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ABSTRACT: One of the most frequent decisions faced by operations managers is “how much” or “how many” 

items are they to make or buy in order to satisfy external or internal requirements for the item. Replenishment in 

many cases is made using the economic order quantity (EOQ) model. The model considers the tradeoff between 

ordering cost and storage cost in choosing the quantity to use in replenishing items in inventories. This paper 

demonstrates an approach to optimize the EOQ of an item under a periodic review inventory system with 

stochastic demand using value iteration. The objective is to determine in each period of the planning horizon, an 

optimal decision so that the long run costs are minimized and profits are maximized for the given state of 

demands. Using Markov decision process over a finite planning horizon with equal intervals, the decision of 

how much quantity to order or not to order is made. We use a numerical example with the aid of value iteration 

method to demonstrate the existence of an optimal decision policy. 

KEYWORDS: Markov decision process, inventory management, optimization, EOQ, Markov chain, stochastic 

process, value iteration. 
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I. Introduction 
Inventory management plays a very important role in supply chain. To manufacturers, it entails 

managing product stocks, in-process inventories of intermediate products as well as inventories of raw material, 

equipment and tools, spare parts, supplies used in production, and general maintenance supplies. A 

manufacturing company needs an inventory policy for each of its products to govern when and how much it 

should be replenished. Good inventory management offers the potential not only to cut costs but also to generate 

new revenues and higher profits. On the other hand, undersupply causes stock out and leads to lost sales; 

whereas oversupply hinders free cash flow and may cause forced markdowns. As a result of improper inventory 

policies, both will diminish earnings and can have enough impact to make a company non-profitable. Due to the 

ever changing market conditions, the dynamic and random nature of the demands, the close and complicated 

relationship between resource/production planning and product inventory management, as well as the process 

uncertainties, matching supply with demand has always been a great challenge. Being able to offer the right 

product at the right time for the right price remains frustratingly elusive to manufacturers and retailers (Fisher et 

al 2000). Process scheduling and planning have attracted growing attention in many industriesThe main 

objective of inventory management is to increase profitability. A frequently used criterion for choosing the 

optimal policy is to minimize the total costs, which is equivalent to maximizing the net income in many cases. 

Scientific inventory management requires a sound mathematical model to describe the behavior of the 

underlying system and, quite often, an optimal policy with respect to the model. Many models have been 

developed for various inventory situations. The first inventory model appeared in the literature more than 70 

years ago (Wilson, 1934) is frequently referred to as the Wilson formulation. This is a fixed order quantity 

system that selects the order quantity to minimize the total costs in the inventory management. Several of its 

variations, such as modified reorder point system with periodic inventory counts, the replenishment system, and 

multiple reorder systems etc. have been widely used. Many inventory systems possess complications that 

require models capable of handling specific problems in certain situations. Despite the large number of models 

developed, however, there is still a wide gap between theory and practice. Similar to many other dynamic 

processes in the real world, demand variation encountered by retailers or manufacturers is both random and 

seasonal in nature. A random/stochastic process may be considered as an ensemble of random variables defined 

on a common probability space and evolving over time. The observed data are statistical time series, which are 

single realizations of the underlying process. Contrary to those from the deterministic processes, the outcomes 

from a stochastic process is not unique. Time series of on-line data collected from repetitions of the same 

experiment will not be the same; levels of demand for a product change from week to week. It is desirable or 

sometimes necessary to quantify the dynamic relationships among these random events so as to better 

understand and effectively handle process uncertainties. Considering that the dynamics of such systems are 
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often governed by Markov chains, we resort to Markovian models for solution. Markov chain, a well-known 

subject introduced by Andrei A. Markov in 1906, has been studied by a host of researchers for many years. 

Markovian formulations (as in Chiang, 1980; Taylor &Karlin, 1998; Yang et al 2002; Yin et al 2001; Yin & 

Zhang, 1997, 1998; Yin et al 1995) are useful in solving a number of real-world problems under uncertainties 

such as determining the inventory levels for retailers, maintenance scheduling for manufacturers, and scheduling 

and planning in production management. Markov chain approach has been applied in the design, optimization, 

and control of queueing systems, manufacturing processes, reliability studies and communication networks, 

where the underlying system is formulated as stochastic control problem driven by Markovian noise. Markov 

decision process offers an elegant mathematical framework for addressing arbitrarily challenging, sequential 

decision problems that arise in the fields of operations research, management science, finance, and computer 

science, among others. Fundamentally, Markov decision process enable researchers to analyze the dynamics of a 

stochastic process whose transition mechanism is controlled over time: The state of the process provides the 

decision maker with all the information necessary to choose a feasible action in that state. The process responds 

to the chosen action by randomly evolving to a new state, and yields either costs or rewards to the decision 

maker. While Markov decision process captures complex systems, they still enable clean analytical formulations 

with the help of abstraction and assumptions. Most importantly, it is assumed that the probability that the 

controlled process transitions into its new state depends only on the current state and the chosen action. In other 

words, the state transitions of a Markov decision process possess the memoryless property, which greatly 

simplifies the analysis of stochastic processes. Due to the memoryless assumption, in a Markov decision process 

one needs to make decisions only at certain time epochs. Therefore, the strength of Markov decision process lies 

in their ability to be used to formulate a discrete recursive value function capturing the expected cost or reward; 

the optimal action as a function of the current state can be derived by calculating this value function. 

Many researchers have studied various techniques in this context, including dynamic and linear 

programming, to compute value functions. However, most computational methods suffer from multiple 

dimensionality; their practical applications are limited to cases where the state space is manageably small and/or 

the value function has a simple analytical form. To solve computationally nontrivial problems, many other 

researchers have focused on characterizing the structural properties of value functions. Establishing basic 

properties of value functions in Markov decision process and showing that they survive under iteration, forms 

the basis of the inductive proof technique. This technique allows the structure of the optimal policy to be 

deduced. Structural properties provide a powerful methodology for either partial or complete characterization of 

optimal policies, which might have important managerial implications and/or offer smarter computational 

methods. Putterman (1994) 

 In this work, an optimization model is developed for determining the EOQ under a periodic review 

inventory system with stochastic demand using value iteration. Adopting a Markov decision approach, the states 

of the Markov chain represent possible states of demand for the models. The aim is to determine in each period 

of the planning horizon, an optimal decisionpolicy so that the long run profits are maximized, costs minimized 

for a given state of demands. Using equal intervals, the decision of how much quantity to order or not to order 

are made using Markov decision process over a finite planning horizon. A numerical example with the aid of 

value iteration demonstrates the existence of an optimal decision policy. 

Zheng (1992) analyzed a stochastic order quantity and reorder point model in comparison with a 

corresponding deterministic EOQ model. The research result indicated that at large quantities, the difference 

between deterministic and stochastic models is small and the relative increase of the cost incurred by using the 

quantity determined by the EOQ instead of the optimal from the stochastic model does not exceed one eighth 

and vanishes when ordering costs are significant relative to other costs. Cheung and Powell (1996), formulated a 

two stage model that minimized the cost of stochastic demand. The first stage dealt with moving inventory from 

the plant to the warehouses based on forecasted demand. The second stage was moving the inventory from the 

warehouses to the customers when they send an order. Using an experimental case, the model indicated that 

having two warehouses per customer was more efficient than having one warehouse per customer.  

Eynan and Kropp (1998) examined a periodic review system under stochastic demand using a single 

product. A simple solution procedure gave an almost optimal solution where results were extended to the joint 

replenishment problem for multiple items and the simple heuristic developed provided promising 

results.Piperagkas et al. (2012) investigated the dynamic lot-size problem under stochastic and non-stationary 

demand over the planning horizon. The problem is solving by three popular meta-heuristic methods from the 

fields of evolutionary computation and swarm intelligence. Yin et al. (2002) proposed a formulation and 

solution procedure for inventory planning with the Markov decision process (MDP) models. They formulated 

the Markov decision model by identifying the chain‟s state space and the transition probabilities, specify the 

cost structure and evaluate its individual component; and then use the policy-improvement algorithm to obtain 

the optimal policy.Broekmeullen and VanDonselarr (2006) developed a replenishment inventory model to 

understand product, sales and supply characteristics of perishables in supermarkets, analyzed a perishable 



An Optimal Ordering Policy with Markov Decision Process 

DOI: 10.9790/5728-1603010817                             www.iosrjournals.org                                                 10 | Page 

inventory control system based on item agingand retrieval behavior, investigates how the intelligence in 

automated store ordering systems in supermarkets can be further improved and had profound insights in terms 

of randomdemand. Roychowdhury (2009) determined an optimal policy for a stochastic inventory model of 

deteriorating items with time dependent selling price. The rate of deterioration of the items was constant over 

time and the selling price decreased monotonically at a constant rate with deterioration of items. Mubiru and 

Buhwezi(2017) considered a joint location inventory replenishment problem involving a chain of supermarkets 

at designated locations. Associated with each supermarket is stochastic stationary demand where inventory 

replenishment periods are uniformly fixed for the supermarkets. Considering inventory positions of the 

supermarket chain, they formulated a finite state Markov decision process model where states of a Markov chain 

represent possible states of demand for milk powder product. The unit replenishment cost, shortage cost, 

demand and inventory positions were used to generate the total inventory cost matrix; representing the long run 

measure of performance for the Markov decision process problem. The problem was to determine for each 

supermarket at a specific location an optimal replenishment policy so that the long run inventory costs are 

minimized for the given states of demand.Mubiru et al (2019) considered an internet cafe faced with an optimal 

choice of bandwidthfor internet users under stochastic stationary demand. The choice was made overuniformly 

time horizons with the goal of optimizing profits. Considering customerdemand, price and operating costs of 

internet service, they formulated a finite stateMarkov decision process model where states of a Markov chain 

represented possiblestates of demand for internet service. A profit matrix was generated, representing thelong 

run measure of performance for the Markov decision process problem. 

Kallen and van Noortwijk (2006) presented a decision model for determining the optimal time between 

periodic inspections of an object with sequential discrete states. The deterioration model used a Markov process 

to model the uncertain rate of transitioning from one state to the next, allowing the decision maker to properly 

propagate the uncertainty of the component‟s condition over time. The model was illustrated by an application 

to the periodic inspection of road bridges. The author also showed that the model could be applied to production 

facilities to optimize the threshold for preventive maintenance. 

Saranga and Knezevic (2001) developed a mathematical model for reliability prediction of condition-

based maintained systems in which the component deterioration was modeled as a Markov process. A system of 

integral equations was used to compute the reliability of the system at any instant of operating time. When the 

reliability of the item reached the minimum required reliability level, it was assumed that the item has reached a 

critical state and hence the required maintenance activities should be carried out to restore the system to an 

acceptable level. The authors suggested that a well-designed condition monitoring strategy incorporated into 

condition based maintenance (CBM) could offer improved reliability and availability at the system level. 

Sloan and Shanthikumar (2002) considered the problem of determining the production and 

maintenance schedules for a multiple-product, multiple-stage production system. Each stage consisted of a 

machine whose condition deteriorated over time and the condition affected the yield of different product types 

differently. The authors developed a Markov decision process model to simultaneously determine the equipment 

maintenance and production schedules for each stage of the system with the objective of maximizing the long-

run expected average profit. A simulation model of a four-station semiconductor wafer fab was used to compare 

the performance of policies generated by their model against a variety of other maintenance and dispatching 

policy combinations. The results indicated that their method provided substantial improvements over traditional 

methods and performed better as the diversity of the product set increased. They showed that the reward earned 

using the policies from the combined production and maintenance scheduling method was an average of more 

than 70% higher than the reward earned using other policy combinations such as a fixed-state maintenance 

policy and a first come, first-serve dispatching policy.  

 

II. Development Of Value Iteration Method 

Let nX  denote the state of the process at time n and na the action chosen at time n, then the above is equivalent 

to stating that: 

 1 0 0 1 1( | , , , ,........ , ) ( )n n n ijP X j X a X a X i a a P a         (1.1) 

We consider an aperiodic irreducible Markov chain with m states (m< ∞)and the transition probability matrix   

  P =

11 12 1

1 2
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. . .

.....

m
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         (1.2)
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With every transition, i  to j  associate a reward ijR if we let 
( )n

iV be the expected total earnings (reward) in the 

next n transitions, given that the system is in state i  at present.  

A simple relation can be given  

For 
  

1

n

i
n

V



as follows: 

  
 n

iV =  
 1

1

1, 2,.........., ; 1, 2,3,........
m

n

ij ij j

j

P R V i m n




   
   (1.3) 

Let     
1

m

ij ij i

j

P R Q



         (1.4)

 

Equation can now be written as: 

  ( 1)

1

m
n n

i i ij j

j

V Q P V 


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       (1.5)   

Setting n = 1, 

2 … we get 

(1) (0)

1

m

i i ij

j
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        (1.6)  
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Where
( )n

ijP is the ( , )thi j  element of the matrix 
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Equation (1.8) can be put in matrix notation as

 

( )nV
2 (0)Q PQ P V            (1.9) 

Extending this to a general n, we have 

1
( ) 2 ( 1) (0) (0)

1

...... 1
n

n n n n

k

V Q PQ P Q P Q P V PK Q P V






 
         

 
    (2.0) 

we consider the transition probability matrix P and the reward matrix R as given. suppose that the decision 

maker has other alternatives and so is able to alter elements of P and R. to incorporate this feature, we define D 

as the decision set, and under a decision , k k

ij ijk D let P and R  be the probability of the transition and 

corresponding reward, respectively. Let 
( )k n

iV  be the expected earnings in n transitions i j under decision 

k, we have the recurrence relations ( k o represents the optimal decision) 
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( ) ( 1)

1
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m

o n k k o n

i ij ij j
k D

j
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

        (2.1)        Giving

( ) ( 1)

1
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m

o n k k o n
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k D

j
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
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 
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 
    (2.2) 

Where 
1

m
k k k

ij ij i

j

P R Q


 . Recursive relation (2.2) gives an iterative procedure to determine the optimum 

decisions
( )n

id D , for 1,2,....; 1,2,.....,n i m   

This is the standard technique in dynamic programming and it has been shown Bellman, (1957) that this 

iteration process will converge on best alternative for each state as n  . The method is based on recursively 

determining the optimum policy for every n that would give the maximum value. However, one major drawback 

of the method is that, there is no way to say when the policy converges into a stable policy; therefore, the value 

iteration procedure is useful only when n is fairly small. 

 

III. Model Development 
In formulating the model, an inventory system of a single product is considered. The demand during 

each time period over a fixed planning horizon is classified under three states: favorable state ( f ), less 

favorable state (l) and unfavorable state ( u ). The transition probabilities over the planning horizon from one 

demand state to another could be described by means of a Markov decision process, as such the demand during 

each period is assumed to depend on the demand of the preceding period. To obtain an optimal course of action, 

a decision alternatives are open to the decision maker, that is to order large quantity of item, order small quantity 

of item andnot to order additional units has to be made during each period over the planning horizon, where k is 

a decision variable. The maximum expected earnings are put together at the end of the period to obtain 

optimality with the aid of value iteration based on the following transition probability and reward matrix.   
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 
 
 
 
       (3.1)
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1 2

....

.. .. .....
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m
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R R R

R

R R R

 
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  
 
       (3.2)

 The transition between the states is described in by the following transition diagram. 

 

 
Figure 3.1 The transition diagram for the states. 
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Let the position of the demands for the product be described by a random variable (X), suppose that the 

demands is considered for several weeks; (n), we obtain a stochastic process  , 1, 2,3,.....nX n   we assume 

that the position of the demands are: 

(1) Favorable demand (state1) 

(2) Less favorable demand (state2) 

(3) Unfavorable demand (state3) 

We consider the states to be mutually exclusive and exhaustive. It is further assumed that the stochastic process 

, 1, 2,3,.....nX n   is governed by a first order Markov chain 

1 0 0 1 1 1( | , ,........., ) ( | )ij t t t tP P X j X i X i X i P X j X i         .    (3.3) 

The possible transitions between the states are presented in figure (3.1). 

From the transition diagram in figure (3.1) and equation (1.1) where m, n = 1, 2. We obtain a transition matrix 

   

11 12 13

21 22 23

31 31 33

P P P

P P P P

P P P

 
 

 
 
 

       (3.4) 

We assume that the matrix is P is aperiodic, irreducible stochastic matrix and satisfies equation 

1 0 0 1 1 1( | , ,........., ) ( | )ij t t t tP P X j X i X i X i P X j X i             (3.5) 

When the demand of product is in state 1, two alternatives are open to the decision maker. That is to: 

i) Order large quantity 

ii) Hold on to the advertisement method. 

Let the corresponding transition probabilities and rewards matrix be given as: 
1 1 1

11 12 13

1 1 1

21 22 23

P P P

P P P

 
 
 

         (3.6)
 

1 1 1

11 12 13

1 1 1

21 22 23

R R R

R R R

 
 
 

         (3.7)
 

When the demand of the product is in state 2, two alternatives are open to the decision maker, that is to: 

i) Order small quantity 

ii) Increase advertisement 

let the corresponding transition probability and reward matrix be given as:
 

 

2 2 2

11 12 13

2 2 2

21 22 23

P P P

P P P

 
 
 

         (3.8) 

2 2 2

11 12 13

2 2 2

21 22 23

R R R

R R R

 
 
 

         (3.9) 

When the demand of the product is in state 3, two alternatives are open to the decision maker, that is to: 

i) No Order 

ii) Improve on the method of advertisement 

let the corresponding transition probability and reward matrix be given as:
 

 

3 3 3

11 12 13

3 3 3

21 22 23

P P P

P P P

 
 
 

        

 (3.91) 
3 3 3

11 12 13

3 3 3

21 22 23

R R R

R R R

 
 
 

         (3.92) 
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IV. Application 
A business man has found tough competition in regards to the demand of a certain product and would 

like to use analytical techniques in making decisions for whether to order in large quantity, small quantity or not 

to order additional units depending on the demands for the product in question.  The product undergoes state 

changes between favorable demand, less favorable and unfavorable states based on the following transition 

matrices and corresponding reward matrices.  

Let the transition probabilities matrix ( ijP ) and the corresponding reward matrix ( ijR ) be given as follows: 

11 12 13

21 22 23

31 32 33

; , 1, 2,3.ij

P P P

P P P P P i j

P P P

 
 

   
 
       (4.1)

 

  

11 12 13

21 22 23

31 32 33

; , 1,2,3.ij

R R R

R R R R R i j

R R R

 
 

   
 
       (4.2)

 

Let D be the decision set and we have two alternative decisions available to the business man. That is, 

Alternative 1; and Alternative 2; Thus in every state we have k = 1, 2 D. 

We shall determine the best policies for every n using equation (1.3). Since our interest is to minimize cost and 

maximize profit, the alternative that yields more earnings constitutes the best policy for the states and time.  

The product undergoes state changes base on the following transition probabilities and the corresponding reward 

matrices in (thousand naira) respectively. 

  
1 1 1

11 12 13

1 1 1

21 22 23

1 1 1

31 32 33

0.6 0.2 0.2

0.1 0.6 0.3

0.3 0.5 0.2

ij

p p p

P p p p

p p p

   
   

    
  
       (4.3)

 

 , 1,2,3 1i j for k    

     

 

 

1 1 1

11 12 13

1 1 1

21 22 23

1 1 1

31 32 33

6 5 4

4 3 2

4 6 3

ij

R R R

R R R R

R R R

   
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     
     

     (4.4)  

  

 

, 1,2,3 1i j for k   

  

2 2 2

11 12 13

2 2 2

21 22 23

2 2 2

31 32 33

0.6 0.1 0.3

0.5 0.3 0.2

0.1 0.3 0.6

ij

p p p

P p p p

p p p

   
   

    
  
  

    (4.5) 

   , 1,2,3 2i j for k   

  

2 2 2

11 12 13

2 2 2

21 22 23

2 2 2

31 32 33

6 3 2

2 10 5

7 8 1

ij

R R R

R R R R

R R R

   
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      
       

    (4.6) 

   , 1,2,3 2i j for k   

We substitute the above values into the optimality equation to obtain our iterations. That is 

( ) ( 1)

1

max 1,2,....; 1,2,.....,
m

o n k k o n

i i ij j
k D

j

V Q P V n i m




 
    

 


     (4.7) 

 

 

V. 
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We shall use the values in (4.3) to determine the best policies for every n. where 
1

m

ij ij i

j

P R Q


  

we have 
1

1 5.4Q              

1

2 1.6Q             

1

3 1.2Q              

2

1 4.5Q              

2

2 3Q              

2

3 3.7Q              

Let 
(0) 0 1,2,3. 1o

iV for i Then for n    in (1.3)  
(1)

1,2,3
max ,o k

i iwe find V Q hence  

(1) (1) (1)

1 2 31, 1 1d d and d  
        (5.1) 

        
 

Let 
(1) (1) (1)

1 2 3, ,o o oV V and V  be the maximum earnings corresponding to 
(1) (1) (1)

1 2 3,d d and d respectively. 

 We have  
(1) (1) (1)

1 2 35.4, 1.6 1.2o o oV V and V   
    (5.2)

 

For n = 2, from (3.64) we have 

   

3
(2) (1)

1,2,3
1

maxo k k o

i i ij j

j

V Q P V


 
  

 


     (5.3) 

That gives 
1 (2)

11; 1 8.72i K V    

1 (2)

22; 1 2.74i K V    

1 (2)

33; 1 0.98i K V             

2 (2)

11; 2 7.54i K V             

2 (2)

22; 2 0.06i K V      

2 (2)

33; 2 3.4i K V            (5.4) 

Clearly, 

  
(2) 1 (2)

1 11 8.72d with V 
       

 

(2) 1 (2)

2 21 2.74d with V 
      

 

(2) 1 (2)

3 31 0.98d with V         (5.5) 

Proceeding in this manner, we get 

For n = 3: 

  
(3) 1 (3)

1 11 14.696d with V 
       

 

  

(3) 1 (3)

2 21 5.55d with V 

       

 

(3) 1 (3)

3 31 5.162d with V         (5.6) 

For n = 4: 
(4) 1 (4)

1 11 25.656d with V 
      

 

(4) 2 (4)

2 22 15.3634d with V 
      

 

(4) 1 (4)

3 31 13.3812d with V        (5.7)  
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For n = 5: 

  
(5) 1 (5)

1 11 46.79852d with V 
      

 

  
(5) 2 (5)

2 22 32.01146d with V 
      

 

  

(5) 1 (5)

3 31 31.43594d with V 
      (5.8) 

For n = 6: 

  
(6) 1 (6)

1 11 87.5668d with V 
      

 

  
(6) 2 (6)

2 22 70.451286d with V 
      

 

(6) 1 (6)

3 31 67.768258d with V 
      (5.9) 

 

Table 1: The summary result of the optimal policies and rewards 

 

The results indicate the best policies for each n.
( ) 1,2,3,4,5,6 1, 2,3.n

id where n and i  Thus, we have 

obtained the best policies for the three states for six months. In addition to the best policies, the corresponding 

expected rewards are also provided.  

For the first month, 
(1) (1)

1 11 540od with V  means that the best policy for state 1 is for the business man is 

to order in large quantity for favorable demand and the corresponding expected reward is five hundred and forty 

thousand naira. 
(1) (1)

2 21; 160od with V   Means that the best policy for state 2 is to order small quantity since the demand 

is less favorable, and the corresponding expected reward is one hundred and sixty thousand naira. 
(1) (1)

3 31; 120od with V   Means the best policy for state 3 is not to order since the demand is not favorable 

and the corresponding reward is minus one hundred and twenty thousand naira which is a loss to the business 

man. 

Also for the second month,   
(2) (2)

1 11; 872od with V   means the best policy for state 1 is to keep up 

advertisement for favorable demand with expected reward of eight hundred and seventy two thousand naira. 
(2) (2)

2 21; 274od with V  Means the best policy for state 2 is to improve advertisement in order to increase 

the rate of demand with expected reward of two hundred and seventy-four thousand naira. 
(2) (2)

3 31; 8.2od with V    Means the best policy for state 3 is not to order since the demand is unfavorable 

with expected reward of minus eight thousand and two naira. 

For the third month, 
(3) (3)

1 11; 1,433.6od with V   means the best policy for state 1 is to order in large 

quantity with expected reward of one thousand, four hundred and thirty three naira. 
(3) (3)

2 22; 675.8od with V   Means the best policy for state 2 is to improve on the rate of advertisement 

and the expected reward is six hundred and seventy-five thousand naira. 
(3) (3)

3 32; 300.2od with V   Means the best policy for state 3 is not to order with the expected reward of 

three hundred thousand naira. 

The result revealed that for the fourth, fifth and sixth month, the best policies for the states is alternative 1 while 

for the first state, Alternative 2 for the second state and Alternative 1 for the third state respectively. This is a 

convergence to stable policy that further iterations beyond is not necessary.  

 

N ( )

1

nd  
( )

2

nd  
( )

3

nd  
( )

1

o nV  
( )

2

o nV  
( )

3

o nV  

1 

2 
3 

4 

5 
6 

1 

1 
1 

1 

1 
1 

1 

1 
2 

2 

2 
2 

1 

1 
1 

1 

1 
1 

540 

872 
14,696 

25,656 

46,7985.2 
87,5666.8 

160 

274 
5,550 

15,3634 

32,0114.6 
70,4512.86 

-120 

980 
5,162 

13,3812 

31,4359.4 
67,7682.58 
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VI. Conclusion 
Generally, the importance of decision making in any organization cannot be over emphasized. In this 

paper, we focus on inventory replenishment based on demands for a particular item as vital aspect of the 

economy.  

 This work provides analytic solution to ordering problem of a firm whose aim is to meet up with 

customer demands, making an optimal choice out of several choices so as to minimize cost and maximize profit. 

Hence, Markov decision model was analyzed using the value iteration method to achieve optimality in decision 

making. 

From the analysis made, this model can be applied in different areas where decision making is required 

by altering the elements of the probability and reward matrices depending on the state space of the decision 

maker and the alternatives. 

 

VII. Recommendation 
 This research work was done on a three- state model, using the value iteration as method of solution. It 

recommended that similar work is done by increasing the state space using the policy iteration or linear 

programmingas a solution method since the value iteration is only applicable when the state space is small. 
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