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Abstract:
In this paper we consider the idea of projective and inductive limits of uniform spaces and show that If for each

ael, f,: X —>(Y,,J,) isamapping from a set X into a topological space (Y,, J, ), there is a weakest

topology on X, called the projective limit topology, denoted by P(J ) under which every fa is continuous.
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I. Introduction:
If foreach 1, f, 1 X —>(Ya, Ja) is a mapping from a set X into a topological space (Ya, Ja),
there is a weakest topology on X, called the projective limit topology, denoted by P(J) under which every

f is continuous. By definition

a

{ f (Ua ) U,eJand acl } in an open subbase for the topology Jp(J ) :

On the other hand if foreach =1, g, :(Ya,Ja)—>X is a mapping from a topological
space (Ya, Ja) into a set X, there is a finest topology on X, called the inductive limit topology, denoted by
G(J) under which every g, is continuous. Here 9(J) open sets are of the formV < X .

Where g, (V)ed,, acel

It is known that subspaces and product spaces of topological spacesare projective limits and quotient
topological spaces are inductive limits.We shall extend these notions to uniform spaces.
Definition:

Foreach a el ,let f : X —(Y,,U,) be a mapping from a set X into a uniform space (Y, U,)
The projective limit uniformity on X generated by the family F = { fa }ael is the weakest uniformity for X
under which every fa is uniformity continuous. this uniformity on X'is denoted by U, (,

On the other hand, if for each o € |

g, :(Ya, Ja) — X is a mapping from a uniform space (Y,, U,) into a set X, the inductive limit
uniformity of X, denoted by Uy generated by the family F ={f, }ael is the finest uniformity for X under

which every f, is uniformity continuous.
Proposition:

If Up(ry is the projective limit uniformity on a set X generated by the family F ={f_: X — (Y,
ua)} ael

where U, is a uniformity on Y, foreach o € I , then

{ﬁ(fak <1, ) U, U, eV, a . |}

k=1
is a base for Up )
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Proof:
Clearly every member of the filter base

ﬁz{ﬁ( f, x fak)_ank U, eV, o€ I}

k=1
n -1
contains A X x X, consider any Bz{ﬂ( fwk X fak) Uak}in [ since each U,y is a

k=1
uniformity on Yak , it follows that

-N (f.xf.) U, tep

k=1
Moreover, there exist Va ) €U, g such that Vzak < U, x and hence

n _ 2 n - 2 n -
{ﬂ(fakxfak)lvak} ng {(fakaak)lvak} ng (fakaak)luak:B

k=1
Thus f is the base for some uniformity U for X which bydefinition is Upry. In fact, if Vis a
uniformity for X and every fa € F is V-uniformly continuous, then

-1
(fakaak) U, eV forall « el and U, €U, sothat U € ¥.

Conclusion

-1
Hence, if V is a uniformity for X and every f_ € F is V-uniformly continuous, then( fak X fak ) U eV

a

forall ¢ el and U, €U, sothatU € 9.
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