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Abstract

In this paper we study some non-compact operator equations for which the existence and uniqueness of a
solution is verified. The convergence of the successive approximations to this unique solution is satisfied.
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I. Introduction
Many problems in Applied Mathematics lead to the study of equations of
the form

r = Axr

in (F, P), where E' is an ordered Banach space with cone P.
One of the best known approximation procedures consists in given some

solution x* which is the limit of the approximating sequence
Tp=Ar, 1 (n=1,2,..)

for a particular (or an arbitrary) initial value xg.

In this direction, and in the present paper we give a generalization of the re-
sult of [4]. Let (£, P) be an ordered Banach space with a normal reproducing
cone P and let A : E — E be an operator. Then in [7] M. A. Krasnosel'skii
and P. P. Zabreiko have shown that if there exists a positive linear boundary

operator T : ¥ — FE with spectral radius o(T") < 1 satistyving
—T(z—y)<Alz) - Aly) <T(x—y), =z yek, x>y, (1)

then A has a unique fixed point == in £ and for any =p € EF if =, =
Ar,_(n = 1,2,3,....), then =, —+ x+ as n — oc. In the present paper
we prove that it’s not necessary that the cone P be reproducing and the
operator A be uniformly continuous. Hence we avoid these conditions and
give a generalization of this important result. The obtained result will be
applied in order to search out a fixed point for an operator A which is the
sum of two operators : the first of which satisfies only the second mequality
of (1) and the second is decreasing. Finally, we discuss the case where the
operator A satisfying the second inequality of (1) is increasing and give a
generalisation of some Amann’s result in [1]. Note that in all the obtained

results we do not require the compactness of any considered operator.
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Il. Main Results
Let (E,|.||g) be a real Banach space and P be a nonempty closed convex

set in F.

P 1s called a cone if 1t satisfies the following two conditions:
(i) :x e PA>20= Ar € P,
(ii) : # € P,—r € P — x = #, where # denotes the zero element in E.
A cone F 1s said to be generating if £ = P — P, 1.e., every element x € F
can be represented in the form = = u — v where w,v € P.
The cone P defines a linear ordering in £ by
r<y ff y—zeP.

Let D) be a subset of E. An operator A : D — FE 18 said to be increasing
if 1 < xa(x1,r2 € D) implies Ar; < Axa. A is said to be decreasing if

r1 < x9(ry, w9 € D) implies Ax; > Axs.
The cone P 1s said to be normal if there exists a constant N = () such

that
f<r<y=|z[| <N

lyll, =z,yeP.

For every L : E — E a bounded linear operator, define o( L), the spectral
radius of L by
1 nt
o(L) = lm [L%[=.
After these preparations we are ready for the statement of our main

result :

Theorem 2.1 Let (E., P) be an ordered Banach space with normal cone P
and A : E — E be a continuous operator such that A(P) c P. If there
erists a positive linear boundary operator T : E — E with spectral radius
a(T) < 1 satisfying

—T(z—y) <Alz) -Aly) <T(zr—y), zyekE, z2=>y,

then A has a unique fized point r= in P and for any o € P, if =, =
Arp—1(n=1,2,3,....), then r, — % as n — oc.

Set z, = A™(0) for n = 1,2....., since z; = A(0) > 0 we obtain from
inequality (1)
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—Tzy <zp—z1 <Txz,

from which it follows that

(za + 21 — T21}.

ba| =

1
z3 = 5(22 + z1 — Tzlj, z =

By using inequalities (1) we get

_T(W) < 2 _A(WZI—Q—T%) < T(&;Th) ()

and

_T(fﬂ—zz—”zl) < _A(m+—i“zl) < T(zl—zz—”zl) (3)

By subtracting (3) for (2), then we have

—T221 <z3—z2 < T221.

By repeating this argument n — 2 times, we obtain the mequality
—T"zy < zpy1 —zp < T2y
As a consequence of the last inequality we obtain forn >m > 1
—Tmzy — T — . T <

CZmtl —Zm +Zm42 — Zmt1+ -+ 2Zn — 2Znp—1 = 2n — 2, <
<T™Mzy + Tz + T 1y,

from which 1t follows that
—Tm(zl 4+ Tz + ...+ T”_l_mzl) = Zp — Zm
<7Tm™ (zl +Tz1+...+ T“‘l‘”‘zl).

On the other hand, it follows from »(7T") < 1 and T(P) C P that

+oo
214+ Tz + ... +TV M < ZTizl —([-T) 'z =,
i=0

DOI: 10.9790/5728-1602022128 www.iosrjournals.org 23| Page



A Generalization of Some Krasnosel'skii's Result..

therefore
—T™0 < zp — zm < T,

It's well known (see [10]) that is follows from o(T) < 1 that T"v — 0 as

n — oo. From this, and from the normality of the cone P, it follows that

o0

Zn — Zm —+ 0 as n,m — oo, hence (z,)72 | is a Cauchy sequence. Since E is

a Banach space the sequence converges, i.e. there exists a o+ € FE(rx € P)
such that z, — r* as n — ooc. Here x* 1s a fixed point of A since A 18
continuous.

From the above argument it follows that (A,(z))>2, converges to the unique
fixed point independently of the choice of z € P. In fact let z € P, then

z 2 0 and by virtue of (1) we have
—T'(z) < A(z) — A(0) = T(2).
By using the same argument as above we obtain

_T™(z) < A™z) — AM0) < T™(2), Vn=1,2,...

From this and from the normality of the cone we assure that A, (z) — x*
as n — co. Similarly we prove that z* 1s the umque fixed point of A in the

cone P, in fact suppose that ry € P is another fixed point of A then we have
—T"(ry) <y — A™0) <T™(x1), Yn=1,2,..,

from which 1t follows that z; = z%.

Remark. 1. Note that our Theorem 2.1 generalizes a result by Kras-
nosel’skii and Zabreiko (see [7], see also Theorem 3.1.14 in [3]) where the
authors take more restrictive assumptions : the cone P is reproducing, the
operator A is uniformly continmous and ||T]| < 1.

Remark. 2. Theorem 2.1 does not require the compactness of A.
Remark. 3. If the condition (1) is replaced by the following stronger one

—T(rx—y)<Alx) - Aly) <T(z—-y), =,yek,

then A has a unique fixed point z* m E and for any =z € E if 2, =
Axy—1(n = 1,2.3,....), then 7, — 7+ as n — oo. For the proof, it suffices

to observe that from the inequality
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—T'(x) < A(x) — A(0) < T'(x),
for an arbitrary = € FE, follows the inequality
—T™z) < A™z) — A™0) < T™(z),n=1,2, ..
In the following, we shall study a fixed point equation of the form
r=Mz+ Lx
where M. L : E — E are two operators. Let A = M + L.

Corollary 2.2 Suppose that (E, P) is an ordered Banach space with normal
cone P and let A= M + L : F — FE be a continuous operator such that
A(P) C P, where M,L : E — E are two operators verifying the following

conditions :

(i) there erists a positive linear boundary operator T with spectral radius

a(T) < 1 such that

""I{I} _ *"'I(y) i: T(I - y}! £y c E! £ E Y,

(ii) L is a decreasing operator,
(iii) the operator A + M is increasing,

then A has a unique fived point x= in P and for any zop € P if z, =

Arp—1(n=1.2,3,....), then rn — T* as n — oo.

We are going to see that A satisfies all conditions of Theorem 2.1. Indeed,
since A — M = L 1s a decreasing operator, then for z,y € £, = >y we
have

A(x) — M(z) < Aly) — M(y),

hence

Alz) — Aly) < M(z) — M(y) <T(x—y).

On the other hand, since A + M 1s an increasing operator, then for any

r,y € E, x>y, we have
Aly) + M(y) < A(xz) + M(x),

from which it follows that
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—T(z—y) < —(M(x) - M(y)) < A(x) — Aly).
Consequently
—T(r—y) <Alz)-Aly) <T(r—y), z,yeE, x>y,

with this the operator A satisfies the condition (1) of Theorem 2.1. This
completes the proof of the theorem. Remark. 4. [t should be remarked
above that if we take M = T in Corollary 2.3 then the condition (iii) is
satisfied if I has the Frechet derivatives L'(x) at every point x of the space
E which satisfies the inequality —L'(x) < 2T

Remark. 5. Note that in Corollary 2.3 we do not require the compactness

of any operator M, L and T

Latter, suppose that A : P — P 1s an increasing operator satisfying the

second inequality in condition (1), that is
Ale) —Aly) <T(x —y). =yekE, r>y.
then it follows from the inequality A(x) < Tz + A(0) for every = € P that

Alvg) < vy where vg = (I —T)'A(0) = 3222, T"A(0). In order to be

convinced of this, it suffices to observe that

A(i T A(0)) < T{i T"A(0)) + A(0)
n=>0 n=>0

- i T A(0).
n=>0

From which it follows that A leaves the interval [0,vp| invariant. Hence
by using Theorem 4.1 of Krasnosel'skii in [9], it suffices that anyone of the
following conditions be satisfied for the existence on [0, o] of at least one
fixed point for the map A.

(a) The cone P is strongly minihedral;

(b) The cone P is regular, the map A is continous;

(¢) The cone P is normal, the map A is completely continuous;

(d) The cone P is normal, the space F is weakly complete, the unit sphere
in £ 1s weakly compact, the map A i1s weakly continuous.

Also, 1t not hard to see that with the fulfillment of the condition (b) or
condition (¢) or condition (d) the fixed point T of A can be obtained as the

limnit of the sequence
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T, = A(r,—1) n=12, ..

where rp = 0, that is , ¥ can be computed by an iterative method. (for
condition (d) x,, converges weakly to T).

Also, 1t’s not difficult to see that if the cone P 1s normal then the obtained
fixed point T 18 unique. In fact suppose that 7 iz another fixed point of
A in the cone P. Since A is increasing we have © < ¢ (if condition (a) is
satisfled we get y < & see the proof of Theorem 4.1 in [9]), from which it
follows that 4 — & < T(y — ). An easy induction argument shows that
0<y—a<T"(y— &) for any positive integer n. Since o(T') < 1 we have
T"(yj — &) — 0, then from the normality of the cone P we have §j = .

Therefore we have shown the following statement

Theorem 2.3 Suppose that (E. P) is an erdered Banach space with normal
cone P and let A : P — P be an increasing operator satisfying anyone of the

above conditions (a) — (d). If there erists a positive linear boundary operator

T: E — E with spectral radius a(T') < 1 satisfying
Alx) - Aly) <T(x—y), =yek, zx2y, (4)

then A has a unique fired point v in P and with the fulfillment of the
conditions (b) or (¢) or (d) for any zo € P, if v, = Az,_1(n=1,2,3,....),

then ,, — T* as n — oC.

Remark. 6. Suppose in addition that A : P — P is a right differentiable
operator where its right derivatives A’ satisfies the inequality 0 < A’ (z) <
T for any = € P (as in Theorem 8.2 in [1]), then it follows from the inequal-
ity (T—A) (z) =T —A' (z) > 0 that T'— A is an increasing operator. This
implies that A satisfies the condition (4). On the other hand it follows from
the inequality 0 < A’, () that A is increasing on the cone P. Therefore, the
above Theorem 2.4 generalizes Theorem 8.2 given by Amann in [1] where
more restrictive conditions are supposed in T' : T is strongly positive and
compact.

Remark. 7. Note that from the fact that A leaves the interval [0, vp| invari-
ant we can also apply the result of [2] by D. Guo and V. Lakshmikantham

to prove the existence of a minimal and a maximal fixed point of A in [0, vg).
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I11. Conclusion
In this paper we have generalized and improved some well-known results by Amann and
Krasnosel'skii. Here we note that the present results can be developed in order to generalize another
corresponding results in the literature.
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