyzed using Routh Hurwitz criterion. Next 

generation matrix method is used to find the basic reproduction number. The study has shwn that natural death 

rate is the most sensitive parameter in the model formulated.The transmission rate is one of the factors that 

determines the extinction or persistence of disease in the population. Finally, numerical solutions of the model 

equations are simulated using MATLAB. 
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I. Introduction 
Beginning from its discovery in early 1980s, AIDS (Acquired Immunodeficiency syndrome) and its 

causing virus, HIV (Human Immunodeficiency Virus) has brought a great impact around the world both as 

disease and source of stigma and discrimination (Cheneke et al. [1]. In 2016, it is estimated that 36.7 million 

people were living as HIV positive, including 1.8 million a newly infected people in the same year, and 1 

million people died because of AIDS related illness. Since the appearance of the epidemic, it is estimated that 

76.1 million people have been infected with HIV and about 35 million individuals has been died of AIDS 

related illness [3]. HIV is a virus that slowly attacks the immune system. This immune system is our body’s 

natural defense toward illness. If a person becomes infected with HIV virus, her or his immune system become 

weak which leads to poor healthy and hard to fight off infections and diseases [4]. The virus has potential to 

destroys or reduce a type of white blood cell called T-helper cells and makes copies of itself inside these cells. 

T-helper cells are also known as CD4 cells and There is no cure or vaccine to permanently eradicate AIDS from 

human [3].  

Based on WHO clinical staging of HIV/AIDS disease, the HIV infection is classified into four distinct 

stages viz., (i) Primary/Acute stage (ii) Asymptomatic stage (iii) Symptomatic stage and (iv) Advanced AIDS 

stage [2, 4].  

Organization of the paper: In Section 2, assumptions of the model are stated and based on which a 

mathematical model fordescribing the population dynamics of human population related to HIV/AIDS disease is 

formulated. In section 3, well possedness of the model formulation, stability analysisof the equilibrium points 

and reproduction number are included. In Section 4, numerical simulationstudiesof the model equations are 

performed by assigning various sets of numerical values to the model parameters.In Section 5 sensitivity 

analysis of model parameters towards the reproduction number is carried out. In section 6 Result and Discussion 

are presented. Finally, the paper ends with concluding remarks in Section 7. 

 

II. Model Formulation 
In this study the dynamical systemof ordinary differential equations is formulated to show the 

dynamics of human population in the presence of Human Immunodeficiency Virus (HIV)ART as combined 

treatments. This  model is modifcation of the works done in [4]. This previous work is six compartmental 

model. Here, a deterministic model is formulated in which human population is divided into seven 

compartments. The descriptions of compartments areas follows:(i) Susceptible compartment. It is denoted 

by   𝑆 𝑡 . These are humans who are free of  HIV infection but are capable of becoming infected future in 

infectious environment(ii) Primary compartment. It is denoted by  𝑃(𝑡).This compartment includes all humans 

who infected with HIV for the first time and that do not know their HIV status but transmit the disease to others 

with effective contact (iii) Asymptomaticcompartment. It is denoted by  𝐴 𝑡 . This compartment includes all 

humans who know that they are infected with virus but no signs of infections is visible and abstain from 

transmitting virus to others.Theyjoin the treatment compartement at a rate ∅ and Sypmtomatic compartement at 
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the rate  𝜂 (iv) Symptomatic compartment. It is denoted by  𝐽 𝑡 . This compartment includes of infectious 

humansand they show signs of infections. Such humans manifest their weakness as they harmed by virus and 

abstain from transmitting virus to others and join treatment compartment at some rate𝜔 (v) Treatment 

compartment. It is denoted by  𝑇 𝑡 . This compartment includes portion of asymptomatic and symptomatic 

compartments that join it because of infection (vi) Drug resistant compartment. This compartement includes 

portion of individuals from treatment class that are resistant to ART. (vii) AIDS compartment.It is denoted 

by  𝑉 𝑡 . This compartment includes who are at last stage or advanced stage of HIV.  

Now, a mathematical model of Human Immunodeficiency virus (HIV) is formulated based on the 

stated assumptions on the human population as listed below:  

(i) The total size of human’s population under considerationis assumed to be constant. 

(ii)  The numbers of births and deathsof human’spopulation are assumed to be equal. 

(iii) Deterministic dynamical system in the presence of Human Immunodeficiency virus (HIV) classifies 

human population under observation into sixcompartments as SPAJTV at any time. 

(iv) Susceptible humans are recruited to the compartment 𝑆 𝑡  at some constant rate  𝜏. 

(v) Susceptible humanscan be infected if they make effective contact withprimary infected population 

whose status of HIV is not known yet and joinprimary infected compartment at a constant rate   𝛽. 

(vi) Primary infected humanstransfer into asymptomatic compartment at a constant rate  𝜅. 

(vii) Asymptomatic humanstransfer into symptomatic humans at a rate   𝜂 and to treatment compartment at 

the rate of 𝜙. 

(viii) The symptomatic humanstransfer intotreatment compartment at the rate 𝜔. 

(ix) The treated and drug resistant humans transfer into resistant compartment at the rate of   𝛾.  

(x) Resistant compartment individuals transfer to AIDS compartment at the rate of  𝜌. 

(xi) All categories of human’s compartmentsface the same natural mortality with a rate  𝜇. 

(xii) All AIDS humanssuffer disease induced death at a constant rate  𝛿.  

(xiii) All parameters used in the dynamical system are positive. 

 

Table 1 Notations and description of model variables 
Variable Description 

𝐒 𝐭  Population size of susceptible humans 

𝑷 𝒕  Population size of primary infected humans 

𝐀 𝐭  Population size of asymptomatic humans 

𝐉 𝐭  Population size of symptomatic humans 

𝐓 𝐭  Population size of humans under treatment 

𝑹 𝒕  Populatin size of humans under treatment 

𝐕 𝐭  Population size of AIDS humans 

 

Table 2 Model parameters notations and description 
Parameter Description 

𝜏 Recruitment rate of susceptible human population. With this constant rate new humans 

will born and enter into susceptible compartment 

𝜷 

 

Transmission rate of primaryinfected humans. With this rate primary infected humans 

transfer into   𝑃 

𝜿 Rate of humans transferring from compartment  𝑃 to  𝐴 

𝜼 Rate of humans transferring from compartment  𝐴 to  𝐽 

𝝎 

 

Rate of humans transferring from compartment  𝐽 to  𝑇  

𝝓 Rate of humans transferring from compartment  𝐴  to  𝑇 

𝝁 Natural death rate. With this rate humansinallcompartments die naturally 

𝜸 Rate of humans transferring from compartment   𝑇   to  𝑅. 

𝝆 Rate of humans transferring from compartment   𝑅   to  𝑉. 

 𝜹  Disease induced death rate of AIDS humans 

 

Now considering basic assumptions and description of both model variables and parameters given the 

schematic diagram of the formulated deterministic dynamical system is described in the Figure 1. 
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Figure 1 Schematic diagram of compartmental structure of the model 

 

Based on the model assumptions, the notations of variables and parameters and the schematic diagram, the 

model equations are formulated and are given as follows:  

 𝑑𝑆 𝑑𝑡 = 𝜏 − 𝛽𝑆𝑃 − 𝑆                         (1) 

  𝑑𝑃 𝑑𝑡 = 𝛽𝑆𝑃 −  𝜅 + 𝜇 𝑃                   (2) 

    𝑑𝐴 𝑑𝑡 = 𝜅𝑃 −  𝜙 + 𝜂 + 𝜇 𝐴            (3) 

𝑑𝐽 𝑑𝑡 = 𝜂𝐴 −  𝜔 + 𝜇 𝐽                        (4) 

𝑑𝑇 𝑑𝑡 = 𝜙𝐴 + 𝜔𝐽 −  𝛾 + 𝜇 𝑇              (5) 

𝑑𝑅 𝑑𝑡 = 𝛾𝑇 −  𝜌 + 𝜇 𝑅                       (6) 

𝑑𝑉 𝑑𝑡 = 𝜌𝑅 − (𝛿 + 𝜇)𝑉                        (7) 

The non-negative initial conditions of the model equations (1) – (7) are denoted by  𝑆 0 ≥ 0,   𝑃 0 ≥ 0,
𝐴 0 ≥ 0, 𝐽 0 ≥ 0, 𝑇 0 ≥ 0, 𝑅 0 ≥ 0,   𝑉(0) ≥ 0. This system consists of seven first order non-linear 

ordinary differential equations. 

 

III. Mathematical analysis of the model 
In this section we describe the mathematical analysis of the presentimproved and modified model. The 

analysis consists of the following points(i) existence, positivity and boundedness of solutions (ii) Equilibrium 

points (iii) disease free equilibrium points (iv) endemic equilibrium points (v) basic reproduction 

number(vi)stability analysis of the disease free equilibrium points(vii)local stability of disease free equilibrium 

point (viii) global stability of disease free equilibrium point. These mathematical aspects of the model are 

presented and discussed in the following sub-sections respectively. 

 

3.1 Existence, Positivity and Boundedness of solution 

In order to say that the formulateddynamical system is biologically valid and mathematically well-

posed, it is required to show that the solutions of the system of differential equations (1) – (7) exist,non-negative 

and bounded for all time 𝑡 . It is done starting with proving Lemma 1. 

Lemma 1 (Existence) Solutions of the model equations (1) – (7) together with the initial conditions𝑆 0 ≥ 0,
𝑃 0 ≥ 0, 𝐴 0 ≥ 0, 𝐽 0 ≥ 0, 𝑇 𝑡 , 𝑅 𝑡 , 𝑉(0) ≥ 0 exist inℝ+

7 i.e. the model variables 𝑆 𝑡 ,   𝑃 𝑡 , 𝐴 𝑡 ,
𝐽 𝑡 , 𝑇 𝑡 , 𝑅 𝑡 ,   and   𝑉(𝑡)  exist for all  𝑡  and will remain in   ℝ+

7 . 

Proof: Let the right hand sides of the system of equations (1) – (7) are expressed as follows: 

 𝑑𝑆 𝑑𝑡 = 𝜏 − 𝛽𝑆𝑃 − 𝑆 ≡ 𝑔1 𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉  

 𝑑𝑃 𝑑𝑡 = 𝛽𝑆𝑃 −  𝜅 + 𝜇 𝑃 ≡ 𝑔2 𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉  

    𝑑𝐴 𝑑𝑡 = 𝜅𝑃 −  𝜙 + 𝜂 + 𝜇 𝐴 ≡ 𝑔3 𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉  

𝑑𝐽 𝑑𝑡 = 𝜂𝐴 −  𝜔 + 𝜇 𝐽 ≡ 𝑔4 𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉  

𝑑𝑇 𝑑𝑡 = 𝜙𝐴 + 𝜔𝐽 −  𝛾 + 𝜇 𝑇 ≡ 𝑔5 𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉  

𝑑𝑅 𝑑𝑡 = 𝛾𝑇 −  𝜌 + 𝜇 𝑅 ≡ 𝑔6 𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉  

𝑑𝑉 𝑑𝑡 = 𝜌𝑅 − (𝛿 + 𝜇)𝑉 ≡ 𝑔7 𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉  

According to Derrick and Groosman theorem, let 𝑅 denote the region𝑅 =    𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉 ∈
ℝ+

7  ;    N ≤ τ 𝜇  . Then equations (1) – (7) have a unique solution if  𝜕𝑔𝑖  𝜕𝑥𝑗 ,   ∀  𝑖, 𝑗 = 1, 2, 3, 4, 5, 6,

7  are continuous and bounded in𝑅 . Here, the notations𝑥1 = 𝑆,   𝑥2 = 𝑃, 𝑥3 = 𝐴, 𝑥4 = 𝐽,   𝑥5 = 𝑇, 𝑥6 = 𝑅,
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𝑥7 = 𝑉, are employed. The Existence, continuity and the boundedness of𝑔1, 𝑔2 , 𝑔3,    𝑔4 , 𝑔5, 𝑔6 and 𝑔7are 

verified as here under: 

 

Table 2 Verification of Continuity and Boundedness of the Function 
Function Existence and Continuity Boundedness 

 

 

𝑔1 

 𝜕𝑔1  𝜕𝑆  = − 𝛽𝑃 + 𝜇  
 𝜕𝑔1  𝜕𝑃  = −𝛽𝑆 

 𝜕𝑔1  𝜕𝐴  = 0 

 𝜕𝑔1  𝜕𝐽  = 0 

 𝜕𝑔1  𝜕𝑇  = 0 

 𝜕𝑔1  𝜕𝑅  = 0 

 𝜕𝑔1  𝜕𝑉  = 0 

  𝜕𝑔1  𝜕𝑆   =  − 𝛽𝑃 + 𝜇  < ∞ 

  𝜕𝑔1  𝜕𝑃   =  −𝛽𝑆 < ∞ 

  𝜕𝑔1  𝜕𝐴   = 0 < ∞ 

  𝜕𝑔1  𝜕𝐽   = 0 < ∞ 

  𝜕𝑔1  𝜕𝑇   = 0 < ∞ 

  𝜕𝑔1  𝜕𝑇   = 0 < ∞ 

  𝜕𝑔1  𝜕𝑉   = 0 < ∞ 

 

 

𝑔2 

 𝜕𝑔2  𝜕𝑆  = 𝛽𝑃 

 𝜕𝑔2  𝜕𝑃  = 𝛽𝑆 −  𝜅 + 𝜇  

 𝜕𝑔2  𝜕𝐴  = 0 

 𝜕𝑔2  𝜕𝐽  = 0 

 𝜕𝑔2  𝜕𝑇  = 0 

 𝜕𝑔2  𝜕𝑅  = 0 
 𝜕𝑔2  𝜕𝑉  = 0 

  𝜕𝑔2  𝜕𝑆   =  𝛽𝑃 < ∞ 

  𝜕𝑔2  𝜕𝑃   =  𝛽𝑆 −  𝜅 + 𝜇  < ∞ 

  𝜕𝑔2  𝜕𝐴   = 0 < ∞ 

  𝜕𝑔2  𝜕𝐽   = 0 < ∞ 

  𝜕𝑔2  𝜕𝑇   = 0 < ∞ 

  𝜕𝑔2  𝜕𝑇   = 0 < ∞ 
  𝜕𝑔2  𝜕𝑉   = 0 < ∞ 

 

 

 

 

𝑔3 
 

 𝜕𝑔3  𝜕𝑆  = 0 

 𝜕𝑔3  𝜕𝑃  = 𝜅 

 𝜕𝑔3  𝜕𝐴  = − 𝜙 + 𝜂 + 𝜇  

 𝜕𝑔3  𝜕𝐽  = 0 
 𝜕𝑔3  𝜕𝑇  = 0 

 𝜕𝑔3  𝜕𝑅  = 0 

 𝜕𝑔3  𝜕𝑉  = 0 

  𝜕𝑔3  𝜕𝑆   = 0 < ∞ 

  𝜕𝑔3  𝜕𝑃   = 𝜅 < ∞ 

  𝜕𝑔3  𝜕𝐴   = 𝜙 + 𝜂 + 𝜇 < ∞ 

  𝜕𝑔3  𝜕𝐽   = 0 < ∞ 
  𝜕𝑔3  𝜕𝑇   = 0 < ∞ 

  𝜕𝑔3  𝜕𝑅   = 0 < ∞ 

  𝜕𝑔3  𝜕𝑉   = 0 < ∞ 

 

 

𝑔4 
 

 

 𝜕𝑔4  𝜕𝑆  = 0 

 𝜕𝑔4  𝜕𝑃  = 0 
 𝜕𝑔4  𝜕𝐴  = 𝜂 

 𝜕𝑔4  𝜕𝐽  = − 𝜔 + 𝜇  

 𝜕𝑔4  𝜕𝑇  = 0 

 𝜕𝑔4  𝜕𝑅  = 0 

 𝜕𝑔4  𝜕𝑉  = 0 

  𝜕𝑔4  𝜕𝑆   = 0 < ∞ 

  𝜕𝑔4  𝜕𝑃   = 0 < ∞ 
  𝜕𝑔4  𝜕𝐴   = 𝜂 < ∞ 

  𝜕𝑔4  𝜕𝐽   = 𝜔 + 𝜇 < ∞ 

  𝜕𝑔4  𝜕𝑇   = 0 < ∞ 

 𝜕𝑔4  𝜕𝑅  = 0 

  𝜕𝑔4  𝜕𝑉   = 0 < ∞ 

 

𝑔5 

 𝜕𝑔5  𝜕𝑆  = 0 

 𝜕𝑔5  𝜕𝑃  = 0 

 𝜕𝑔5  𝜕𝐴  = 𝜙 

 𝜕𝑔5  𝜕𝐽  = 𝜔 

 𝜕𝑔5  𝜕𝑇  = − 𝛾 + 𝜇  
 𝜕𝑔5  𝜕𝑅  = 0 

 𝜕𝑔5  𝜕𝑉  = 0 

  𝜕𝑔5  𝜕𝑆   = 0 < ∞ 

  𝜕𝑔5  𝜕𝑃   = 0 < ∞ 

  𝜕𝑔5  𝜕𝐴   = 𝜙 < ∞ 

  𝜕𝑔5  𝜕𝐽   = 𝜔 < ∞ 

  𝜕𝑔5  𝜕𝑇   =  𝛾 + 𝜇 < ∞ 

  𝜕𝑔5  𝜕𝑅   = 0 < ∞ 

  𝜕𝑔5  𝜕𝑉   = 0 < ∞ 

𝑔6  𝜕𝑔6  𝜕𝑆  = 0 

 𝜕𝑔6  𝜕𝑃  = 0 

 𝜕𝑔6  𝜕𝐴  = 0 

 𝜕𝑔6  𝜕𝐽  = 0 

 𝜕𝑔6  𝜕𝑇  = 𝛾 

 𝜕𝑔6  𝜕𝑅  = − 𝜌 + 𝜇  
 𝜕𝑔6  𝜕𝑉  = −(𝛿 + 𝜇) 

  𝜕𝑔6  𝜕𝑆   = 0 < ∞ 

  𝜕𝑔6  𝜕𝑃   = 0 < ∞ 

  𝜕𝑔6  𝜕𝐴   = 0 < ∞ 

  𝜕𝑔6  𝜕𝐽   = 0 < ∞ 

  𝜕𝑔6  𝜕𝑇   = 𝛾 < ∞ 

  𝜕𝑔6  𝜕𝑅   = 𝜌 + 𝜇 < ∞ 

  𝜕𝑔6  𝜕𝑉   = 𝛿 + 𝜇 < ∞ 

𝑔7  𝜕𝑔7  𝜕𝑆  = 0 

 𝜕𝑔7  𝜕𝑃  = 0 

 𝜕𝑔7  𝜕𝐴  = 0 

 𝜕𝑔7  𝜕𝐽  = 0 
 𝜕𝑔7  𝜕𝑇  = 0 

 𝜕𝑔7  𝜕𝑅  = 𝜌 

 𝜕𝑔7  𝜕𝑉  = −(𝛿 + 𝜇) 

  𝜕𝑔7  𝜕𝑆   = 0 < ∞ 

  𝜕𝑔7  𝜕𝑃   = 0 < ∞ 

  𝜕𝑔7  𝜕𝐴   = 0 < ∞ 

  𝜕𝑔7  𝜕𝐽   = 0 < ∞ 
  𝜕𝑔7  𝜕𝑇   = 0 < ∞ 

  𝜕𝑔7  𝜕𝑅   = 𝜌 < ∞ 

  𝜕𝑔7  𝜕𝑉   = 𝛿 + 𝜇 < ∞ 

 

Thus, all the partial derivatives  𝜕𝑔𝑖  𝜕𝑥𝑗  :  𝑖, 𝑗 = 1, 2, 3, 4, 5, 6, 7    exist, and are both continuous 

and bounded in𝑅. Hence, by Derrick and Groosman theorem, a solution for the model (1) – (7) exists and is 

unique. 

Lemma 2 (Positivity) Solutions of the model equations (1) – (7) together with the initial conditions   𝑆 0 ≥ 0,
𝑃 0 ≥ 0, 𝐴 0 ≥ 0, 𝐽 0 ≥ 0, 𝑇 0 ≥ 0, 𝑅 0 ≥ 0, 𝑉(0) ≥ 0 are always non-negative (OR) the model 

variables 𝑆,   𝑃, 𝐴, 𝐽, 𝑇, 𝑅and 𝑉are non-negative for all 𝑡 and will remain in   ℝ+
7 .  

Proof: Positivity of the solutions of model equations is shown separately for each of the model variables  

𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑅,  and   𝑉. 

Positivity of  𝑆 𝑡 : The model equation (1) given by   𝑑𝑆 𝑑𝑡 = 𝜏 − 𝛽𝑆𝑃 − 𝑆  can be expressed without 

loss of generality, after eliminating the positive term𝜏  appearing on the right hand side, as an inequality as 

𝑑𝑆 𝑑𝑡 ≥ − 𝛽𝑃 + 𝜇 𝑆 . Using variables separable method and on applying integration, the solution of the 

foregoing differentially inequality can be obtained as   𝑆 𝑡 ≥ 𝑆(0)𝑒−𝜇𝑡−𝛽  𝑃𝑑𝑡 . Recall that an exponential 
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function is always non–negative irrespective of the sign of the exponent i.e. the exponential function 

𝑒−𝜇𝑡−𝛽  𝑃𝑑𝑡  is a non-negative quantity. Hence, it can be concluded that  𝑆 𝑡 ≥ 0.                               

Positivity of  𝑃 𝑡 : The model equation (2) given by 𝑑𝑃 𝑑𝑡 = 𝛽𝑆𝑃 −  𝜅 + 𝜇 𝑃can be expressed 

without loss of generality, after eliminating positive term 𝛽𝑆𝑃  which is appearing on the right hand side, as an 

inequality as𝑑𝑃 𝑑𝑡 ≥ − 𝜅 + 𝜇 𝑃. Using variables separable method and on applying integration, the solution 

of the foregoing differentially inequality can be obtained as    𝑃(𝑡) ≥ 𝑃(0)𝑒− 𝜅+𝜇 𝑡. Recall that an exponential 

function is always non–negative irrespective of the sign of the exponent i.e. the exponential function 𝑒− 𝜅+𝜇 𝑡 is 

a non-negative quantity. Hence, it can be concluded that  𝑃 𝑡 ≥ 0.  

Positivity of  𝐴 𝑡 : The model equation (3) given by     𝑑𝐴 𝑑𝑡 = 𝜅𝑃 −  𝜙 + 𝜂 + 𝜇 𝐴  can be expressed 

without loss of generality, after eliminating the positive terms𝜅𝑃 which is appearing on the right hand side, as an 

inequality as 𝑑𝐴 𝑑𝑡 ≥ − 𝜙 + 𝜂 + 𝜇 𝐴  Using variables separable method and on applying integration, the 

solution of the foregoing differentially inequality can be obtained as  𝐴 𝑡 ≥ 𝐴(0)𝑒− 𝜙+𝜂+𝜇 𝑡 . Recall that an 

exponential function is always non–negative irrespective of the sign of the exponent i.e. the exponential function 

𝑒− 𝜙+𝜂+𝜇 𝑡  is a non-negative quantity. Hence, it can be concluded that  𝐴 𝑡 ≥ 0.   

Positivity of  𝐽 𝑡 : The model equation (4) given by𝑑𝐽 𝑑𝑡 = 𝜂𝐴 −  𝜔 + 𝜇 𝐽 can be expressed without 

loss of generality, after eliminating the positive term  𝜃𝐴  which is appearing on the right hand side, as an 

inequality as 𝑑𝐽 𝑑𝑡 ≥ − 𝜔 + 𝜇 𝐽. Using variables separable method and on applying integration, the solution 

of the foregoing differentially inequality can be obtained as   𝐽(𝑡) ≥ 𝐽(0)𝑒− 𝜔+𝜇 𝑡. Recall that an exponential 

function is always non–negative irrespective of the sign of the exponent i.e. the exponential function𝑒− 𝜔+𝜇 𝑡 is a 

non-negative quantity. Hence, it can be concluded that  𝐽 𝑡 ≥ 0.  

Positivity of  𝑇 𝑡 : The model equation (5) given by𝑑𝐽 𝑑𝑡 = 𝜙𝐴 + 𝜔𝐽 −  𝛾 + 𝜇 𝑇  can be expressed 

without loss of generality, after eliminating the positive terms 𝜔𝐽and 𝜙𝐴  which is appearing on the right hand 

side, as an inequality as 𝑑𝑇 𝑑𝑡 ≥ − 𝛾 + 𝜇 𝑇   . Using variables separable method and on applying integration, 

the solution of the foregoing differentially inequality can be obtained as   𝑇(𝑡) ≥ 𝐽(0)𝑒− 𝛾+𝜇 𝑡 . Recall that an 

exponential function is always non–negative irrespective of the sign of the exponent i.e. the exponential 

function𝑒− 𝛾+𝜇 𝑡 is a non-negative quantity. Hence, it can be concluded that  𝑇 𝑡 ≥ 0.  

Positivity of  𝑅 𝑡 : The model equation (6) given by𝑑𝑅 𝑑𝑡 = 𝛾𝑇 −  𝜌 + 𝜇 𝑅  can be expressed 

without loss of generality, after eliminating the positive terms 𝛾𝑇  which is appearing on the right hand side, as 

an inequality as 𝑑𝑅 𝑑𝑡 ≥ − 𝜌 + 𝜇 𝑅  . Using variables separable method and on applying integration, the 

solution of the foregoing differentially inequality can be obtained as   𝑅(𝑡) ≥ 𝐽(0)𝑒− 𝜌+𝜇 𝑡 . Recall that an 

exponential function is always non–negative irrespective of the sign of the exponent i.e. the exponential 

function𝑒− 𝜌+𝜇 𝑡 is a non-negative quantity. Hence, it can be concluded that  𝑇 𝑡 ≥ 0.  

 

Positivity of  𝑉 𝑡 : The model equation (7) given by 𝑑𝑉 𝑑𝑡 = 𝜌𝑅 − (𝛿 + 𝜇)𝑉 can be expressed 

without loss of generality, after eliminating the positive term𝜌𝑅  which is appearing on the right hand side, as an 

inequality as 𝑑𝑉 𝑑𝑡 ≥ − 𝛿 + 𝜇 𝑉 . Using variables separable method and on applying integration, the solution 

of the foregoing differentially inequality can be obtained as   𝑉(𝑡) ≥ 𝑉(0)𝑒−(𝛿+𝜇)𝑡. Recall that an exponential 

function is always non–negative irrespective of the sign of the exponent i.e. the exponential function𝑒−(𝛿+𝜇)𝑡 is a 

non-negative quantity. Hence, it can be concluded that  𝑉 𝑡 ≥ 0.  

Thus, the model variables 𝑆,   𝑃, 𝐴, 𝐽, 𝑇, 𝑅 and 𝑉  representing population sizes of various types of human 

population are positive quantities and will remain in ℝ+
 7for all𝑡. 

Lemma 2 (Boundedness) Thenon-negative solutions of the system of model equations (1) – (7) are bounded. 

That is the model variables 𝑆, 𝑃, 𝐴, 𝐽, 𝑇, R   and   𝑉  are all bounded for all 3 . 
Proof: Recall that each population size is bounded if and only if the total population size is bounded. Hence, in 

the present case it is sufficient to prove that the total population size 𝑁 𝑡 = 𝑆 𝑡 + 𝑃 𝑡 + 𝐴 𝑡 +  𝐽 𝑡 +
𝑇 𝑡 + R 𝑡 +   𝑉(𝑡) is bounded for all  𝑡. It can be begun by showing that all feasible solutions are uniformly 

bounded in a proper subset 𝑅 ∈ ℝ+
7 where the feasible region 𝐷  is given 

by𝐷 =    𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉 ∈ ℝ+
7   ;   N ≤ τ 𝜇  .  

Now, summation of all the five equations (1) – (7) of the model gives  dN(t) dt = τ − μN t .  Again 

considering total population N  and subpopulation V further we can write the equation as inequality of the 

formdN dt  ≤ τ − μN t . Equivalently this inequality can be expressed as a linear ordinary differential 

inequality as dN dt +  μN ≤  τ giving general solution upon solving asN t ≤ τ μ + 𝑐𝑒−μ𝑡 . But, the term 

 𝑁(0) denotes the initial values of the respective variableN t = N 0 at t = 0. Thus, the particular solution can 

be expressed asN t ≤ τ μ +   N 0 −  τ μ   𝑒−μ𝑡 . Further, it can be observed that   𝑁 𝑡 → τ μ as   𝑡 → ∞. 

That is, total population size  𝑁 𝑡 takes off from a value N 0  at the initial time t = 0 and ends up with a 

bounded valueτ μ   as the time  𝑡  progresses to infinity. Thus, it can be concluded that   𝑁 𝑡  is bounded within 

a pair of values as    0 ≤ 𝑁 𝑡 ≤ τ μ . 
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Therefore, τ μ is an upper bound of  𝑁(𝑡). Hence, feasible solution of the system of model equations 

(1) – (7) remains in the region 𝑅 which is a positively invariant set. Thus, the system is biologically meaningful 

in the domain𝑅. Further, it is sufficient to consider the dynamics of the populations represented by the model 

system (1) – (7) in that domain. 

Therefore, it can be summarized the result of Lemma 2 as “the model variables  𝑆,   𝑃, 𝐴,   𝐽, 𝑇, 𝑅 and  

 𝑉  are bounded for all  𝑡”. 

Therefore, the formulated model is biologically meaningful and mathematically well-posed. 

 

3.2 Equilibrium points 

 In order to understand the dynamics of the model, it is necessary to determine equilibrium points of the 

solution region. An equilibrium solution is a steady state solution of the model equations (1) – (7) in the sense 

that if the system begins at such a state, it will remain there for all times. In other words, the population sizes 

remain unchanged and thus the rate of change for each population vanishes. Equilibrium points of the model are 

found, categorized, stability analysis is conducted and the results have been presented in the following sub-

sections: 

 

3.2.1 Disease free equilibrium point 
Disease free equilibrium point is a steady state solution where there is no disease in the population. 

Now, absence of disease implies that 𝑃 = 𝐴 = 𝐽 = 𝑇 = 𝑅 = 𝑉 =  0 and also setting the right hand sides of the 

model equations (1) – (6) equal to zero results in giving  𝜏 − 𝜇𝑆 = 0, solution of which is the population size of 

the susceptible humans at the disease free equilibrium and is given by  𝑆0 =  τ μ  .Thus, the disease free 

equilibrium point of the model equations(1) – (7) is given by 

𝐸0 =  𝑆0 , 0, 0, 0, 0, 0, 0 =  τ μ , 0, 0, 0, 0, 0, 0  

3.2.2  

Endemic equilibrium point 

The endemic equilibrium point 𝐸1 = {𝑆1 , 𝑃1 , 𝐴1, 𝐽1, 𝑇1, 𝑅1 , 𝑉1} is a steady state solution 

when the disease persists in the population. The endemic equilibrium point is obtained by setting rates of 

changes of variables with respect to time of model equations (1) – (7) to zero. That is, setting 𝑑𝑆 𝑑𝑡 =
𝑑𝐴 𝑑𝑡 = 𝑑𝐽 𝑑𝑡 = 𝑑𝑇 𝑑𝑡 = 𝑑𝑉 𝑑𝑡 = 0 the model equations take the form as 

 𝜏 − 𝛽𝑆𝑃 − 𝜇𝑆 = 0       (8) 

𝛽𝑆𝑃 − 𝑎𝑃 = 0               (9) 

𝜅𝑃 − 𝑏𝐴 = 0                    (10) 

𝜂𝐴 − 𝑐𝐽 = 0                     (11) 

𝜙𝐴 + 𝜔𝐽 − 𝑑𝑇 = 0          (12) 

𝛾𝑇 − 𝑒𝑅 = 0                    (13) 

𝜌𝑅 − 𝑓𝑉 = 0                   (14) 

Here in (8) – (14), the quantities 𝑎,   𝑏,   𝑐  represent the parametric expressions as  𝑎 = 𝜅 + 𝜇,   𝑏 = 𝜙 +
𝜂 + 𝜇,    𝑐 = 𝜔 + 𝜇,   𝑑 = 𝛾 + 𝜇, 𝑒 = 𝜌 + 𝜇, 𝑓 = 𝛿 + 𝜇. Clearly, solutions of (8) – (14) will provide endemic 

equilibrium of the model equations and that is obtained as follows: 

(i) Equations (9) can be rearranged as  𝛽𝑆 − 𝑎 𝑃 = 0  leading to the solutions    𝛽𝑆 − 𝑎 = 0  or   𝑃 = 0 or 

both. However, 𝑃 does not vanish since the disease is assumed to persist. Thus, it leads to the only 

meaningful solution   𝛽𝑆 − 𝑎 = 0   or equivalently  𝑆 =  𝑎 𝛽  . That is,   𝑆1 component of  𝐸1    is given 

by 

𝑆1 ≡  𝑆 =   𝑎 𝛽   =   𝜏 𝜇𝑅0                           (15)   

(ii) Now the solution for  𝑃 can be obtained by substituting equation (15) into equation (8) and rewriting 

the resulting equation as   𝜏 − 𝛽 𝜏 𝜇𝑅0  𝑃 − 𝜇 𝜏 𝜇𝑅0  = 0   giving 

𝑃1 ≡ 𝑃 =  𝜇 𝛽   𝑅0 − 1                                                                             (16) 

(iii) Substituting  𝑃1   value from (16) into (10) and solving for  𝐴  we get the following  

𝐴1 ≡ 𝐴 =  𝑘𝜇 𝑏𝛽   𝑅0 − 1                                                              (17) 

(iv) Substituting   𝐽1   value from (17) into (11) and solving for 𝐽  we get the following  

𝐽1 ≡ 𝐽 =  𝜂𝑘𝜇 𝑏𝑐𝛽   𝑅0 − 1                                                             (18) 

(v) Substituting  𝑇1    value from (18) into (12) and solving for  𝑇  we get the following 

𝑇1 ≡ 𝑇 =  𝑘𝜇 𝑏𝑑𝛽   𝜙 +  𝜔𝜂 𝑐    𝑅0 − 1                                    (19) 

(vi) Substituting𝑇1  value from (19) into (13) and solving for  𝑅  we get the following 

𝑅1 ≡ 𝑅 =   𝛾𝑘𝜇  𝑒𝑏𝑑𝛽    𝜙 +  𝜔𝜂 𝑐    𝑅0 − 1                          (20) 

(vii) Substituting𝑅1  value from (20) into (13) and solving for  𝑉  we get the following 

𝑉1 ≡ 𝑉 =   𝜌𝛾𝑘𝜇  𝑓𝑒𝑏𝑑𝛽    𝜙 +  𝜔𝜂 𝑐    𝑅0 − 1                        (21) 
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3.3 Basic Reproduction Number 

           The basic reproduction number is denoted by 𝑅0 and is defined as the expected number of people getting 

secondary infection because of infected person enters into wholly susceptible population [2, 3, 7]. This number 

determines the potential for the spread of disease within a population. When𝑅0 < 1   each infected individual 

produces on average less than one new infected individual so that the disease is expected to die out. On the other 

hand if 𝑅0 > 1  then each individual produces more than one new infected individual so that the disease is 

expected to continue spreading in the population. This means that the threshold quantity for eradicating the 

disease is to reduce the value of  𝑅0 to less than one.  

 The basic reproductive number  𝑅0 can be determined using the next generation matrix. In this 

method𝑅0is defined as the largest eigenvalue of the next generation matrix. The formulation of this matrix 

involves classification of all compartments of the model in to two classes: infected and non-infected. That is, the 

basic reproduction number cannot be determined from the structure of the mathematical model alone but 

depends on the definition of infected and uninfected compartments.  

Assume that there are  𝑛  compartments in the model and of which the first   𝑚  compartments are with 

infected individuals [7].  From the system (1) – (7) the five equations of infected individuals are considered and 

decomposed into two groups: 𝐹  contains newly infected cases and   𝑣  contains the remaining terms. Let 

  𝑋 =  [𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉]𝑡  be a column vector and the differential equations of the first four 

compartments are rewritten as   𝐹(𝑋) – 𝑇(𝑋). 
Now, let   𝐹 𝑋 =  𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5, 𝐹6 𝑡 . Here (i) 𝐹1 = 𝛽𝑆𝑃   denotes newly infected cases 

which arrive into primary infected compartment (ii) 𝐹2 = 0   denotes newly infected cases arrivedinto the 

infectious asymptomatic compartment (iii) 𝐹3 = 0   denotes newly infected cases arrived into the infectious 

symptomatic compartment, (iv) 𝐹4 = 0   denotes newly infected case from susceptible compartment into 

treatment compartment, (v)𝐹5 = 0   denotes newly infected case from susceptible compartment into drug 

resistant compartment and (vi) 𝐹6 = 0   denotes newly infected case from susceptible compartment into AIDS 

compartment. Further, let    𝑇(𝑋)  = [𝑇1, 𝑇2, 𝑇3, 𝑇4 , 𝑇5, 𝑇6]𝑡. Here   𝑇1 =  𝑎𝑃,   𝑇2 =  −𝜅𝑃 + 𝑏𝐴, 𝑇3 =
 −𝜂𝐴 + 𝑐𝐽, 𝑇4 =  −𝜙𝐴 − 𝜔𝐽 + 𝑐𝑇, 𝑇5 =  −𝛾𝑇 + 𝑑𝑅  and𝑇6 = −𝜌𝑅 + 𝑒𝑉  . Here, the values of 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 

and  𝑓  are as defined above. 

The next step is the computation of square matrices  𝐹   and   𝑇  of order    𝑚 × 𝑚 , where  𝑚  is the 

number of infected classes, defined by   𝐹 =   
𝜕𝐹𝑖 𝐸0 

𝜕𝑥𝑗
  and   𝑇 =   

𝜕𝑇𝑖 𝐸0 

𝜕𝑥𝑗
  with  1 ≤ 𝑖, 𝑗 ≤ 𝑚  , such that 𝐹  is 

non-negative, 𝑉 is a non-singular matrices and 𝐸0 is the disease free equilibrium point DFE. If 𝐹 and 𝑇are non-

negative and 𝑇 is non-singular then 𝑇−1  is non-negative and thus  𝐹𝑇−1is also non-negative. Also, the matrix 

𝐹𝑇−1 is called the next generation matrix for the model. Finally, the basic reproduction number 𝑅0is given by 

𝑅0 = 𝜌(F𝑇−1).In general,  𝜌(𝐴) denotes the spectral radius of matrix  𝐴  and the spectral radius is the biggest 

non-negative eigenvalue of the next generation matrix.  

The Jacobian of   𝐹  and  𝑇  at the disease free equilibrium point 𝐸0 takes the form respectively as 

𝐹 ≡

 
 
 
 
 
 
 
 
 
 
 
𝛽𝜏 𝜇 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 
 
 
 
 
 
 
 
 
 
 

, 𝑇 ≡

 
 
 
 
 
 
 
 
 
 
 

𝑎 0 0 0 0 0

−𝜅 𝑏 0 0 0 0

0 −𝜂 𝑐 0 0 0

0 −𝜙 −𝜔 𝑑 0 0

0 0 0 −𝛾 𝑒 0

0 0 0 0 −𝑝 𝑓 
 
 
 
 
 
 
 
 
 
 

       (22) 

It can be verified that the matrix  𝑇  is non-singular as its determinantis non-zero and after some algebraic 

computations the next generation matrix is constructed as 
 𝐽𝐹 𝐸0   𝐽𝑇 𝐸0  

−1 = 
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𝛽𝜏 𝜇 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 
 
 
 
 
 
 
 
 
 
 

        

 
 
 
 
 
 
 
 
 
 
 

𝑎 0 0 0 0 0

−𝜅 𝑏 0 0 0 0

0 −𝜂 𝑐 0 0 0

0 −𝜙 −𝜔 𝑑 0 0

0 0 0 −𝛾 𝑒 0

0 0 0 0 −𝑝 𝑓 
 
 
 
 
 
 
 
 
 
 
−1

 

 

 

=

 
 
 
 
 
 
 
 
 
 
 
 𝛽𝜏  𝑎𝜇  0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 
 
 
 
 
 
 
 
 
 
 

 

Now, it is possible to calculate the eigenvaluesof the matrix 𝐹  𝑇 −1 to determine the basic reproduction 

number 𝑅0 which is the spectral radius or the largest eigenvalue. Thus, the eigenvalues are computed by 

evaluating the characteristic equation   𝑑𝑒𝑡 𝐹 𝑇 −1 − 𝜆𝐼 = 0   or equivalently solving 

 

 

 

 𝛽𝜏  𝑎𝜇  0 0 0 0 0

0 −𝜆 0 0 0 0

0 0 −𝜆 0 0 0

0 0 0 −𝜆 0 0

0 0 0 0 −𝜆 0

0 0 0 0 0 −𝜆

 

 

 

= 0 

It reduces to theequation as   𝜆5  𝛽𝜏 𝜇 𝑎 − 𝜆 = 0    giving the six eigenvalues as 

𝜆1 =  𝛽𝜏 𝜇 𝑎 ,     𝜆2 = 0,      𝜆3 = 0,       𝜆4 = 0 , 𝜆5 = 0, 𝜆6 = 0.   
 However, the largest eigenvalue here is and is the spectral radius or the threshold value or the basic 

reproductive number. Thus, the reproduction number of the model is  𝑅0 =  𝛽𝜏 𝜇 𝑎 . 

 

3.4 Stability analysis of the disease free equilibrium 

In absence of the infectious disease, the model populations have a unique disease free steady state   𝐸0. 

To find the local stability of  𝐸0, the Jacobian method of the model equations evaluated at DEF 𝐸0is used.  Also, 

to determine the global stability at  𝐸0 M-matrix method given in [3] is used. It is already shown that the DFE of 

model (1) – (7) is given by  𝐸0 =  𝜏 𝜇 , 0, 0, 0, 0, 0 . Now, following [4] the stability analysis of DFE 

is conducted and the results are presented in the form of theorems and proofs in the following sub-sections. 

 

3.4.1 Local Stability of Disease Free Equilibrium point 

Theorem 1: The DFE 𝐸0 of the system (1) – (7) is locally asymptotically stable if 𝑅0 < 1  and unstableif   𝑅0 >
1. 

Proof: Consider the right hand side expressions of the equations (1) – (7) as functions so as to find the Jacobian 

matrix as follows: 

 𝑔1 𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉 = 𝜏 − 𝛽𝑆𝑃 − 𝑆 

𝑔2 𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉 = 𝛽𝑆𝑃 −  𝜅 + 𝜇 𝑃  
𝑔3 𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉 = 𝜅𝑃 −  𝜙 + 𝜂 + 𝜇 𝐴 

𝑔4 𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉 = 𝜂𝐴 −  𝜔 + 𝜇 𝐽 
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𝑔5 𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉 = 𝜙𝐴 + 𝜔𝐽 −  𝛾 + 𝜇 𝑇 

𝑔6 𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉 = 𝛾𝑇 −  𝜌 + 𝜇 𝑅 

𝑔7 𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉 = 𝜌𝑅 − (𝛿 + 𝜇)𝑉 

Let   𝐽 𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉  be aJacobian matrix of  𝑔1, 𝑔2, 𝑔3 , 𝑔4, 𝑔5 , 𝑔6, 𝑔7  with respect 

to𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉. Thus,  

𝐽 𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉 =

 
 
 
 
 
 
 
−𝛽𝑃 − 𝜇 −𝛽𝑆 0 0 0 0 0

𝛽𝑃 𝛽𝑆 − 𝑎 0 0 0 0 0
0 𝜅 −𝑏 0 ∅ 0 0
0 0 𝜂 −𝑐 0 0 0
0 0 𝜙 𝜔 −𝑑 0 0
0 0 0 0 𝛾 −𝑒 0
0 0 0 0 0 𝜌 −𝑓 

 
 
 
 
 
 

     (23) 

Now, the Jacobian matrix of  𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑔5, 𝑔6,    𝑔7  with respect to 
𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉     at the disease free equilibrium   𝐸0   is given by 

𝐽 𝐸0 =

 
 
 
 
 
 
 
−𝜇 −𝜏𝛽 𝜇 0 0 0 0 0

0 𝑎 𝑅0 − 1 0 0 0 0 0
0 𝜅 −𝑏 0 ∅ 0 0
0 0 𝜂 −𝑐 0 0 0
0 0 𝜙 𝜔 −𝑑 0 0
0 0 0 0 𝛾 −𝑒 0
0 0 0 0 0 𝜌 −𝑓 

 
 
 
 
 
 

 

Now, to determine the signs of eigenvalues we use the concept of trace and determinant of a given matrix as 

mentioned in the [7]. 

(a) Trace of   𝐽 𝐸0 = 𝑎 𝑅0 − 1 − 𝜇 − 𝑏 − 𝑐 − 𝑑 − 𝑒 − 𝑓 < 0 , if    𝑅0 < 1. 

(b) Determinant of    𝐽 𝐸0 = −𝑎𝜇(𝑅 −  1)(𝑐𝑒𝑓𝜙2 +  𝑒𝑓𝜂𝜔𝜙 −  𝑏𝑐𝑑𝑒𝑓)  > 0 ,Provided that either of the 

following conditions is satisfied: (i) 𝑏𝑐𝑑𝑒𝑓 <  𝑐𝑒𝑓𝜙2 +  𝑒𝑓𝜂𝜔𝜙  and 𝑅0 < 1 and (ii)   𝑏𝑐𝑑𝑒𝑓 >
 𝑐𝑒𝑓𝜙2 +  𝑒𝑓𝜂𝜔𝜙    and 𝑅0 > 1. 

Now, from trace and determinant obtained in (1) and (2) with the given conditions we conclude that all 

eigenvalues of a matrix 𝐽 𝐸0  are negative provided the mentioned conditions are satisfied. Thus, from Hurwitz 

Routh principle disease free equilibrium point is locally asymptotically stable if   𝑅0 < 1 and unstable if  𝑅0 >
1. 

 

3.4.2 Global Stability of Disease Free Equilibrium Point 

Here, we follow the procedure given in [7, 3]. That is, let   𝑥 ∈ 𝑅𝑛   is disease compartment and   𝑦 ∈ 𝑅𝑚 be 

disease free compartment the disease transmission model (1) – (7) can be written in the form: 

𝑥 = − 𝑇 − 𝐹 𝑥 − 𝑕 𝑥, 𝑦                     (24) 

𝑦 = 𝑔 𝑥, 𝑦                                            (25) 

Here in (24), the notations𝐹 and  𝑇 are given in (20). 

Theorem 2: If  𝑇 − 𝐹  is a nonsingular M-matrix and   𝑕 ≥ 0  then the disease-free equilibrium point of model 

equations (1) – (6) is globally asymptotically stable. 

Proof: Using the procedure given in [3, 7] the rate of change of the variables in the model equations (1) – (5) 

can be rewritten as  

𝑥 = − 𝑇 − 𝐹 𝑥 −  
𝛽 𝑆0 − 𝑆 𝑃

0

  

𝑆 = 𝜏 − 𝛽𝑆𝑃 − 𝜇𝑆 

Now, it is to be shown that  𝑇 − 𝐹 is nonsingular M-matrix. From the previous computations (19) we have 

 𝐹 ≡

 
 
 
 
 
 
 
 
 
 
 
𝛽𝜏 𝜇 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 
 
 
 
 
 
 
 
 
 
 

, 𝑇 ≡

 
 
 
 
 
 
 
 
 
 
 

𝑎 0 0 0 0 0

−𝜅 𝑏 0 0 0 0

0 −𝜂 𝑐 0 0 0

0 −𝜙 −𝜔 𝑑 0 0

0 0 0 −𝛾 𝑒 0

0 0 0 0 −𝑝 𝑓 
 
 
 
 
 
 
 
 
 
 

. 
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𝑇 − 𝐹 =

 
 
 
 
 
 
 
 
 
 
 

𝑎 0 0 0 0 0

−𝜅 𝑏 0 0 0 0

0 −𝜂 𝑐 0 0 0

0 −𝜙 −𝜔 𝑑 0 0

0 0 0 −𝛾 𝑒 0

0 0 0 0 −𝑝 𝑓 
 
 
 
 
 
 
 
 
 
 

≡ 𝑠𝐼 −

 
 
 
 
 
 
 
 
 
 
 
𝛽𝜏 𝜇 0 0 0 0 0

𝜅 0 0 0 0 0

0 𝜂 0 0 0 0

0 𝜙 𝜔 0 0 0

0 0 0 𝛾 0 0

0 0 0 0 𝑝 0 
 
 
 
 
 
 
 
 
 
 

 

= 𝑠𝐼 − 𝐵 

Here,  𝑠 = max⁡ 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓  and 

𝐵 =

 
 
 
 
 
 
 
 
 
 
 
𝛽𝜏 𝜇 0 0 0 0 0

𝜅 0 0 0 0 0

0 𝜂 0 0 0 0

0 𝜙 𝜔 0 0 0

0 0 0 𝛾 0 0

0 0 0 0 𝑝 0 
 
 
 
 
 
 
 
 
 
 

 

Now, det 𝑇 − 𝐹 =  −𝑏𝑐𝑑𝑒𝑓(𝛽𝜏 −  𝑎𝜇)/𝜇 and  𝜌 𝐵 = 𝛽 𝜏 𝜇    and   𝑇 − 𝐹  is nonsingular matrix provided 

that the conditions𝛽𝜏 ≠ 𝑎𝜇 are satisfied. Further, off diagonal elements of  𝑇 − 𝐹  are non-positive numbers. 

Thus, 𝑇 − 𝐹  is non-singular M-matrix if  𝑠 ≥ 𝜌 𝐵 . 

Following procedures given in [3] one can easily show that  𝑆 ≤ 𝑆0. Therefore, from the above hypothesis 

disease-free equilibrium point of model equations (1) – (7) is globally asymptotically stable for𝑅0 < 1. 

 

3.5 Stability Analysis of Endemic Equilibrium Point 

By definition it is true that at the endemic equilibrium point  𝐸1 =  𝑆1 , 𝑃1 , 𝐴1, 𝐽1, 𝑇1, 𝑅1 , 𝑉1     is the 

point where the disease persists or exists. To analyze the local stability of𝐸1, Jacobian matrix of the model that 

evaluated at this equilibrium point is used. Further, remember that the endemic equilibrium point   𝐸1 =
 𝑆1 , 𝑃1, 𝐴1, 𝐽1 , 𝑇1, 𝑅1 , 𝑉1   of the given model (1) – (7) is already computed. 

 

3.5.1 Local Stability of Endemic Equilibrium Point 

 The local stability of endemic equilibrium point is stated and proved in Theorem 3. 

Theorem 3: The endemic equilibrium point is locally asymptotically stable if𝑅0 > 1 and unstable if  𝑅0 < 1.  

Proof: The stability analysis of  𝐸1   is conducted by following the similar procedure adopted as in the case 

of  𝐸0. Thus, the procedure starts with the construction of Jacobian matrix at   𝐸1. Now, the Jacobian matrix of 

the model given in (20) at endemic equilibrium point   𝐸1 takes the form as 

𝐽 𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑅, 𝑉 =

 
 
 
 
 
 
 
−𝛽𝑃 − 𝜇 −𝛽𝑆 0 0 0 0 0

𝛽𝑃 𝛽𝑆 − 𝑎 0 0 0 0 0
0 𝜅 −𝑏 0 ∅ 0 0
0 0 𝜂 −𝑐 0 0 0
0 0 𝜙 𝜔 −𝑑 0 0
0 0 0 0 𝛾 −𝑒 0
0 0 0 0 0 𝜌 −𝑓 

 
 
 
 
 
 

 

Hence,     𝐽 𝐸1 =

 
 
 
 
 
 
 

−𝜇𝑅0 − 𝛽𝜏 𝜇𝑅0  0 0 0 0 0

𝜇 𝑅0 − 1 0 0 0 0 0 0
0 𝜅 −𝑏 0 ∅ 0 0
0 0 𝜂 −𝑐 0 0 0
0 0 𝜙 𝜔 −𝑑 0 0
0 0 0 0 𝛾 −𝑒 0
0 0 0 0 0 𝜌 −𝑓 
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Now the trace of   𝐽 𝐸1    is a negative quantity while determinant of  𝐽 𝐸1  computed 

as    𝛽𝜏 𝑅0 − 1  𝑐𝑒𝑓𝜙2 + 𝑒𝑓𝜂𝜔𝜙 − 𝑏𝑐𝑑𝑒𝑓 𝑅0    and is a positive quantity provided that either of the following 

conditions are satisfied, 

(i) 𝑏𝑐𝑑𝑒𝑓 < 𝑐𝑒𝑓𝜙2 + 𝑒𝑓𝜂𝜔𝜙  and 𝑅0 > 1 

(ii) 𝑏𝑐𝑑𝑒𝑓 > 𝑐𝑒𝑓𝜙2 + 𝑒𝑓𝜂𝜔𝜙  and 𝑅0 < 1 

Hence, the endemic equilibrium point𝐸1is locally asymptotically unstable if    𝑅0 < 1.and stable if    𝑅0 > 1 

provided that the afro mentioned conditions are satisfied. 

 

IV. Numerical Simulations 
In this section, numerical simulation study of model equations (1) – (7) is carried out using the software 

MATLAB. To conduct the study, a set of physically meaningful values are assigned to the model parameters. 

These values are either taken from literature or assumed on the basis of reality. These sets of parametric values 

are given under figures. 

 
Figure 1 Dynamics of susceptible population with parametric values 

 𝝉 =  𝟐𝟎𝟎,   µ =  𝟎. 𝟎𝟐,   𝜷 =  𝟎. 𝟎𝟎𝟎𝟎𝟓,      𝝓 =  𝟎. 𝟏,    𝜼 = 𝟎. 𝟎𝟔, 𝝎 = 𝟎. 𝟎𝟖,   𝝆 = 𝟎. 𝟎𝟗,   𝒌 = 𝟎. 𝟑,
𝜸 = 𝟎. 𝟏,   𝜹 = 𝟎. 𝟎𝟖 

In Figure 1, human population  increase for about 300 years then after remain constant over the entire 

interval of time. 

 

 
Figure 2 Dynamics of susceptible population with parametric values 

 𝝉 =  𝟐𝟎𝟎,   µ =  𝟎. 𝟎𝟐,   𝜷 =  𝟎. 𝟎𝟎𝟎𝟎𝟓,      𝝓 =  𝟎. 𝟏,    𝜼 = 𝟎. 𝟎𝟔, 𝝎 = 𝟎. 𝟎𝟖,   𝝆 = 𝟎. 𝟎𝟗,   𝒌 = 𝟎. 𝟑,
𝜸 = 𝟎. 𝟏, 𝜹 = 𝟎. 𝟎𝟖,  
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In Figure 2, the human population increases over the first hundred years and then decrease for about 50 

years. Then followed with increasing and decreasing as time increases which finally shows no change in number 

as disease persists in the population. 

 

 
Figure 3 Dynamics of primary population with parametric values 

 𝝉 =  𝟐𝟎𝟎,   µ =  𝟎. 𝟎𝟐,   𝜷 =  𝟎. 𝟎𝟎𝟎𝟎𝟓,      𝝓 =  𝟎. 𝟏,    𝜼 = 𝟎. 𝟎𝟔, 𝝎 = 𝟎. 𝟎𝟖,   𝝆 = 𝟎. 𝟎𝟗,   𝒌 = 𝟎. 𝟑,
𝜸 = 𝟎. 𝟏, 𝜹 = 𝟎. 𝟎𝟖,  

In Figure 3, it is observed that the primary human populations decreases over the first fifty years. Then increase 

over the next hundred years. Then decrease for about fifty years wich is followed with small change in the 

number of population as time increase.  

 

 
Figure 4 Dynamics of asyptomatic population with parametric values 

 𝝉 =  𝟐𝟎𝟎,   µ =  𝟎. 𝟎𝟐,   𝜷 =  𝟎. 𝟎𝟎𝟎𝟎𝟓,      𝝓 =  𝟎. 𝟏,    𝜼 = 𝟎. 𝟎𝟔, 𝝎 = 𝟎. 𝟎𝟖,   𝝆 = 𝟎. 𝟎𝟗,   𝒌 = 𝟎. 𝟑,
𝜸 = 𝟎. 𝟏, 𝜹 = 𝟎. 𝟎𝟖,  
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In Figure 4, the the number of asyptomatic human populations decrease for about fifty years. Then 

increase and decrease with oscillation pattern and decreasing applitude that finally show no change in popution 

number. 

 

 
Figure 5 Dynamics of syptomatic population with parametric values 

 𝝉 =  𝟐𝟎𝟎,   µ =  𝟎. 𝟎𝟐,   𝜷 =  𝟎. 𝟎𝟎𝟎𝟎𝟓,      𝝓 =  𝟎. 𝟏,    𝜼 = 𝟎. 𝟎𝟔, 𝝎 = 𝟎. 𝟎𝟖,   𝝆 = 𝟎. 𝟎𝟗,   𝒌 = 𝟎. 𝟑,
𝜸 = 𝟎. 𝟏, 𝜹 = 𝟎. 𝟎𝟖,  

 

In Figure 5, the symptomatic population decrease initially for about sixty years and then increase for 

about ninety yearys. Then shows oscillating pattern with finally no change in population size eventhou the 

disease persists in the population. 

 

 
Figure 6 Dynamics of treatment population with parametric values 

 𝝉 =  𝟐𝟎𝟎,   µ =  𝟎. 𝟎𝟐,   𝜷 =  𝟎. 𝟎𝟎𝟎𝟎𝟓,      𝝓 =  𝟎. 𝟏,    𝜼 = 𝟎. 𝟎𝟔, 𝝎 = 𝟎. 𝟎𝟖,   𝝆 = 𝟎. 𝟎𝟗,   𝒌 = 𝟎. 𝟑,
𝜸 = 𝟎. 𝟏, 𝜹 = 𝟎. 𝟎𝟖,  

 

In Figure 6, it is observed that initially treatment class human population increase followed with 

decreasing and increasing pattern in which there is no significant changes in the number of population for time 

interval above hundred years.  
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Figure 7 Dynamics of resistant population with parametric values 

 𝝉 =  𝟐𝟎𝟎,   µ =  𝟎. 𝟎𝟐,   𝜷 =  𝟎. 𝟎𝟎𝟎𝟎𝟓,      𝝓 =  𝟎. 𝟏,    𝜼 = 𝟎. 𝟎𝟔, 𝝎 = 𝟎. 𝟎𝟖,   𝝆 = 𝟎. 𝟎𝟗,   𝒌 = 𝟎. 𝟑,
𝜸 = 𝟎. 𝟏, 𝜹 = 𝟎. 𝟎𝟖,  

 

In Figure 7, initially the number of drug resistant population increases. Then their number drops to the 

least then increase to the maximum. Then decrease upto some interval followed with increament upto some 

interval which is oscillating with decreasing changes in number of population.Finally, there is no change in the 

number of population as time increases. 

 
Figure 8 Dynamics of AIDS population with parametric values 

 𝝉 =  𝟐𝟎𝟎,   µ =  𝟎. 𝟎𝟐,   𝜷 =  𝟎. 𝟎𝟎𝟎𝟎𝟓,      𝝓 =  𝟎. 𝟏,    𝜼 = 𝟎. 𝟎𝟔, 𝝎 = 𝟎. 𝟎𝟖,   𝝆 = 𝟎. 𝟎𝟗,   𝒌 = 𝟎. 𝟑,
𝜸 = 𝟎. 𝟏, 𝜹 = 𝟎. 𝟎𝟖,  

 

In Figure 8, initially the number of human population at the advanced stage of HIV increases. Then 

decrease to the minimum number of AIDS humans and followed with increasing upto some maximum number. 

Then decrease upto some number then increase for some interval. Finally, there is no change in the number of 

AIDS patients. 
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Figure 9 Dynamics of treatment, resistance and AIDS populations with parametric values 

 𝝉 =  𝟐𝟎𝟎,   µ =  𝟎. 𝟎𝟐,   𝜷 =  𝟎. 𝟎𝟎𝟎𝟎𝟓,      𝝓 =  𝟎. 𝟏,    𝜼 = 𝟎. 𝟎𝟔, 𝝎 = 𝟎. 𝟎𝟖,   𝝆 = 𝟎. 𝟎𝟗,   𝒌 = 𝟎. 𝟑,
𝜸 = 𝟎. 𝟏, 𝜹 = 𝟎. 𝟎𝟖,  

Figure 9 describes initially treatment class population, resistant population, and AIDS class population 

increase for some time interval. But the increasing time interval of treatment class population is less than the 

number of drug resistant population and the time interval of drug resistant population is less than the time 

interval of AIDS population. Then decrease and increase within some time interval  alternatively. Finally, the 

changes in the number of each population is not recognizable. 

 

 
Figure 10 Dynamics of susceptible population with parametric values 

 𝝉 =  𝟐𝟎𝟎,   µ =  𝟎. 𝟎𝟐,   𝜷 =  𝟎. 𝟎𝟎𝟎𝟎𝟓,      𝝓 =  𝟎. 𝟏,    𝜼 = 𝟎. 𝟎𝟔, 𝝎 = 𝟎. 𝟎𝟖,   𝝆 = 𝟎. 𝟎𝟗,   𝒌 = 𝟎. 𝟑,
𝜸 = 𝟎. 𝟏, 𝜹 = 𝟎. 𝟎𝟖. 

In Figure 10, it is observable that initially populations in treatment, resistant, and AIDS class 

population increases but the number of population in susceptible, primary, asyptomatic, symptomatic classes 

decrease for some interval. Then increase and decrease alternatively which finally shows insignificant changes 

in each class population. 
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Figure 11 Dynamics of susceptible population with parametric values 

 𝝉 =  𝟐𝟎𝟎,   µ =  𝟎. 𝟎𝟐,   𝜷 =  𝟎. 𝟎𝟎𝟎𝟎𝟎𝟓,      𝝓 =  𝟎. 𝟏,    𝜼 = 𝟎. 𝟎𝟔, 𝝎 = 𝟎. 𝟎𝟖,   𝝆 = 𝟎. 𝟎𝟗,   𝒌 = 𝟎. 𝟑,
𝜸 = 𝟎. 𝟏, 𝜹 = 𝟎. 𝟎𝟖,  

In Figure 11, it is observable that the number of HIV infected population is almost decreases for about 

hundred years. Then the number of HIV infected population are invisible. It is also observable that the number 

of susceptible population increases on the given time interval. Finally, there is no visible changes in number of 

population as time increase. 

 

 
Figure 12 Dynamics of susceptible population with parametric values 

 𝝉 =  𝟐𝟎𝟎,   µ =  𝟎. 𝟎𝟐,   𝜷 =  𝟎. 𝟎𝟎𝟎𝟎𝟓,      𝝓 =  𝟎. 𝟏,    𝜼 = 𝟎. 𝟎𝟔, 𝝎 = 𝟎. 𝟎𝟖,   𝝆 = 𝟎. 𝟎𝟗,   𝒌 = 𝟎. 𝟑,
𝜸 = 𝟎. 𝟏, 𝜹 = 𝟎. 𝟎𝟖,  

 

In Figure 12,  it is observable that initially human population in three comprtments increase whereas the four 

compartment population decrease strictly. Finally, the number of human population in diseasecompartment 

decrease which leads to zero after hundred years. 



Transmission of HIV/AIDS with Drug Resistance and Local Stability Analysis 

DOI: 10.9790/5728-1601035976                            www.iosrjournals.org                                                  75 | Page 

V. Sensitivity Analysis 
Sensitivity analysis is used to determine the sensitivity of the model with respect to the parameters 

involved in it.  That is, how changes in the value of the parameters of the model result in changing the dynamics 

of the infection. It is used to discover parameters that have a high impact on 𝑅0and should be targeted by 

intervention strategies. More precisely, sensitivity indices allowmeasuring the relative change in a variable when 

parameter changes [3, 6].If the result is negative, then the relationship between the parameters and 𝑅0is 

inversely proportional. In this case, the modulus of the sensitivity index will be taken so that the size of the 

effect of changing that parameter can be deduced.  

On the other hand, a positive sensitivity index means that both the function and the parameter are 

proportional to each otheri.e. both of them grow or decay together. 

It is already shown that the explicit expression of 𝑅0is given by   𝑅0 = 𝛽𝜏 𝜇𝑎  . Since,  𝑅0   depends 

only on four parameters, an analytical expression will be derived for its sensitivity to each of the parameters 

using the normalized forward sensitivity index as given by Chitnis [3]. 

Υ𝛽
𝑅0 =  𝜕𝑅0 𝜕𝛽  ×  𝛽 𝑅0   

Υ𝜇
𝑅0 =  𝜕𝑅0 𝜕𝜇  ×  𝜇 𝑅0   

Υ𝜂
𝑅0 =  𝜕𝑅0 𝜕𝜂  ×  𝜂 𝑅0   

Υ𝜏
𝑅0 =  𝜕𝑅0 𝜕𝜏  ×  𝜏 𝑅0   

Υ𝜅
𝑅0 =  𝜕𝑅0 𝜕𝜅  ×  𝜅 𝑅0   

 

Table 3 Sensitivity of   𝑅0 evaluated for the parametric values given under Figure 1 

 

 

From Table 3, it can be observed that parameters𝜏 and𝛽have positive sensitivity indicesand values of 

the remaining two parameters 𝜅  and𝜇 get negative sensitivity indices.  

As it is observed from the table the parameter with large magnitude are𝜇  and 𝜅 . Hence,they are most 

sensitive parameter in the model equations. On the other hand an increase in these positive parameter values will 

cause an increasing𝑅0 this implies that disease transmission in human population. Similarly, a decrease in 

negative parameter values will cause a decrease in𝑅0 which means the disease transmission decreases in human 

population. 

 

VI. Result and  Discussion 
In this study, a model describing the dynamics of seven compartment human population pertaining to 

HIV(Human Immunodeficiency Virus)with treatment is formulated and analyzed. Further, it is observed that the 

disease transmission decreases with decreased transmission rate value and disease persist in the population with 

increasing transmission rate value.Figure 1 shows that with no disease the population growth to the upper bond 

exponentially. Figures 2 – 10 describes the dynamics of human population with the persistence of the disease in 

the population. Figures 11 – 12 describes the dynamics of human population with extinction of disease out of 

the population. The mathematical analysis has shown that if the reproduction number 𝑅0 < 1 then the disease 

free equilibrium point is locally and globally asymptotically stable. Also the disease free equilibrium point is 

unstable if 𝑅0 > 1  implying that the transmission of disease increases.  

 

VII. Conclusions 
In this study, a deterministic mathematical model of seven compartments has been formulated to 

describe the dynamics of human populations pertaing to HIV/AIDS. Moreover, the formulated model is 

biologically meaningful and mathematically well posed. The simulation shows as the number of drug resistant 

population increases the number of HIV population also increases. The equilibrium points of model equations 

are locally stable. Further, the Global stability of disease free equilibrium points are described.and Also, the 

solution of the model equations is numerically simulatedandsensitivity analysis of the model is conducted. 

Furthermore, results of the research work presented in this paper reveal that transmission rate has natural death 

rate is the most sensitive parameter. 

 

 

 

 

Parameter Sensitivity index 

𝝁 -83 

𝜷 +1 

𝜿 - 4.8828 

𝝉 +1 
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