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Abstract: Traditional statistical methods for nonlinear models require a starting point (initial parameters or 

guess values) to begin the optimization process. The nonlinear model expression must be written, the parameter 

names declared, and initial parameter values specified, then the parameters are estimated through an iterative 

approach. A computer program for estimating three growth models (Richards, Gompertz and Weibull model) 

using the modified version of the Levenberg-Marquardt method for solving non-linear regression model was 

employed. The growth models were decomposed by additive and multiplicative error terms which help in 

identifying the most appropriate model for growth studies. The problem of the initial parameters was addressed 

by second-order regression techniques before an iterative approach was done. The result contain the final 

estimate of the parameters, standard errors, p-values and model adequacy criteria, used to determine the most 

suitable growth model. This study was able to identify the Weibull Growth Model with Additive Error Terms as 

the best growth model. These studies recommend/suggest the Weibull Growth Model for further growth studies. 

Keywords: Growth Models; Modified Levenberg-Marquardt Algorithm; Initial Parameters; Additive and 
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I. Introduction 
In many field of studies, biological growth models had played vital role. Many researchers have 

contributed in developing relevant models. There are several common models, such as Asymptotic 

Regression/Growth Model, Gompertz, Weibull, Hill, Richards, Logistic, S-shaped Curves etc. These models (or 

curves) referred to as Sigmoidal Growth Models (Sigmoidal curves) which arise in various applications 

including bioassay, signal detection theory, agriculture, engineering field, tree diameter, height distribution in 

forestry, fire size, high-cycle fatigue strength predication, seismological data analysis for earthquakes and 

economics [4,17,19,22,25]. 

The growth models have been widely used in many biological growth problems in several studies [2,15]. The 

growth models considered in this study are Richards, Gompertz and Weibull Models. 

 

1.1 Richard Growth Model 

The Richards function is defined as in the usual notations [20,21,22] as  

𝑦𝑖 =  𝛽0 1 − 𝛽1𝑒
−𝛽2𝑥𝑖 

𝛽3
                                                   (1) 

where 

 e represents Euler number (e = 2.71828) 

 𝑥i represents time 

            𝛽0, 𝛽1 ,  𝛽2 ,  𝛽3   are the parameters  

𝛽0represents upper asymptote when time approaches positive infinity (i.e. maximum growth response or scale 

parameter) 

𝛽1   represents the shape parameter related to initial time 

𝛽2  represents growth range (or intrinsic growth range) 

𝛽3  represents growth rate 

𝑦𝑖    is the i
th
 observation at specific time   

and if 𝛽1   = 1  in the four parameter model, then Equation (1) becomes three parameter Equation (2);  

                  𝑦𝑖 =  𝛽0 1 − 𝑒−𝛽1𝑥𝑖 
𝛽2

                                                                            
(2) 

where, 𝛽0 , 𝛽2 =  𝛽1   and 𝛽3 = 𝛽2 
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1.2 Gompertz Growth Model                                                                      

                       𝑦𝑖 =  𝛽0𝑒
−𝛽1𝑒

−𝛽2𝑥
𝑖
𝛽3

                                                                (3) 

where 

 𝑥i  represent time 

𝛽0 represent upper asymptote when time approaches +∞ 

𝛽1 represent positive number of the shape parameter related to initial time (or displacement along the x axis) 

𝛽2 represent positive number of the growth range 

𝛽3 represents growth rate (or shape parameter) 

𝑦𝑖  is the i
th

 observation at time 𝑡𝑖  

similarly, if 𝛽3   = 1 in the four parameters model, then Equation (3) model become three parameters model 

Equation (4); 

𝑦𝑖 =  𝛽0𝑒
−𝛽1𝑒−𝛽2𝑥𝑖

                                                        
  

(4) 

where all parameters remain the same [Hint: 𝛽0 , 𝛽2 =  𝛽1  and 𝛽3 = 𝛽2] 

 

1.3 Weibull Growth Model 

The Weibull model with four parameters is expressed as 

                        𝑦𝑖 =  𝛽0𝑥𝑖
𝛽1  − 1

𝑒−𝛽2𝑥𝑖
−𝛽3

                  
     

(5) 

A simple rewrite of the four parameter Weibull model can be expressed as three parameters (if 𝛽1   = 1  ), that is  

                         𝑦𝑖 =  𝛽0𝑒
−𝛽1𝑥𝑖

−𝛽2

        
(6) 

 [Hint: 𝛽0 , 𝛽2 =  𝛽1  and 𝛽3 = 𝛽2] 

Hence, this study will centre on comparing the relationship among Richards, Gompertz and Weibull models in 

growth analysis 

 

II. Literature Review 
2.1.  Review of Works on Richards Growth Model 

Amir applied Richards growth model to the description of growth of Green gram [3]. The objective of 

his study was to use a model to predict the growth process and derive growth parameters in green gram. 

However, three models of growth include Beta, Gompertz and Richards was used. Gompertz and Beta models 

have three parameters, while Richards function has additional parameter to describe growth kinetics. His result 

revealed that estimation from three models (Beta, Gompertz and Richard) were suitable for predict dry matter 

accumulation of green gram. Thus, the Richards growth model fitted is more flexible in describing asymmetrical 

growth patterns of the dry matter and age data of green gram in term coefficients of determination, mean square 

error, mean absolute percent error. 

Pommerening and Muszta used absolute and relative growth rates in the analysis of plant growth 

relative to plant size, assessing the growth performance and growth efficiency of plants and plant populations. In 

their paper, they explained how these isolated methods can be combined to form a consistent methodology for 

modelling relative growth rates. The results indicate; 1) an improved analysis of growth performance and 

efficiency and 2) the prediction of future or past growth rates [20].  

 

2.2. Review of Works on Gompertz Model 
The statistical mechanics for the Gompertz model whose system consists of interacting species was 

considered more than two decades ago [14,24]. Gompertz model is recent developments as a stochastic model, a 

stochastic model that incorporating environmental fluctuations was investigated in [16]. His attempts have much 

to do with statistical description for the tumour growth phenomena and are the main motivation behind his 

work. 

Measuring biological growth has been important in many fields. Many researchers have contributed in 

developing relevant models: Purnachandra and Ayele [20] for Gompertz function; [10,12]. The growth models 

have been widely used in many biological growth problems including: in animal sciences [10,12]. 

 

2.3.  Review Research on Weibull Growth Model 
The Weibull model is a flexible and simple function with great potential for application to biological 

data, particularly if the system to be modeled can exist in either of two states (e.g., germinated or ungerminated). 

It is often suitable where conditions of strict randomness of the exponential distribution are not satisfied [8]. The 

Weibull has been used by several authors for analyzing and describing seed germination [6,7,9]. The function's 

parameters are biologically interpretable, reflecting maximum germination (M), germination rate (K), lag in 

onset of germination (L), and the shape of the cumulative distribution (C). 
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The Weibull model was first introduced by Ernst Hjalmar Waloddi Weibull in 1951. Initially it was described as 

a statistical distribution. It has many applications in population growth, agricultural growth, height growth and is 

also used to describe survival in cases of injury or disease or in population dynamic studies [1,18,25]. 

  

III. Methods 
3.1.1  The Three Growth Models with Additive Error Terms 

Equation (2), (4) and (6) can be expressed as 

𝑦𝑖 =  𝛽0 1 − 𝑒−𝛽1𝑥𝑖 
𝛽2

+    𝜀𝑖                                                      (7) 

𝑦𝑖 =  𝛽0𝑒
−𝛽1𝑒−𝛽2𝑥𝑖   +    𝜀𝑖                                              (8) 

𝑦𝑖 =  𝛽0𝑒
−𝛽1𝑥𝑖

−𝛽2
  +    𝜀𝑖        (9)  

where   𝜀𝑖   are the error terms (or 𝜀𝑖  are normal measurement errors with 0 means independent of the random 

effects). 

 

3.1.2. The Three Growth Models with Multiplicative Error Terms 

Likewise Equation (2), (4) and (6) can be expressed as 

𝑦𝑖 =  𝛽0 1 − 𝑒−𝛽1𝑥𝑖 
𝛽2

𝜀𝑖                                                      (10) 

𝑦𝑖 =  𝛽0𝑒
−𝛽1𝑒−𝛽2𝑥𝑖𝜀𝑖                                              (11) 

𝑦𝑖 =  𝛽0𝑒
−𝛽1𝑥𝑖

−𝛽2
𝜀𝑖       (12)  

where  𝜀𝑖are the error terms 

- Modified Levenberg-Marquardt Algorithm 

The research used the modified version of the Levenberg-Marquardt method. That is  

1) Obtain partial derivative of the model with respect to the three parameters 
(𝛽0, 𝛽1, 𝛽2).  

2) To developed a program in the Gretl software using Equation (7) to (12) and input the initial values by 

fitting second-order polynomial (quadratic model), using Minitab 17 software. 

3) Then, substitute the second-order polynomial coefficients (𝛽0
 0 

, 𝛽1
 0 

, 𝛽2
 0 

) as the initial guess values 

for iteration process. 

4) Input the data and initial guess values on the developed program. Then, run the iteration to obtain the 

results.  

Let 𝛽 = (𝛽0
 0 

, 𝛽1
 0 

, 𝛽2
 0 

) be the initial parameters. Thus, we take the Logarithm transformation of Equation (2)]. 

We have  

ln(𝑦𝑖) = ln(𝛽0) +  𝛽2 ln(1 − 𝑒−𝛽𝑖𝑥𝑖)
                                              

(13) 

The NLS estimation using a modified version of the Levenberg-Marquardt, we take the derivative with respect 

to the parameters (𝛽0, 𝛽1, 𝛽2). Then, substitute (𝛽0
 0 

, 𝛽1
 0 

, 𝛽2
 0 

) as the initial guess vector for iteration process.  

In Equation (13), let  ln 𝑦𝑖 = 𝑍𝑖  , ln(𝛽0) = 𝛽 0  , 𝛽1 = 𝛽 1 𝑎𝑛𝑑 𝛽2 = 𝛽 2 

𝑍𝑖 =  𝛽 0 +  𝛽 2 ln(1 − 𝑒−𝛽 1𝑥𝑖)
                                                              

(14) 

By take partial derivative of Equation (14) with respect to (𝛽 0, 𝛽 1, 𝛽 2) we have 

 
𝜕𝑧𝑖

𝜕𝛽 0
= 1

                                                                        (15)
 

 
𝜕𝑧𝑖

𝜕𝛽 2
=  ln(1 − 𝑒−𝛽𝑖𝑥𝑖)

                                                                           (16) 

 
𝜕𝑧𝑖

𝜕𝛽 1
=  𝛽2 × 𝑋𝑖  ×  

𝑒−𝛽𝑖𝑋𝑖

(1−𝑒−𝛽𝑖𝑋𝑖 )                                                       (17) 

Likewise, let 𝛽 = (𝛽0
 0 

, 𝛽1
 0 

, 𝛽2
 0 

) be the initial parameters. Thus, we take the Logarithm transformation of 

Equation (4)]. We have  

ln 𝑦𝑖 = ln 𝛽0 − 𝛽1𝑒
−𝛽2𝑋𝑖

                                                             
(18) 

The NLS estimation using a modified version of the Levenberg-Marquardt, we take the derivative with respect 

to the parameters(𝛽0, 𝛽1, 𝛽2). Then, substitute (𝛽0
 0 

, 𝛽1
 0 

, 𝛽2
 0 

) as the initial guess vector for iteration process.  

In Equation (18), let ln 𝑦𝑖 = 𝑍𝑖  , ln(𝛽0) = 𝛽 0  , 𝛽1 = 𝛽 1 𝑎𝑛𝑑 𝛽2 = 𝛽 2 

𝑍𝑖 = 𝛽 0 − 𝛽 1𝑒
−𝛽 2𝑋𝑖

                                                                              
(19) 

By take partial derivative of Equation (19) with respect to (𝛽 0, 𝛽 1, 𝛽 2) , we have 
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𝜕𝑧𝑖

𝜕𝛽 0
= 1

                                                                                                     (20)
 

 
𝜕𝑧𝑖

𝜕𝛽 1
= −𝑒−𝛽 2𝑋𝑖

                                                                                       (21) 

 
𝜕𝑧𝑖

𝜕𝛽 2
= 𝛽2 × 𝑋𝑖 × 𝑒−𝛽2𝑋𝑖

                                                                        (22) 

Similarly, let 𝛽 = (𝛽0
 0 

, 𝛽1
 0 

, 𝛽2
 0 

) be the initial parameters. Thus, we take the Logarithm transformation of 

Equation (6). We have  

ln 𝑦𝑖 = ln 𝛽0 − 𝛽1𝑋𝑖
−𝛽 2

                                                              
(23) 

The NLS estimation using a modified version of the Levenberg-Marquardt, we take the derivative with respect 

to the parameters(𝛽0, 𝛽1, 𝛽2). Then, substitute (𝛽0
 0 

, 𝛽1
 0 

, 𝛽2
 0 

) as the initial guess vector for iteration process.  

In Equation (23), let ln 𝑦𝑖 = 𝑍𝑖  , ln(𝛽0) = 𝛽 0  , − 𝛽1 = 𝛽 1 𝑎𝑛𝑑 𝛽2 = 𝛽 2  

𝑍𝑖 = 𝛽 0 + 𝛽 1𝑋𝑖
𝛽 2

                                                                                  
(24) 

By take partial derivative of Equation (24) with respect to (𝛽 0, 𝛽 1, 𝛽 2) , we have 

  
𝜕𝑧𝑖

𝜕𝛽 0
= 1

                                                                                                      (25)
 

    
𝜕𝑧𝑖

𝜕𝛽 1
= 𝑋𝑖

𝛽 2

                                                                                                (26) 

 
𝜕𝑧𝑖

𝜕𝛽 2
= 𝛽2 × (𝑋𝑖

𝛽 2 ) × ln(𝑋𝑖
𝛽 2 )

                                                              (27) 

The initial guess values 
(𝛽0

 0 
, 𝛽1

 0 
, 𝛽2

 0 
)
 were estimated by fitting a second-order polynomial (quadratic mode 

𝜀 𝑖 =
𝜖𝑖−𝜖 

𝜎𝑒𝑖
2 , using Minitab 17 software. 

 
 

𝑍𝑖 = 𝛽 0
(0)

+  𝛽 1
(0)

𝑋𝑖 +  𝛽 2
(0)

𝑋𝑖
2

                                                         (28) 

The Gretl statistical software was used for the analysis, by adding the data set with additive and multiplicative 
error terms  𝜀𝑖  , 𝑁 0,1   and the initial values for the parameters basis of Equation (28). The error terms 
[𝜀𝑖  , 𝑁(0,1)] were standardized, using the Equation (29) below; 

     𝜀 𝑖 =
𝜖𝑖−𝜖 

𝜎𝑒𝑖
2       (29) 

Thus, since the growth models considered are positive value and appreciating (or increasing) growth process. 

Therefore, we used the maximum error value to add to all the errors which in turn make the entire errors value 

positive.   

In determining the suitable model (or most appropriate model) for growth studies, models selection criteria were 

employed. 

 

3.3. Applications  

Three data sets were obtained with small and large sample size. Three primary data sets were 

considered in this research: an experiment used to determine the amount of transmitted voltage against time 

collected from the Department of Electrical/Electronic Engineering, University of Port-Harcourt; data for dry 

matter of green gram which exhibit sigmoid shape [4]in black gram reported; and Nigeria Population Growth 

from 1960 to 2017. 

Five errors terms (𝜀𝑖  , 𝑁 0,1 ) were stimulated and standardized using Equation (29) and MINITAB 17 

statistical software. 

 

IV. Results 
Table 1:  Summary of the Coefficients and p-values of the three growth models with additive and multiplicative 

error terms ( 1̂ ) for Data 1 

 

Model 

 

Model 

Statistics  

Estimated Coefficients (P-values)  

Remark 
Additive Error Terms Multiplicative Error Terms 

Weibull Alpha 

Beta 
𝛽0 = −1.05 ± 0.9923 (0.3107) 
𝛽1 = 1.0756 ± 0.8033 (0.2054) 

𝛽0 = −0.6937 ± 0.6994(0.3408) 
𝛽1 = 1.1389 ± 0.6337(0.0975*) 

MET 
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Gamma 𝛽2 = 0.4887 ± 0.1894 (0.0241**) 𝛽2 = 0.3174 ± 0.1027(0.0093***) 
 Iteration 21 21  

Model 

Selection 

Criteria 

(MSC) 

BIC 

AIC 

R2 

R-Adj 

SSE 

11.69766 

9.5735 

0.9297 

0.9179 

1.1145 

10.8763 

8.7521 

0.9335 

0.9223 

1.0551 

 

Gompertz Alpha 

Beta 

Gamma 

𝛽0 = −8.6251 ± 79.6685(0.9156) 
𝛽1 = −9.2137 ± 79.2680(0.9094) 
𝛽2 = −0.01229 ± 0.0940(0.8982) 

𝛽0 = 3.6963 ± 0.46175(0.000***) 
𝛽1 = 3.1717 ± 0.41808(0.000***) 
𝛽2 = 0.03709 ± 0.012175(0.0101**) 

MET 

 Iteration 40 47  

Model 

Selection 

Criteria 

(MSC) 

BIC 

AIC 

R2 

R-adj 

SSE 

32.9334 

30.80929 

0.71044 

0.66218 

4.59113 

9.5021 

7.3779 

0.9392 

0.92916 

0.9627 

 

Richards  Alpha 

Beta 

Gamma 

𝛽0 = 2.4907 ± 0.0418(0.000***) 
𝛽1 = 0.3908 ± 0.0805(0.000***) 
𝛽2 = 1.8746 ± 0.2301(0.000***) 

𝛽0 = 2.61939 ± 0.0417(0.000***) 
𝛽1 = 0.11788 ± 0.0235(0.000***) 
𝛽2 = 0.770 ± 0.04097(0.000***) 

MET 

 Iteration 43 42  

Model 
Selection 

Criteria 

(MSC) 

BIC 
AIC 

R2 

R-adj 

SSE 

40.2866 
38.16240 

0.5272 

0.4485 

7.4957 

35.86667 
33.74251 

0.6479 

0.5892 

5.5892 

 

Footnote: Sig. at * 0.10, **0.05, ***0.01; AET-Additive Error term; MET- Multiplicative Error term 

The identified suitable model is the Gompertz Growth Model with Multiplicative Error Terms 
 

 

Table 2:  Summary of the Coefficients and p-values of the three growth models with additive and multiplicative 

error terms ( 2̂ ) for Data 1 

 

Model 

 

Model 

Statistics 

Estimated Coefficients (P-values)  

Remark 
Additive Error Terms Multiplicative Error Terms 

Weibull Alpha 

Beta 

Gamma 

𝛽0 = −1.0873 ± 1.0164(0.3058) 
𝛽1 = 1.2607 ± 0.8767(0.1760) 
𝛽2 = 0.4529 ± 0.1764(0.0247**) 

𝛽0 = −0.4800 ± 0.6521(0.4758) 
𝛽1 = 1.2053 ± 0.5955(0.0658*) 
𝛽2 = 0.3438 ± 0.1052(0.0067***) 

 MET 

 Iteration 21 18  

Model 

Selection 

Criteria 

(MSC) 

BIC 

AIC 

R2 

R-Adj 

SSE 

11.4097 

9.2855 

0.9311 

0.9196 

1.0933 

9.1701 

7.0460 

0.9406 

0.9307 

0.9417 

 

Gompertz Alpha 

Beta 

Gamma 

𝛽0 = 2.9911 ± 0.0269(0.000***) 
𝛽1 = 4.4175 ± 0.0912(0.000***) 
𝛽2 = 0.4340 ± 0.0178(0.000***) 

𝛽0 = −1.5088 ± 2.0438(0.4746) 
𝛽1 = −2.6121 ± 1.9604(0.2075) 
𝛽2 = −0.0249 ± 0.0133(0.0854*) 

MET 

 Iteration 54 38  

Model 

Selection 

Criteria 

(MSC) 

BIC 

AIC 

R2 

R-adj 

SSE 

37.0323 

34.9088 

0.6194 

0.5560 

6.0341 

33.7865 

31.6624 

0.6935 

0.6424 

4.8598 

 

Richards  Alpha 

Beta 

Gamma 

𝛽0 = 2.6267 ± 0.0598(0.000***) 
𝛽1 = 0.3179 ± 0.0340(0.000***) 
𝛽2 = 1.6493 ± 0.0900(0.000***) 

𝛽0 = 2.61939 ± 0.0417(0.000***) 
𝛽1 = 0.11788 ± 0.0235(0.000***) 
𝛽2 = 0.770 ± 0.04097(0.000***) 

MET 

 Iteration 45 49  

Model 

Selection 

Criteria 

(MSC) 

BIC 

AIC 

R2 

R-adj 

SSE 

36.7351 

34.6109 

0.6269 

0.5647 

5.9154 

26.9004 

24.7762 

0.8063 

0.7741 

3.0708 

 

Footnote: Sig. at * 0.10, **0.05, ***0.01; AET-Additive Error term; MET- Multiplicative Error term 

The identified suitable Model is the Weibull Growth Model with Multiplicative Error Terms  
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Table 3:  Summary of the Coefficients and p-values of the three growth models with additive and multiplicative 

error terms ( 3̂ ) for Data 1 

 

Model 

 

Model 

Statistics 

Estimated Coefficients (P-values)  

Remark 

Additive Error Terms Multiplicative Error Terms 

Weibull Alpha 

Beta 

Gamma 

𝛽0 = −1.1099 ± 1.2715(0.3999) 
𝛽1 = 1.2759 ± 1.0542(0.2459) 
𝛽2 = 0.4523 ± 0.2053(0.0479**) 

𝛽0 = −0.6937 ± 0.6994(0.3408) 
𝛽1 = 1.1389 ± 0.6337(0.0975*) 
𝛽2 = 0.3174 ± 0.1027(0.0093***) 

MET 

 Iteration 22 18  

Model 

Selection 

Criteria 

(MSC) 

BIC 

AIC 

R2 

R-Adj 

SSE 

12.6954 

10.5712 

0.9249 

0.9124 

1.1912 

12.2692 

10.1450 

0.9270 

0.9148 

1.1578 

 

Gompertz Alpha 

Beta 

Gamma 

𝛽0 = 3.6723 ± 0.2125(0.000***) 
𝛽1 = 4.4190 ± 0.3374(0.000***) 
𝛽2 = 0.1846 ± 0.0343(0.002***) 

𝛽0 = −1.4772 ± 2.7834(0.6065) 
𝛽1 = −2.5974 ± 2.6944(0.3541) 
𝛽2 = −0.0253 ± 0.0191(0.2105) 

AET 

 Iteration 39 39  

Model 

Selection 

Criteria 

(MSC) 

BIC 

AIC 

R2 

R-adj 

SSE 

32.9334 

30.80929 

0.71044 

0.66218 

4.59113 

33.4540 

31.3299 

0.7002 

0.6502 

4.7533 

 

Richards  Alpha 

Beta 

Gamma 

𝛽0 = 2.7214 ± 0.1319(0.000***) 
𝛽1 = 0.2335 ± 0.0703(0.0061***) 
𝛽2 = 1.5323 ± 0.1873(0.000***) 

𝛽0 = 2.5281 ± 0.0235(0.000***) 
𝛽1 = 0.3256 ± 0.0568(0.000***) 
𝛽2 = 0.7182 ± 0.0324(0.000***) 

MET 

 Iteration 43 43  

Model 

Selection 

Criteria 

(MSC) 

BIC 

AIC 

R2 

R-adj 

SSE 

33.9179 

31.7937 

0.6908 

0.6392 

4.9025 

34.2595 

30.1354 

0.7281 

0.6495 

4.4823 

 

Footnote: Sig. at * 0.10, **0.05, ***0.01; AET-Additive Error term; MET- Multiplicative Error term 

The identified suitable Model is theWeibull Growth Model with Multiplicative Error Terms 
 

 

Table 4.:  Summary of the Coefficients and p-values of the three growth models with additive and 

multiplicative error terms ( 1̂ ) for Data 2 

 

Model 

 

Model 

Statistics  

Estimated Coefficients (P-values)  

Remark 

Additive Error Terms Multiplicative Error Terms 

Weibull Alpha 

Beta 

Gamma 

𝛽0 = 12.2073 ± 3.7978(0.0147**) 
𝛽1 = −62.0465 ± 26.5410(0.0520*) 
𝛽2 = 0.5362 ± 0.2378(0.0588*) 

𝛽0 = −2.8641 ± 2.7513(0.3325) 
𝛽1 = 1.7696 ± 1.8519(0.3711) 
𝛽2 = 0.2915 ± 0.1353(0.0681*) 

AET 

 Iteration 41 22  

Model 

Selection 

Criteria 

(MSC) 

BIC 

AIC 

R2 

R-Adj 

SSE 

7.6453 

6.7375 

0.9837 

0.9790 

0.6303 

17.1974 

16.2897 

0.9576 

0.9455 

1.6383 

 

Gompertz Alpha 

Beta 

Gamma 

𝛽0 = 7.0332 ± 0.3291(0.000***) 
𝛽1 = 15.0455 ± 1.1657(0.000***) 
𝛽2 = 0.0371 ± 0.0044(0.000***) 

𝛽0 = 5.3792 ± 0.5019(0.0000***) 
𝛽1 = 6.9465 ± 2.0086(0.0016**) 
𝛽2 = 0.0360 ± 0.0220(0.1455) 

AET 

 Iteration 38 44  

Model 

Selection 

Criteria 

(MSC) 

BIC 

AIC 

R2 

R-adj 

SSE 

0.9412 

0.0334 

0.9917 

0.9893 

0.3224 

36.5998 

35.6923 

0.7051 

0.6208 

11.4036 

 

Richards  Alpha 

Beta 

Gamma 

𝛽0 = 2.4907 ± 0.0418(0.000***) 
𝛽1 = 0.3908 ± 0.0805(0.000***) 
𝛽2 = 1.8746 ± 0.2301(0.000***) 

𝛽0 = 2.61939 ± 0.0417(0.000***) 
𝛽1 = 0.11788 ± 0.0235(0.000***) 
𝛽2 = 0.770 ± 0.04097(0.000***) 

AET 

 Iteration 15 38  

Model 

Selection 

Criteria 

(MSC) 

BIC 

AIC 

R2 

R-adj 

4.9724 

4.0646 

0.9875 

0.9839 

37.2782 

36.3705 

0.6844 

0.5942 
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SSE 0.4825 12.2039 

Footnote: Sig. at * 0.10, **0.05, ***0.01; AET-Additive Error term; MET- Multiplicative Error term 

 

The identified suitable Model is the Gompertz Growth Model with Additive Error Terms 
 

Table 5:  Summary of the Coefficients and p-values of the three growth models with additive and multiplicative 

error terms ( 2̂ ) for Data 2 

 

Model 

 

Model 

Statistics 

Estimated Coefficients (P-values)  

Remark 

Additive Error Terms Multiplicative Error Terms 

Weibull Alpha 

Beta 

Gamma 

𝛽0 = 11.0089 ± 2.5977(0.0038***) 
𝛽1 = −74.9402 ± 35.0908(0.0701*) 
𝛽2 = −0.6343 ± 0.2268(0.0267**) 

𝛽0 = −3.0867 ± 2.3480(0.2301) 
𝛽1 = 0.2517 ± 2.1374(0.2370) 
𝛽2 = 0.2517 ± 0.1108(0.0573*) 

 AET 

 Iteration 38 19  

Model 

Selection 

Criteria 

(MSC) 

BIC 

AIC 

R2 

R-Adj 

SSE 

6.5464 

5.6387 

0.9853 

0.9812 

0.5647 

15.6104 

14.7026 

0.9638 

0.9535 

1.3979 

 

Gompertz Alpha 

Beta 

Gamma 

𝛽0 = 9.0743 ± 1.1124(0.0000***) 
𝛽1 = 10.8988 ± 0.6697(0.0000***) 
𝛽2 = 0.0137 ± 0.0030(0.0000***) 

𝛽0 = 5.9910 ± 0.1515(0.0000***) 
𝛽1 = 6.6892 ± 0.2088(0.0000***) 
𝛽2 = 0.0750 ± 0.0107(0.0002***) 

AET 

 Iteration 47 42  

Model 

Selection 

Criteria 

(MSC) 

BIC 

AIC 

R2 

R-adj 

SSE 

34.9580 

34.0502 

0.7497 

0.6782 

9.6768 

37.6848 

36.7771 

0.6713 

0.5774 

12.7103 

 

Richards  Alpha 

Beta 

Gamma 

𝛽0 = 7.33838 ± 0.5486(0.0000***) 
𝛽1 = 0.0276 ± 0.0071(0.0061***) 
𝛽2 = 8.7718 ± 1.6175(0.00010***) 

𝛽0 = 5.2680 ± 0.2273(0.0000***) 
𝛽1 = 0.0252 ± 0.0153(0.1436) 
𝛽2 = 1.4865 ± 0.2182(0.0003***) 

AET 

 Iteration 12 39  

Model 

Selection 

Criteria 

(MSC) 

BIC 

AIC 

R2 

R-adj 

SSE 

3.2677 

2.3599 

0.9895 

0.9865 

0.4069 

34.3766 

34.4689 

0.7639 

0.6964 

9.1303 

 

Footnote: Sig. at * 0.10, **0.05, ***0.01; AET-Additive Error term; MET- Multiplicative Error term 

 

The identified suitable Model is the Richards Growth Model with Additive Error Terms 
 

 

Table 6:  Summary of the Coefficients and p-values of the three growth models with additive and multiplicative 

error terms ( 3̂ ) for Data 2 

 

Model 

 

Model 

Statistics 

Estimated Coefficients (P-values)  

Remark 

Additive Error Terms Multiplicative Error Terms 

Weibull Alpha 

Beta 

Gamma 

𝛽0 = 11.0908 ± 2.7203(0.0047***) 
𝛽1 = −74.2928 ± 35.4165(0.0741*) 
𝛽2 = −0.6088 ± 0.2326(0.0305**) 

𝛽0 = −2.5354 ± 2.3033(0.3074) 
𝛽1 = 2.17453 ± 2.0259(0.3187) 
𝛽2 = 0.2948 ± 0.1460(0.0832*) 

AET 

 Iteration 39 17  

Model 

Selection 

Criteria 

(MSC) 

BIC 

AIC 

R2 

R-Adj 

SSE 

7.0405 

6.1327 

0.9847 

0.9803 

0.5933 

19.8187 

18.9109 

0.9449 

0.9292 

2.1293 

 

Gompertz Alpha 

Beta 

Gamma 

𝛽0 = 9.0396 ± 1.1375(0.0000***) 
𝛽1 = 10.9773 ± 0.6640(0.0000***) 
𝛽2 = 0.0141 ± 0.0032(0.0032***) 

𝛽0 = 6.6015 ± 0.1640(0.0000***) 
𝛽1 = 6.9416 ± 0.2800(0.0000***) 
𝛽2 = 0.0339 ± 0.0047(0.0002***) 

MET 

 Iteration 47 40  

Model 

Selection 

Criteria 

(MSC) 

BIC 

AIC 

R2 

R-adj 

SSE 

34.5163 

33.6085 

0.7606 

0.6921 

9.2587 

25.5124 

24.6046 

0.9027 

0.8748 

3.7628 

 

Richards  Alpha 

Beta 
𝛽0 = 7.3565 ± 0.5708(0.0000***) 
𝛽1 = 0.0275 ± 0.0073(0.0072***) 

𝛽0 = 5.5057 ± 0.5053(0.0000***) 
𝛽1 = 0.0205 ± 0.0178(0.2860) 

AET 
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Gamma 𝛽2 = 8.7695 ± 1.6631(0.0012***) 𝛽2 = 1.6146 ± 0.2851(0.0008***) 
 Iteration 12 40  

Model 

Selection 

Criteria 

(MSC) 

BIC 

AIC 

R2 

R-adj 

SSE 

3.8671 

2.9594 

0.9888 

0.9856 

0.4320 

33.4109 

32.5032 

0.7856 

0.7244 

8.2998 

 

Footnote: Sig. at * 0.10, **0.05, ***0.01; AET-Additive Error term; MET- Multiplicative Error term 

The identified suitable Model is the Richards Growth Model with Additive Error Terms 
 

 

Table 7:  Summary of the Coefficients and p-values of the three growth models with additive and multiplicative 

error terms ( 1̂ ) for Data 3 

 

Model 

 

Model 

Statistics  

Estimated Coefficients (P-values)  

Remark 

Additive Error Terms Multiplicative Error Terms 

Weibull Alpha 

Beta 

Gamma 

𝛽0 = 10.5768 ± 0.0094(0.0000***) 
𝛽1 = 0.00348 ± 0.0018(0.0000***) 
𝛽2 = 0.9226 ± 0.0111(0.0000***) 

𝛽0 = 10.5794 ± 0.0260(0.0000***) 
𝛽1 = 0.0755 ± 0.0105(0.0000***) 
𝛽2 = 0.5572 ± 0.0246(0.0000***) 

AET 

 Iteration 16 15  

Model 

Selection 

Criteria 

(MSC) 

BIC 

AIC 

R2 

R-Adj 

SSE 

-375.3524 

-381.5337 

0.9996 

0.9996 

0.0043 

-251.3037 

-245.1224 

0.9964 

0.9963 

0.0403 

 

Gompertz Alpha 

Beta 

Gamma 

𝛽0 = 14.4188 ± 0.1129(0.0000
***

) 
𝛽1 = 3.8706 ± 0.1097(0.0000***) 
𝛽2 = 0.0083 ± 0.0003(0.0000***) 

𝛽0 = 13.2164 ± 0.1010(0.0000
***

) 
𝛽1 = 2.4358 ± 0.0923(0.0000***) 
𝛽2 = 0.0037 ± 0.0002(0.0000***) 

AET 

 Iteration 43 47  

Model 

Selection 

Criteria 

(MSC) 

BIC 

AIC 

R2 

R-adj 

SSE 

-280.8538 

-287.0351 

0.9981 

0.9980 

0.0217 

-166.6205 

-172.8018 

0.9862 

0.9857 

0.1556 

 

Richards  Alpha 

Beta 

Gamma 

𝛽0 = 13.0373 ± 0.3486(0.0000***) 
𝛽1 = 0.0013 ± 0.0011(0.2188) 
𝛽2 = 0.4686 ± 0.0062(0.0000***) 

𝛽0 = 12.3923 ± 1.7806(0.0000***) 
𝛽1 = 0.0004 ± 0.0028(0.8982) 
𝛽2 = 0.2379 ± 0.0143(0.0000***) 

AET 

 Iteration 45 44  

Model 

Selection 

Criteria 

(MSC) 

BIC 

AIC 

R2 

R-adj 

SSE 

-19.8209 

-26.0023 

0.8268 

0.8205 

1.9558 

2.6092 

-3.5720 

0.7450 

0.7357 

2.8793 

 

Footnote: Sig. at * 0.10, **0.05, ***0.01; AET-Additive Error term; MET- Multiplicative Error term 

 

The identified suitable Model is the Weibull Growth Model with Additive Error Terms 
 

Table 8:  Summary of the Coefficients and p-values of the three growth models with additive and multiplicative 

error terms ( 2̂ ) for Data 3 

 

Model 

 

Model 

Statistics 

Estimated Coefficients (P-values)  

Remark 

Additive Error Terms Multiplicative Error Terms 

Weibull Alpha 

Beta 

Gamma 

𝛽0 = 10.5640 ± 0.0120(0.0000***) 
𝛽1 = 0.0369 ± 0.0023(0.0000***) 
𝛽2 = 0.9104 ± 0.0140(0.0000

***
) 

𝛽0 = 10.5262 ± 0.0372(0.0000***) 
𝛽1 = 0.0920 ± 0.0139(0.0000***) 
𝛽2 = 0.5224 ± 0.0245(0.0000

***
) 

 AET 

 Iteration 13 13  

Model 

Selection 

Criteria 

(MSC) 

BIC 

AIC 

R2 

R-Adj 

SSE 

-359.8061 

-365.9875 

0.9995 

0.9994 

0.0056 

-231.4580 

-237.6393 

0.9954 

0.9953 

0.0509 

 

Gompertz Alpha 

Beta 

Gamma 

𝛽0 = 17.5473 ± 0.5269(0.0000***) 
𝛽1 = 6.9805 ± 0.5230(0.0000***) 
𝛽2 = 0.0041 ± 0.0003(0.0000***) 

𝛽0 = 13.2164 ± 0.1010(0.0000***) 
𝛽1 = 2.4358 ± 0.0924(0.0000***) 
𝛽2 = 0.0037 ± 0.0002(0.0002***) 

AET 

 Iteration 43 47  

Model 

Selection 

BIC 

AIC 

-339.0767 

-345.2580 

-166.6205 

-172.8018 
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Criteria 

(MSC) 

R2 

R-adj 

SSE 

0.9993 

0.9993 

0.0080 

0.9862 

0.9857 

0.1556 

Richards  Alpha 

Beta 

Gamma 

𝛽0 = 12.9135 ± 0.3294(0.0000***) 
𝛽1 = 0.0018 ± 0.0014(0.0061***) 
𝛽2 = 0.4810 ± 0.0087(0.0000***) 

𝛽0 = 11.8867 ± 0.0969(0.0000***) 
𝛽1 = 0.0042 ± 0.0023(0.0701*) 
𝛽2 = 0.2773 ± 0.0201(0.0000***) 

AET 

 Iteration 43 38  

Model 

Selection 

Criteria 

(MSC) 

BIC 

AIC 

R2 

R-adj 

SSE 

-21.2024 

-27.3837 

0.8309 

0.8247 

1.9098 

6.8498 

0.6685 

0.7256 

0.7157 

3.0976 

 

Footnote: Sig. at * 0.10, **0.05, ***0.01; AET-Additive Error term; MET- Multiplicative Error term 

 

The identified suitable Model is the Weibull Growth Model with Additive Error Terms 
 

Table 9:  Summary of the Coefficients and p-values of the three growth models with additive and multiplicative 

error terms ( 3̂ ) for Data 3 

 

Model 

 

Model 

Statistics 

Estimated Coefficients (P-values)  

Remark 

Additive Error Terms Multiplicative Error Terms 

Weibull Alpha 

Beta 

Gamma 

𝛽0 = 10.5559 ± 0.0137(0.0000***) 
𝛽1 = 0.0401 ± 0.0029(0.0000***) 
𝛽2 = 0.8910 ± 0.0157(0.0000***) 

𝛽0 = 10.4588 ± 0.0714(0.0000***) 
𝛽1 = 0.1406 ± 0.0349(0.0002***) 
𝛽2 = 0.4507 ± 0.0396(0.0000***) 

AET 

 Iteration 13 22  

Model 

Selection 

Criteria 

(MSC) 

BIC 

AIC 

R2 

R-Adj 

SSE 

-352.4893 

-358.6706 

0.9994 

0.9994 

0.0063 

-187.8935 

-194.0748 

0.9905 

0.9901 

0.1078 

 

Gompertz Alpha 

Beta 

Gamma 

𝛽0 = 14.4188 ± 0.1129(0.0000***) 
𝛽1 = 3.8706 ± 0.1097(0.0000***) 
𝛽2 = 0.0083 ± 0.0003(0.0000***) 

𝛽0 = 13.2041 ± 0.1654(0.0000***) 
𝛽1 = 2.3852 ± 0.1586(0.0000***) 
𝛽2 = 0.0035 ± 0.0004(0.0000***) 

AET 

 Iteration 43 43  

Model 

Selection 

Criteria 

(MSC) 

BIC 

AIC 

R2 

R-adj 

SSE 

-242.2512 

-248.4326 

0.9963 

0.9961 

0.0422 

-108.1707 

-114.3521 

0.9622 

0.9609 

0.4264 

 

Richards  Alpha 

Beta 

Gamma 

𝛽0 = 13.5148 ± 0.0658(0.0000***) 
𝛽1 = 3.0009 ± 0.0621(0.0000***) 
𝛽2 = 0.0119 ± 0.0004(0.0000***) 

𝛽0 = 11.6658 ± 0.008(0.0000***) 
𝛽1 = 0.0162 ± 0.0011(0.0000***) 
𝛽2 = 0.3064 ± 0.00069(0.0000***) 

AET 

 Iteration 42 36  

Model 

Selection 

Criteria 

(MSC) 

BIC 

AIC 

R2 

R-adj 

SSE 

-23.8720 

-30.0534 

0.8385 

0.8326 

1.8238 

26.9774 

 20.7960  

0.6119 

0.5977 

2.8793 

 

Footnote: Sig. at * 0.10, **0.05, ***0.01; AET-Additive Error term; MET- Multiplicative Error term 

The identified suitable Model is the Weibull Growth Model with Additive Error Terms  

 

V. Discussion Of The Result 

For Data 1: The result identified Gompertz Growth model with Multiplicative error term for  1̂ as the 

suitable model, since the parameters of alpha, beta and gamma are significant at 1% (Table 1). Weibull Growth 

model with Multiplicative error term was identified as the suitable model for 2̂ because the parameters beta 

and gamma are significant at 10% and 1% respectively (Table 2). Weibull Growth model with Multiplicative 

error term was identified as the suitable model for 3̂ with the parameters beta and gamma are significant at 

10% and 1% respectively (Table 3). 

For Data 2: Similarly, the result identified Gompertz Growth model with additive error term for  1̂ as 

the suitable model, since the parameters of alpha, beta and gamma are significant at 1% (Table 4). Richard 

Growth model with additive error term was also identified as the suitable model for 2̂ because all the 
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parameters are significant at 1% (Table 5). Richard Growth model with additive error term was identified as the 

suitable model for 3̂ , since all the parameters are significant at 1% respectively (Table 6). 

For Data 3: Furthermore, the result identified Weibull Growth model with additive error term for 1̂  

as the suitable model, since the parameters of alpha, beta and gamma are significant at 1% (Table 7). Weibull 

Growth model with additive error term was also identified as the suitable model for 2̂ because all the 

parameters are significant at 1% (Table 8). Weibull Growth model with additive error term was identified as the 

suitable model for 3̂ , since all the parameters are significant at 1% respectively (Table 9). 

Therefore, the three data sets result (Agricultural, Engineering and population data sets), Weibull 

Growth model with additive error term is identified as the best suitable model for growth analysis.
 

 

VI. Conclusion 
This study was able to show the use of the three growth model using real data sets from Population, 

Engineering and Agricultural product. The problem of the initial parameters is addressed by second-order 

regression techniques before an iterative approach is done in this study. The three growth models were 

decomposed by additive and multiplicative error terms. 

The modified version of the Levenberg-Marquardt method for solving non-linear regression model was 

used. A suitable Weibull growth model with Additive error term was determined using Model selection Criteria 

(like Mean squared error, R2, BIC and AIC) among all the models fitted. It showed that the Weibull model is 

adequate and can be used for forecasting. Hence, this study recommended the Weibull Growth with Additive 

Error Terms as the best model for growth curves data set. 
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