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Abstract: In this work, a deterministic Model is developed and investigated for the transmission dynamics of 

Tuberculosis with exogenous re-infection and incomplete treatment. We analyzed for the formulated model by 

considering the spread behavior and possible eradication of the disease versus persistence of tuberculosis. Our 

method includes: boundedness, existence of Equilibrium Points and basic reproduction number  𝑅0 .  
From our model we obtained the basic reproduction number for determining whether the disease die out or not. 

The impact of different parameters of this model is studied. A sensitivity study of the model was carried out. A 

numerical simulation was also carried out to know further how the correct the model was  
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I. Introduction: 

This section looks into the review of related works on tuberculosis using SEIS, SIR, SEIR and other 

deterministic models. Two decades have passed now with different people coming up with many mathematical 

models for TB. SIR models and variants like SEIR models were introduced in the 1990s and help to establish 

the foundation of much of the mathematical epidemiology. 

The first mathematical model of TB was presented by Wattler et al. (1962) following this, there were 

several numerical studies, primarily focusing on cost effectiveness of different intervention model with one 

progression rate and various latent classes and argued that vaccination was cost-effective in countries with high 

TB burdens. Umana et al (2016) in his paper considered two models for tuberculosis. The first Model assumes 

constant recruitment with a fixed fraction entering each class, with consequences that TB never dies out and the 

stability analysis was done. Their second model concentrated on a general recruitment function whereby all 

recruitment is into the susceptible class. They concluded that the first model incorporates immigration of 

infectives at a constant rate, which makes it relevant and indicates that even with treatment in immigration of 

infectives, TB still remains endemic. Moreover they said that the differential equation system for the second 

Model with general recruitment has a Singularity at the origin when the total population size is zero.  That 

concludes that in the absence of infective immigrants and then the second model of their paper predicts 

threshold conditions.  

Okunghae et al (2010) studied differential equation and differential integral equations that describe the 

dynamics of disease transmission for TB in Nigeria. The main interest was to study these models to understand 

the long-time behavior of the dynamics of disease transmission thus, whether the disease would die out 

eventually or would persist. They looked at the effects of variable periods of latency on the dynamics of TB by 

considering an SEIS model with individual moving back to the susceptible (S) class from both the Exposed (E) 

and the Infectious (I) due to treatment. The findings their studies revealed that the addition of an arbitrarily 

distributed latency period to the basic TB model does not alter the quantitative dynamics of TB, the disease 

either dies or remains endemic regardless of the shape of the incubation/latent period distribution. Okuonghae et 

al (2008) formulated a two group model for one-strain and two-strain TB in order to determine possible 

mechanisms that may be useful for the survival and spread of naturally resistant strains of TB as well as 

antibiotics generated resistant strains of TB. They claimed that the analysis of their model will reveal that non-

antibiotic co-existence is possible but rare for naturally resistant strains while co-existence is almost the rule for 

strains that results from the lack of compliance with antibiotic treatment by TB infected individuals. One of the 

possibilities is that such a person may develop active TB as a consequence of exogenous re-infection. Other 

papers that were consulted were Castilo-Chavez et al (1997), Cborgdoff (2004), Centre for Disease Control and 

Prevention (2011), Derrick et al (1976), Feng et al  (2001), Ihejirika et al (2019), La Salle (1976), Omame et al 

(2015),Umana et al (2016), Van den Dnessche  (2002). 
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II. Model Fomulation 
2.1 FLOW DIAGRAM 

We now formulate a model of the transmission dynamics and treatment of Tuberculosis with exogenous re-

infection.We also divide the population into four compartments 𝑆 𝑡 , 𝐿 𝑡 , 𝐼 𝑡 𝑎𝑛𝑑 𝑇 𝑡  as susceptible, latent, 

infectous and Treated individuals where t represents time. 

 

 
 

2.2 Symbols and Parameters 

Below are the symbols and parameter used in formulating our model 

 

Table 1: Symbols and Parameters 

 

 

2.3 Assumptions of the Model 

Those in each class can die as a result of natural death 

(i) All immigrants are assumed to be Susceptible 

(ii) There is a tendency that those in the active TB disease stage can die as a result of TB disease. 

(iii) Individuals treated of TB disease can fail treatment 

(iv) Only those in active TB disease stage can transmit the disease. 

 

2.4 Differential Equation for the Deterministic Model 

We now formulate the Model equation from the flow diagram above 

Symbols and Parameters Description 

𝑺 𝒕  Susceptible Individuals 

𝐿 𝑡  Latent Individuals 

𝐼 𝑡  Individual with active TB disease 

𝑇 𝑡  Treated Individuals 

Λ Recruitment rate 

𝛽 Contact rate 

𝜇 Natural death rate  

𝛿 TB Induced death rate 

𝛼 Rate of progression through the latent stage 

P Fraction of latent immigrants progressing to Treated Stage 

Ψ Treatment failure rate 

𝜀 Exogenous re-infection rate 

Type equation here. Fraction of immigrants who fails treatment and progress to the active TB disease stage 

𝜑 Rate of progression through the latent stage to treatment stage. 

𝑞1 Fraction of immigrants who progress to latent stage  

𝑞2 Fraction of immigrants who progresses to active TB disease stage 

𝑁  Total population 
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2.7 Basic Reproduction Number  𝑹𝟎  

The basic reproduction number is the average number of secondary infection that occurs if a single infected 

individual is introduced into an entirely susceptible population. It is obtained by taking the largest eigenvalue. 

Note that 𝑝 𝐹𝑉−1  

Where,          𝐹 =  
𝛿𝑓𝑖 𝑃0 

𝛿𝑋𝑗
  

And           𝑉𝑖 =  
𝜕𝑉𝑖𝑃0

𝜕𝑋𝑗
  

Let                 𝑋 =  𝐸 𝑇]𝑇   

 



VVXV

XVXF
dt

dX

)(

)()(

 

Where 

𝑓𝑖  is the rate of appearance of new infection in compartment I 

𝑉− is the transfer of individual out of the disease compartment 

𝑉+ is the rate of transfer of individuals into the disease compartment 

𝐹  is the Jacobian of 𝑓𝑖  evaluated at DFE. We have  

V is the jacobian of 𝑉𝑖  evaluated at DFE 
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III. Sensitivity Analysis 
 

 
Figure 2 

  



Deterministic Model of the Transmission Dynamics of Tuberculosis with Exogenous Re-Infection .. 

DOI: 10.9790/5728-1602024149                             www.iosrjournals.org                                                46 | Page 

 
Figure 3 

 

3.1 Numerical Simulation 

Many phenomena of interest in biology that can be modelled by the use of diffusion processes 

satisfying a nonlinear stochastic differential equation are not easy to solve analytically, it is advantageous to 

proceed via computer simulations. There will be time when the physical system is too complicated for analytical 

modeling; in such a case, simulation would be an appropriate tool (Feldan and Valdez-Flores, 2010). We 

therefore solve the model numerically using the MATLAB software (see appendix). 

The parameters information is given below: 

 

Table 2: Parameters and values 
Parameters Description Values Sample range References 

Λ Recruitment rate 2041 ---- Song et al  2002  

𝛽 Contact rat 8.557  4.4769,  15.1347] Okuonghae and Aihie 2008  

𝜇 Natural death rate  0.02041  0.0143,0.04  UNAIDS-WHO  (2004) 

𝛿 TB Induced death rate 0.365  0.22,0.39  Borgdoff  2004 , Cohen et al. 
 2007 , 
Dye et al 1998 , Styblo 1991  

𝛼 Rate of progression through the 

latent stage  

1.5  0,1  Hongbin Guo et al.  2011  

P Fraction of latent immigrants 
progressing to Treated Stage 

0.5  0.1,1.0  Assumed 

Ψ Treatment failure rate 0.2  0.1,1.0  Assumed 

𝜀 Exogenous re-infection rate 0.2  0.1,1.0  Assumed 

𝜎 Fraction of immigrants who fails 

treatment and progress to the 
active TB disease stage. 

0.4  0.1,1.0  Assumed 

𝜑 Rate of progression through the 

latent stage to treatment stage. 

0.05  0.005,0.05  Blower et al.  1995 ,Cohen et al. 
 2007  

𝑞1 Fraction of immigrants who 
progress to latent stage  

0.3  0.1,1.0  Assumed 

𝑞2 Fraction of immigrants who 

progresses to active TB disease 
stage 

0.13  0.1,1.0  Assumed 

𝑁  Total population 1000 ---- Assumed 
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Figure 4: Plot of the latent individuals against time years 

 

 
Figure 5: Plot of latent individuals against time in years 

 

 
   Figure 6: Plot of Infected Individuals against time in years 
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   Figure 7: Plot of Infected individuals against time in years  

 

IV. Discussion of Results 
The model has eleven parameters and uncertainties are expected to arise in estimates of the values used 

in the numerical simulations. In order to assess the effect of these uncertainties and to determine the parameters 

that have the greatest impact on the transmission dynamics of tuberculosis, we perform uncertainty and 

sensitivity analysis. We perform Latin Hypercube Sampling (LHS) and Partial Rank Correlation Coefficient 

(PRCC) on the model.   

Using the reproduction number as the response function, the top ranked parameters are shown in Table 4.1 

below. 

 

Table 3: PRCC values for the parameters of the model using the reproduction number (𝑹𝒐) as response 

function. 
Parameters PRCC (𝑹𝒐) 

𝛽 0.7576 

𝜇 0.1721 

𝛿 -0.5001 

𝛼 -0.5010 

𝑃1 -0.9324 

Ψ 0.0602 

𝜀 -0.0080 

𝜎 0.0422 

𝜙 -0.0786 

𝑞1 -0.0015 

𝑞2 -0.0534 

 

A parameter is said to be significant if its PRCC values  𝑃 ≥ 0.5 from the table 4.1 the most 

significant parameters are𝛽, 𝛿, 𝛼 𝑎𝑛𝑑 𝑃1. 𝛽 is positively correlated. This means if there is an increase in 𝛽 it will 

also result in an increase in disease burden in the population. 𝛿, 𝛼 𝑎𝑛𝑑 𝑃1 are negatively correlated this mean 

that if there is an increase in 𝛿, 𝛼 𝑎𝑛𝑑 𝑃1 it will also result in an increase in disease burden in the population. 

 

4.1 Deterministic analysis 

The above graph Figure 3.4 under deterministic shows the behavior of the disease of the Latent 

compartment when the reproduction number 100566.00 R . We observed that the disease will die out. 

Figure 3.5 shows the behavior of the disease in the Latent compartment when the reproduction number

16944.90 R . We observed that the disease will produce an endemic.  Figure 3.6 under Deterministic 

shows the behavior of the disease in the infected compartment when the reproduction number. This means the 

disease will eventually die out. Figure3.7 under Deterministic shows the behavior of the disease when the 

reproduction number 16944.90 R . This means there will be more and high occurrence of the disease 

within the population.  
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V. Summary, Conclusion and Recommendations 
5.1 Summary 

In this work, we formulated a deterministic and stochastic model for the transmission dynamics of 

tuberculosis with exogenous re-infection and incomplete treatment. We observed the behavior of the disease 

compartment when the reproduction number is less than and greater than one. We also showed disease free 

equilibrium and carried out sensitivity analysis to know the effect of each parameter in the population. Our work 

includes simulation. 

 

5.2 Conclusion 

In this work a Stochastic differential equation model is developed and investigated for the transmission 

dynamics of Tuberculosis with exogenous re-infection and incomplete treatment. The model strongly indicated 

that the spread of a disease largely depend on the contact rate with infected individuals within a population. In 

this work we carried out three different analyses which are Deterministic, Stochastic as Sensitivity analysis. We 

formulated the Mathematical Model and showed that the population classes are non-negative and we obtain the 

reproduction number using the next generation matrix. With the aid of the reproduction number, we proved the 

condition for stability of disease free equilibrium. When the reproduction number is less than one, our model has 

only a disease free equilibrium, which implies that disease die out eventually when the reproduction number is 

larger than one, our model has a unique endemic equilibrium which implies that the disease persists in the whole 

population and tends to a steady  state. Finally Simulation results are given to verify our conclusion.  

 

5.3 Recommendations 

As tuberculosis continues to claim more lives, it is imperative to have comprehensive researches done in order 

to explore possible new control strategies of the infection as well as assessing the impact of the existing control 

strategies. From the results of this project the following control strategies are recommended: 

(1) Carrying out a cost-effectiveness analysis of the control strategies of TB in the model 

(2) Expanding the model to incorporate vaccination of susceptible population, immigrants and newborns, 

thus assess its role on the dynamics of TB. 

(3) An investigation on the efficacy of TB treatments and up take in educational programs 

(4) Since the model shows that the spread of the disease largely depend on the contact rate, therefore 

efforts should be made to minimize unnecessary Contact with TB infected individuals, this will reduce risk of an 

outbreak. 
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