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Abstract: We consider the series with positive summands given in [1]  for the first Li-Keiper coefficient λ1. We 

first carry out a numerical  experiment to characterize the speed at which the above series  contains (in memory) 

big  amounts of the zeros on the critical  line.  Then we look at the truth of the RH as an extremal possible grow 

of λ1 by means of all sets of zeros in the critical strip. 

Later, in the last section, we formulate the linear Equation for the coefficients φn  related to the Li-Keiper 

coefficients λn. 

Then, we conclude with a possible proof of the correctness of the Riemann Wave background  and thus of a 

(possible) proof of the RH. 
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I. Introduction 
In this work, we first consider the original series obtained by Matiyasevich in his pioneering work [1], i.e.  the 

expression for  the first Li-Keiper coefficientλ1 = γ/2+1-(1/2)·log(4·) ~ 0.0230957... 

as a sum of positive summands [1] (See also[2, 3] for contributions in this direction) and related to the binary 

system; it is given by[1]:  

λ1 =∑
1

ρ
ρ

= (
1

2
) ∙∑

(2 ∙ 𝑁1(𝑛) + 3)

[(2 ∙ 𝑛) ∙ (2 ∙ 𝑛 + 1) ∙ (2 ∙ 𝑛 + 2)]
= ∑𝑓(𝑛)

∞

𝑛=3

∞

𝑛=3

 

(1) 

where N1(n) is the number of units in the binary representation of n. (Notice that if N0 is the number of zeros in 

the representation of n, N1(n) + N0(n) = [log2(2·n)], where the symbol [ ]  denotes the ceiling. 

Eq.(1) is a sum of positive summands thus increasing with n. It  may also be  written as a decreasing sequence 

using N0 in the above  Formula.  With the following relation [1]  

𝛾 =
1

2
+∑

[𝑙𝑜𝑔2(2 ∙ 𝑛)]

[(2 ∙ 𝑛) ∙ (2 ∙ 𝑛 + 1) ∙ (2 ∙ 𝑛 + 2)]

∞

𝑛=1

 

 

then we have: 

𝛾 −
67

127
= ∑

[𝑙𝑜𝑔2(2 ∙ 𝑛)]

[(2 ∙ 𝑛) ∙ (2 ∙ 𝑛 + 1) ∙ (2 ∙ 𝑛 + 2)]

∞

𝑛=3

 

 

i.e. 

λ1 = 𝛾 −
67

127
+ (
3

2
) ∙∑

1

[(2 ∙ 𝑛) ∙ (2 ∙ 𝑛 + 1) ∙ (2 ∙ 𝑛 + 2)]
+

∞

𝑛=3
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+∑(−𝑁0 (𝑛))
1

[(2 ∙ 𝑛) ∙ (2 ∙ 𝑛 + 1) ∙ (2 ∙ 𝑛 + 2)]
= 

∞

𝑛=3

 

=  0.0188823316 + 0.010279229 +∑(−𝑁0 (𝑛))
1

[(2 ∙ 𝑛) ∙ (2 ∙ 𝑛 + 1) ∙ (2 ∙ 𝑛 + 2)]
= 

∞

𝑛=3

 

= 0.0291615606 +∑(−𝑁0 (𝑛))
1

[(2 ∙ 𝑛) ∙ (2 ∙ 𝑛 + 1) ∙ (2 ∙ 𝑛 + 2)]

∞

𝑛=3

 

(2) 

i.e. a constant (the first term) plus a sum of negative summands analogous to Eq. (1). 

In the following numerical heuristic experiment,  we consider Eq.(1) and compare each term in the summation 

with the amount given by the set of the reciprocal zeros (on the critical line) of the Zeta function; the values of 

the zeros are available from the Tables of Odlyzko [4]. We know that if λ1exhausts exactly the sum of the 

reciprocals zeros on the critical line, then this is equivalent to the truth of the Riemann Hypothesis.  Here,  we 

analyze the “speed” at which the above series subsums such reciprocal nontrivial zeros. 

We define: 

M1. 

For n=3 in Eq.(1), N1(3) = 2, amount:M1 = f(n=3)=(1/2)· (7/(6·7·8)) = (1/2)·(1/48) = 1/96 = =0.010416666667.  

For the zeros on the critical line we define≔ 𝑆𝑚 =  ∑ (
1

(
1

4
+𝑡𝑘
2)
)𝑚

𝑘=1  

For m=4 we obtain: 

 S4 = 1/(0.25+14.1347251422) + 

      + 1/(0.25+21.0220396392) + 

      + 1/(0.25+25.0108575802) +  

      + 1/(0.25+30.4248761262) =  0.00993850678 < 0.010416666... 

For n=3 → M1= f(3) = 0.01041666.. ; S4 = 0.00993850678 < M1. 

M2 = f(3)+f(4) = (1/96) +(1/2)·(2+3)/(8·9·10) =(1/96 +1/288) =1/72 = 0.013888888888.. 

For m=11 (levels up to t11 = 52.970….) we have S11 = 0.0138443286.. 

For n=3 and n=4 → M2 = 0.0138888.. ; S11 = 0.0138443286 < M2. 

M3=f(3)+f(4)+f(5) =1/72+7/2·(10·11·12) =262/(1320·12) = 0.0165404040... 

For m=42 (levels up to t42= 127.516...) we have S42 = 0.0165404040.. 

For n=3, n=4 and n=5: M3 = 0.01654040.. ; S42 = 0.0165 4040 ~ M3. 

 

Thus, three terms in the above Matiyasevich series comprises the contribution of the reciprocal values of the 

first 42 zeros on the critical line.  We continue the analysis for an additional information on this point, and 

compute M4. 

Below, the Table 1 of the values of :=Mn = f(3)+f(4) +...f(n+2),n=1...up to n=11. 

 
M4 0.018142968  

M5 0.019482253 

M6 0.019992874 

M7 0.020504570 

M8  0.020883358 

M9 0.021253911 

M10 0.021478270 
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M11 0.021707208 

M12 0.021891937 

M13 0.022076749 

Table 1. 

 

Remark: From t43 = 129.578704200,we may compute the sum of nontrivial reciprocal zeros (as an approximation) 

using the weight  

dN(t) =(1/2 )·log(t/2)·dt for the function(1/(1/4+t2), i.e.  

∫ 𝑑𝑁(𝑡)
216.169

129.578

∙ (
1

(
1

4
+ 𝑡2)

) = 0.001602134.. 

S89 = 0.016540404+0.001602134 = 0.018142538 < 0.0181429681= M4. 

M4 = 0.018142968· S89 = 0.018142358 < M4.. 

 

M4 comprises (~) the amount of the first 89 reciprocal zeros with the series. 

Below as an illustration we construct the plot of the levels MN for very small values of N and the corresponding 

calculated amount of the subset of the reciprocal zeros (Sm) using the Tables. 

 
Fig. 1. The first 5 levels M1..M5 and the levelλ1 = 0.023957... 

 

Below in Fig. 2 we present the plot of Mn here as a function of (1/N)  where N is the number of zeros 

corresponding to Mn. 
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Fig. 2. Mn as a function of (1/N)where N is the number of zeros corresponding to Mn 

 

II. A criterion for the truth of the R.H. assuming that the zeros are simple 
With the above small numerical experiment on the series Mn  of positive summands we was looking at the 

"speed" of the series and this suggests a complement in our study of λ1 alone i.e. – the following first definition 

of an increment- ∆1. Let 

λ0 =∑(1 − (1 −
1

ρ
)
0

)

ρ

= 0 

where ρ runs on all non trivial zeros.  

We now consider the first "increment" [8] which we define as: 

∆1≔∑(1 − (1 −
1

ρ
)
1

)

ρ

−∑(1 − (1 −
1

ρ
)
0

)

ρ

 

(3) 

 

The sum is on all the zeros of the Zeta function in the critical strip, i.e. (without any further assumptions) of the 

general form s= σki·tk  and s=(1- σk) i·tk  (1/2 ≤ σk≤1, tk> 0 for all k =1,2...). 

With this definition we then have: 

∆1= ∑ [
2 ∙ 𝜎𝑘

(𝜎𝑘
2 + 𝑡𝑘

2)
+

2 ∙ (1 − 𝜎𝑘)

((1 − 𝜎𝑘)
2 + 𝑡𝑘

2)
] =∑𝑅𝑘

𝑘

(𝜎𝑘 , 𝑡𝑘)

(σ𝑘,𝑡𝑘)

 

(4) 

We notice that Rk has an extremum (a maximum) for all k at σk=1/2. 

In fact the Taylor expansion around σk=1/2 is given by: 

Rk = Rk( σk=1/2,tk ) -A(tk)·( σk-1/2)2) +O(( σk-1/2)3), A > 0 for all tk. 

From above, explicitly: 
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Rk'= 2/(1/4+tk
2) - 6·(1/(1/4+tk

2)3)·(tk
2-1/12)·(( σk-1/2)2)+O(( σk-1/2)3)) (5) 

 

Neglecting the last term in Eq. (5) we represent below (for the first  level t1 =14.134725...) , R1 and R1' as a 

function of σ= x for 0 ≤ x ≤ 1,using Eq.(4).  

 

 
Fig. 3. R1 and R1' (the two plots are superimposed) and R1(0) =R1(1) > 0. 

 

Moreover, Rk has the Riemann symmetry, i.e. Rk( σk,t) = Rk(1- σk, t) and Rk( σk=1/2,tk) = 2/(1/4+tk
2) 

>Rk(σk=0,tk) =2/(1+tk
2).In considering ∆1 of Eq.(4) and without any  assumptions we could characterize the truth 

of the RH using ∆1 with the following: 

Criterion 1 

“RH is true if ∆1 as defined by Eq.(3),Eq.(4) assume the maximum possible value”; but then ∆1 ~ 2.λ1 

=2.0.0230957.. 

Moreover,  if a nontrivial zero is off the critical line, big fluctuations are known to occur in the lamda's (λn, at 

high values of n and t.  See Appendix 2 for the general formula of ∆n).  

We then consider another definition related to Eq.(4). 

We assume that the zeros are simple; then for σk=1/2, we should divide ∆1 by 2,  i.e.  

∆1 ': = (1/2)·∆1, 

because these are the simple  zeros of the Zeta function for σk=1/2 and  

∆1 ' = Σ(1/2)·Rk(σk=1/2,tk) = 

∑(
1

(
1

4
+ 𝑡𝑘

2)
)

𝑡𝑘

<∑𝑅𝑘 (𝜎𝑘 = 0, 𝑡𝑘)

𝑘

= ∑(
2

(1 + 𝑡𝑘
2)
)

𝑘

 

(5) 

since for all tk, 1/(1/4+tk
2) < 2/(1+tk

2) . From this, we have the following criterion: 

Criterion 2 

“RH is true if, assuming the zeros are simple, ∆1 assume the minimum possible value”, i.e.  

𝑓({𝜎𝑘 , 𝑡𝑘}) =∑(1 − (1 −
1

ρ
)
1

)

ρ

 

is an absolute minimum for any fixed distribution of energy levels {tk}. This concludes our Maxi-Min criterion 

for the RH. 
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III. The first few Li-Keiper  coefficients: the Binomial Coefficients in the Riemann Wave 

background. 

The first one,  contains the two fundamental constants γ (the Euler-Mascheroni constant and ). 

λ1 = 1+ γ/2-(1/2)·log(4·) =0.0230957...                                          (6) 

 

As it is known, this value is independent of the truth of the RH. 

For the second coefficients λ2 we have the lower bound:  

λ2> 4· λ1 - λ1
2                                                                                                           (7)  

In fact, (1/2)·(λ2 + λ1
2) – λ1 > λ1 as was proved in [8]. 

Eq.(7) give us with Eq.(6) that λ2>0.091849… 

We have 

𝜑2 − 𝜑1 =
1

2
(
ξ′′

ξ
)|
𝑆=1

and  φ2>2·φ1                                                                                                               (8) 

with φ1 = λ1,φ2= (1/2)·(λ2 + λ1
2). 

For the third coefficient with the definition of it i.e. 

λ3 = (1/2!)·d3/ds3(s2·log(ξ (s) )|s=1 where the ξ function is given by 

ξ (s) = (1/2)·s·(s-1)·-s/2·Γ(s/2)· ζ (s)                                                                        (9)  

we have: 

λ3 = (1/2) ·d3/ds3(s2 ·log(ξ (s) ) |s=1 = 3·(ξ '/ξ )|s=1 +3·(ξ '/ξ )'|s=1 +(ξ '/ξ )''|s=1 

using the same for λ2 = 2·(ξ '/ξ )|s=1 + (ξ '/ξ )'|s=1 , with λ1 = (ξ '/ξ )|s=1 . 

We find 

λ3 = (3-(3/2)· λ1)·λ2 - 3·λ1 +3· λ1
2–(1/2) λ1

3 +(1/2)·(ξ '''/ξ )|s=1 

We now apply our inequality (Eq. (7)) and we obtain: 

λ3> (4·λ1 – λ1
2 )·( 3-(3/2)· λ1) -3·λ1 +3·λ1

2–(1/2) λ1
3 +(1/2)·(ξ '''/ξ )|s=1 

that is  

λ3> 9· λ1 -6· λ1
2 + λ1

3 + (1/2)·(ξ '''/ξ )|s=1 > 9· λ1 -6· λ1
2 + λ1

3                                                                                                                        (10) 

Since it is known that dn/dsn ξ (s) |s=1> 0 [9]. 

In fact if we consider the Riemann series around s=1/2 [9], given by:  

ξ(s) =  ∑𝑎2𝑛 ∙ (𝑠 −
1

2
)
2∙𝑛∞

𝑛=0
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In the  expansion, all coefficients  are positive, i.e. a2n> 0 for all n. Thus for n=1,  2,  3 we have: 

ξ′(1) =  ∑𝑎2𝑛 ∙ (2 ∙ 𝑛) (
1

2
)
2∙𝑛−1

= 𝑎2 + (
1

2
) ∙ 𝑎4 + (

3

16
) ∙ 𝑎6

∞

𝑛=0

+⋯ > 0 

ξ′′(1) =  ∑𝑎2𝑛 ∙ (2 ∙ 𝑛) ∙ (2 ∙ 𝑛 − 1) ∙ (
1

2
)
2∙𝑛−2

= 𝑎2
2 + 3 ∙ 𝑎4 + (

15

8
) ∙ 𝑎6

∞

𝑛=0

+⋯ > 0 

ξ′′′(1) =  ∑𝑎2𝑛 ∙ (2 ∙ 𝑛) ∙ (2 ∙ 𝑛 − 1) ∙ (2 ∙ 𝑛 − 2) ∙ (
1

2
)
2∙𝑛−3

= 12 ∙ 𝑎4 + 15 ∙ 𝑎6

∞

𝑛=0

+⋯ > 0 

(
d𝑛

d𝑆𝑛
ξ(𝑠))|

𝑠=1
> 0    ∀𝑛.                                                                                                                                  (10’) 

(Notice that a0 =0.4977120.. (~0.5!), a2 = 0.011485..and...a4= 0.00012345 , a6= 8.10-7....) 

Moreover, with the first three terms we obtain: 

ξ' (1) /ξ (1) = 2·(a2 + (1/2)·a4 +(3/16)·a6 +...) = 

= 2·(0.011485)+(1/2)·0.00012345~ 

~0.023033...< λ1 = 0.0230957... 

 

Here for symmetry we write the inequalities using the three functions φ1, φ2, φ3 (emerging for every n as φn)  in 

the expansion of the associated partition function [8]. We have for n =1,  2,  3,  4 … 

φ1 = (1)· λ1 + 0. 

φ2 = (1/2)· (λ2 + λ1
2)  

φ3 = (1/3)·( λ3+(3/2)· λ1·λ2 +(1/2)·λ1
3)  

φ4= (1/4)·(λ4 + (4/3)·λ1·λ3 +(1/2)·λ2
2 +λ1

2·λ2 +(1/6)·λ1
4) 

Now, for n=3 we have obtained from the definition, i.e. λ3 = d3/ds3 (s2·log(ξ (s))|s=1: 

3·φ3 -6·φ2 + 3·φ1 = (1/2)·(ξ '''/ ξ) (1).                                                                                                                  (11) 

For example, 

𝜑3 − 2𝜑2 + 𝜑1 =
1

3!
(
ξ′′′

ξ
(𝑠))|

𝑠=1

 

 

Equality i.e.  Eq.(11) may be pursued for n >3. Notice that if we apply the inequality above, i.e. λ2> 2·λ1 - λ1
2, 

we obtain  λ3 > 3·λ1 - 3·λ1
2 + λ1

3 = 0.067699 (the true value is 0.020763..). 

With λ2 > 2·λ1 - λ1
2 , λ2 > 0.045657 (the true value is 0.0923457..)  

If we apply our bound of Eq.(8) we obtain  λ3 > 0.204673. The true value is λ3 = 0.20763… 

Remark: 

The right hand side of Eq.(10) is the third term (in z=1-1/s) of our lower bound i.e. of the Riemann wave 

background, with the appearance of the Koebe function K(z) as argument of the log(1+λ1·K(z)) [8]. 

In fact, the first three terms of the above expansion of the logarithm at z=0, are given by: 

log( 1+λ1·K(z)) = log( 1+λ1·z/(1-z)2) = λ1·z +(1/2) (4·λ1-λ1
2) ·z2+ (1/3)·(9·λ1- 6·λ1

2 + λ1
3 )·z3 +O(z4). 
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Equality by (11) may be pursued for n>3. In fact, we have calculated 

λ4 = (1/3!)·(d4/ds4(s3·log(ξ(s)))) and we obtain:  

4·φ4 -12·φ3 + 12·φ2 - 4·φ1 = (1/6)·ξ'''' (1)  

i.e. φ4 = 3·φ3 +1·φ1 -3·φ2 + 1·φ1 + (1/4!)·(ξ'''' /ξ )(1) 

Here, to start -with the true values we verify that - φ4 =4·φ1+0.0022384 >4·φ1. 

Thus: φ4 >4·λ1, i.e. λ4 >16λ1-20λ1
2+8λ1

3 - λ1
4=0.358961… (the true value is 0.368…). 

In fact, the first four  terms of the expansion of the above logarithm at z= 0, are given by: 

log(1+λ1·K(z)) = log( 1+λ1·z/(1-z)2) = λ1·z +(1/2) (4·λ1-λ1
2) ·z2+(1/3)·(9·λ1- 6·λ1

2 + λ1
3 )·z3+ +1/4(16λ1- 20λ1

2  + 

+8λ1
3- λ1

4 ) +O(z5) . 

 

IV. Concluding Remark: A possible proof of The RH 
In this work we have analyzed the Li-Keiper  coefficients  both in a numerical as well as in an analytical 

context. 

For the first, i.e. λ1, we have started with the series of positive summands and carried out a numerical experiment 

looking at the "speed" at which such a series (connected with the binary system ) contains amounts of the 

reciprocal values of the nontrivial zeros on the critical line, and we have obtained the behavior given in the plot 

of Mn as a function of 1/N,  where N is the number of zeros related to Mn . 

That analysis suggested to us a definition of the first increment connected with λ1 with the proposal of a criterion 

for the truth of the RH using λ1 alone.  

For λ2 we have used our established lower bound to obtain a lower bound on λ3, using also the positivity property 

of the n-ten derivative of the Riemann ξ function at the border of the critical strip, i.e. at s=1 [9]. 

Finally, we have:  

 Binomial structure into the Riemann wave background;  

 A possible proof of the Riemann Hypothesis. 

We now write: 1·φ1 = (1)· λ1  

2 · (1 · φ2  −  1 · φ1) =  
1

2
∙
ξ′′

ξ
(1) 

3 · (1 · φ3  −  2 · φ2 + 1 · φ1) =  
1

6
∙
ξ′′′

ξ
(1) 

4 · (1 · φ4 − 3 · φ3 +  3 · φ2 − 1 · φ1) =  
1

24
∙
ξ𝐼𝑉

ξ
(1)                                                                                       (12) 

We recognize in the parenthesis the binomial coefficients, where: 

(1 − 1)𝑛 =∑1𝑛 ∙ (−1)𝑛−𝑘 ∙ (
𝑛
𝑘
) = 0

𝑛

𝑘=0

 

a signal, coming from the structure above of the binomials for the concrete appearance of the Riemann wave 

background [8].  

For n=3: 

φ3 = 2 ∙ φ2 − φ1 +
1

3!
∙ (
ξ′′′

ξ
) (1) > 2 ∙ φ2 −φ1 > 3 ∙ φ1                                                                                (13) 

from Eq.(12), φ4 = 3·φ3 - 3·φ2 + φ1 + (1/(4!)) ·( ξIV/ ξ)(1) and from above. 

φ4 >3·( 2·φ2 - φ1 ) - 3·φ2 + φ1 + (1/(4!))·(ξIV/ ξ)(1) + (1/(3!))·( ξ’’’/ ξ)(1) 

φ4 = 3·φ2 -2·φ1 +δ,  δ > 0,    δ =
1

4!
(
ξ𝐼𝑉

ξ
) (1) +

1

3!
(
ξ′′′

ξ
) (1) > 0 

→φ4> 4·φ1                                                                                                                                                                                                                                               (14) 

φn > n·φ1                                                                                                                                                               (15) 

To conclude, the general structure is as follows: 
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∑(−1)2𝑛−𝑘
𝑛−1

𝑘=0

∙ (
𝑛 − 1
𝑘
) ∙ 𝜑𝑛−𝑘 =

1

Г(n + 1)
∙ (

𝑑𝑛

𝑑𝑆𝑛
ξ

ξ
)|

𝑆=1

 

(16) 

and this gives φn> n. φ1 (15),for all n. 

The binomial structure, and Eq.(15) ensures the correctness of our Riemann Wave background [8], and then the 

truth of the RH by means of log(1+λ1 (γ,)·K(z)). 

Moreover, if we sum the right hand sides of Eq.(16) over n, we obtain the number: 

𝜋

3
(
ξ′

ξ
(2)) =

𝜋

3
[
1

2
(𝛾 + log (4𝜋) + 3) − 12𝑙𝑜𝑔𝐴] = 0.072325988 

 

Where A is the Glaisher-Kinkelin constant. 

Since: 


′(−1) =

1

12
− 𝑙𝑛𝐴 = −0.1654211937 

Then, with N0(n) of Eq. (2) [1]: 

𝜋

3
∙ (1 +

1

2
ln 2 + 12 ′(−1) +∑

𝑁0(𝑛)

2𝑛(2𝑛 + 1)(2𝑛 + 2)

∞

𝑛=1

) 

which gives the constant: 0.0723… 

The same number is obtained with the primes (
ξ′

ξ
(2)). 

𝜋

3
∙ (
3

2
−
1

2
𝑙𝑛 𝜋 −

𝛾

2
−∑

𝑙𝑛𝑝

𝑝2 − 1

∞

𝑝=2

) 

 

Where the sum  is on all the primes p. 

Then, for λ2 we obtain the upper bound: 

λ2<2· 0.072325988  - (λ1)2= 0.14411856. The true value is: λ2 =0.092… 0.10... 

Summing the left hand sides of Eq.(16) over n, we have: 

∑𝜑𝑛  −

∞

𝑛=1

∑𝜑𝑛  ∙ 𝑛 +∑𝜑𝑛  ∙
1

2

∞

𝑛=1

∞

𝑛=1

∙ 𝑛 ∙ (𝑛 − 1) −
1

6
∑𝜑𝑛  ∙ 

∞

𝑛=1

𝑛 ∙ (𝑛 + 1)(𝑛 + 2) + ⋯ 

A very strong cancellation. 

Moreover: 

𝜋

3
(
ξ′

ξ
(𝑠))|

𝑠=2

=
𝜋

3
[(
𝑑

𝑑𝑧
𝑙𝑛ξ(𝑧)) ∙

𝑑𝑧

𝑑s
]|
𝑧=
1

2

=
𝜋

12
∑λ𝑛 ∙ (

1

2
)
𝑛−1

𝑛

 

Which gives the same constant 0.072323… 

The sum of the left hand side of Eq.(16) (linear in the φ’) gives linearity in the Li-Keiper coefficients, i.e. from 

above: 

∑λ𝑛 ∙ (
1

2
)
𝑛+1∞

𝑛=1

= (
ξ′

ξ
)|
𝑠=2

 

(17) 

The binomial structure Eq.(16), and Eq.(15) ensures the correctness of our demonstration [8]. 

If we reconsider the nontrivial zeros we have from above: 
𝜋

12
∑ λ𝑛 ∙ (

1

2
)
𝑛+1

𝑛 =
𝜋

12

𝑑

𝑑𝑧
∑

λ𝑛

𝑛𝑛 𝑧𝑛|
𝑧=
1

2

= 

𝜋

12
{
𝑑

𝑑𝑠
[𝑙𝑛 (∏ (1 −

𝑠

𝜌
) (1 −

𝑠

1−𝜌
)𝜌 )]} ∙ (

𝑑𝑠

𝑑𝑧
)|
𝑠=2

= 

4𝜋

12
∑ (

1

𝑠−𝜌
+

1

𝑠−(1−𝜌)
)|
𝑠=2

𝜌 = 

𝜋

3
∑ (

1

𝑠 − 𝜌
+

1

𝑠 − (1 − 𝜌)
)|
𝑠=2𝜌

=
𝜋

3
∑ (

3

(2 − 𝜌)(1 + 𝜌)
)|
𝑠=2𝜌

< 𝜋 ∙ λ1 = 
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= · 0.0230957…= 0.07255730. 

We indicated this value with  C0. Thus, the upper bound to the above constant: 

0.07232… < C0 = 0.07255…                                                                                                                        (18) 
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Appendix 1 

An analogy with a model of Statistical Mechanics: example with the 2-dimensional ferromagnetic Ising model 

in zero field solved  by Onsager in 1944. We compute the first coefficient for the 2-d Ising model in zero field 

already considered in [6].  

The partition function of Statistical Mechanics is givenby: 

Z = Trace exp(-β·H) and the free energy by: 

-β·f = log(𝑍(𝛽, 𝐽)) = (
1

2
) (

1

2𝜋
)
2

∫ 𝑑𝛼1
2𝜋

0
∫ 𝑑𝛼2
2𝜋

0
𝑙𝑜𝑔(1 + 𝑧2 − 𝑧(cos (𝛼1) + cos (𝛼2)) 

 

where z = sinh(2k) = sinh(2·β·J) (β is the inverse temperature and -J the interaction strength between two 

neighboring spins on the square  lattice). 

The zeros in z are on the unit circle |z| = 1and the critical temperature is given by  

z= sinh(2·β·J) = 1. 

The critical line for this model is obtained by the usual transformation z=1-1/s and the argument of log(Z) is 

now given by: 

log(1+(1-1/s)2 -s·c) where c = cos(α1)+cos(α2)  

the zeros in s are on the critical line, now given by s = σi·tk = 1/2 i·tk  where  

𝑡𝑘 = 𝑡𝑛(𝑐) =  √
2+𝑐

4∙(2−𝑐)
       (notice  that  |c|2).  

We compute : 

λ1 =∑(
1

(
1

2
± 𝑖 ∙ 𝑡𝑘)

) =

𝑡𝑘

(
1

2
) ∙ (

1

2𝜋
)
2

∙ ∫ 𝑑𝛼1 ∙
2𝜋

0

∫ 𝑑𝛼2

2𝜋

0

∙ (
1

4
+

2 + 𝑐

4 ∙ (2 − 𝑐)
) = 

= (
1

2
) ∙ (

1

2𝜋
)
2

∙ ∫ 𝑑𝛼1 ∙
2𝜋

0
∫ 𝑑𝛼2
2𝜋

0
∙ (2 − 𝑐(𝛼1, 𝛼2)) = 1 → λ1 = 1. 

The same  value of λ1 is  obtained with λ1= d/ds (log(Z(s)) |s=1 = 

= (
1

2
) ∙ (

1

2𝜋
)
2

∙ ∫ 𝑑𝛼1 ∙
2𝜋

0

∫ 𝑑𝛼2

2𝜋

0

∙
(2 ∙ (2 − 𝑐) ∙ 𝑠 − (2 − 𝑐))

(1 + 𝑠2 ∙ (2 − 𝑐) − 𝑠 ∙ (2 − 𝑐))
|
𝑠=1

= 1 

http://www.dtc.umn.edu/~odlyzko/zeta_tables/zeros1
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This conclude an analogy with the 2-d Ising model in zero field for the first coefficient λ1. 

Appendix 2 

As started in [8], keeping in mind that for large n a Li-Keiper coefficient λn become negative if there is the 

presence of  at least a nontrivial zero off the critical line -here- we merely look at the increments Δn which are 

defined as follows  

∆𝑛≔ ∑ (1 −
1

ρ
)
(𝑛−1)

∙ (
1

ρ
)ρ                                                                                                                              (A21) 

 

where the sum is on all nontrivial zeros  ρ = σ i·t and 1- ρ = 1-σ i·t  (if we assume that the nontrivial zeros are 

simple, Δn, for σ =1/2, should be divided by 2. (We omit here the indices k for ρ = σki·tk). 

Then without any assumption the amount is given by:  

∆𝑛=∑(
2 ∙ 𝐴2

(𝑛−1) ∙ sin ((𝑛) ∙ 𝛼1 + (𝑛 − 1) ∙ 𝛼2)

𝐴1
𝑛 +

2 ∙ 𝐴1
(𝑛−1)

∙ sin ((𝑛 − 1) ∙ 𝛼1 + (𝑛) ∙ 𝛼2)

𝐴2
𝑛 )

ρ

 

(A22)  

where A1 = |σ  i·t| = ( σ2+t2 )(1/2) , A2 =|1-σ +i·t| = ((1-σ )2 +t2 )(1/2)  

α1 = arctan(σ /t) and α2 = arctan((1- σ)/t). 

Notice that if σ =1/2 , A1 = A2 ,α1 = α2 and Δn reduces to  

∆𝑛 (𝜎 =
1

2
) =∑4 ∙ (sin (2 ∙ 𝑛 − 1) ∙ 𝑎𝑟𝑐𝑡𝑎𝑛 (

1

2 ∙ 𝑡
)) ∙

(

 
 1

√(
1

4
+ 𝑡2)

)

 
 

ρ

 

 (A23) 

 For n=1, the above Formula gives:  

∆1=
2

√(𝜎2 + 𝑡2)
∙ sin (𝑎𝑟𝑐𝑡𝑎𝑛 (

𝜎

𝑡
))  +

2

√((1 − 𝜎)2 + 𝑡2)
∙ sin (𝑎𝑟𝑐𝑡𝑎𝑛 (

1 − 𝜎

𝑡
)) 

Since  

sin(𝛼1) =  
𝜎

√(𝜎2 + 𝑡2)
  and  sin(𝛼2) =

(1 − 𝜎)

√((1 − 𝜎)2 + 𝑡2)
 

we obtain: 

∆1= ∑ [
2 ∙ 𝜎

(𝜎2 + 𝑡2)
+

2 ∙ (𝜎 − 1)

((1 − 𝜎)2 + 𝑡2)
]

(σ,t)

 

 (A24) 

which is the same as Eq.(4). In the next pages  we give as illustration some  plots concerning the fluctuations 

using Eq.(A22), (variable n, t, σ). 
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Fig. A21.Plot of Δ10(t1=14.134725... σ) as a function of σ(n=10) 

 

Fig.A22. Plot of Δ22(t1=14.134725... σ) as a function of σ showing a "borderline"  for the onset of minimal 

fluctuations at the firs level t1 .(n=22) 

 

Fig.A23. Plot of Δ23(t1=14.134725... σ ) as a function of σ(n=23) 
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Fig.A24.Plot of Δ23(t2 =21.022039... σ) as a function of σ(n=23) (second level t2) 

 

Fig.A25.Plot of Δ23(t2 =21.022039... σ) as a function of σ(n=30) (second level t2) 

 

Fig.A26.Plot of Δ23(t2 =21.022039... σ) as a function of σ(n=32) (second level t2) . 
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Fig.A27.Plot of Δ23(t2 =21.022039... σ) as a function of σ(n=33) (second level t2) . 

 
Fig.A28. Δn(14.134725,..σ=1/2) in green and Δn(14.134725,... σ=0 or σ=1 ) in red. (Onset of strong fluctuations at 

t1 for n ~ 40 at σ=0). 

 
Fig.A29.Δn(14.134725,..σ=1/2) in red and  Δn(14.134725,..σ=0 or σ=1) in green (border of the critical strip): here 

we suppose that the zeros are simple 
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Fig.A30. Δn(14.134725,..σ=1/2) in red and Δn(14.134725,..σ=0 or σ=1) in red (border of the critical strip: here 

without assuming that the zeros are simple: the curves are superimposed). 

In the last Figure, we present the difference i.e.  Δn(14.134725,..σ=1/2) - Δn(14.134725,..σ=0). 

 

Fig.A31.The difference indicated as above, at t>30 is positive, and this is more in favour of the content of 

Fig.A29 where the  simplicity of the zeros was assumed with the indication of the minimal fluctuations at σ=1/2. 
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