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Abstract 
Influenza virus infection represents a global threat causing seasonal outbreaks and pandemics, and as a result, 

it is associated with considerable morbidity and mortality worldwide despite the availability of vaccine and 

antiviral drugs. However, medical experts and published data has shown that deaths are largely caused by 

respiratory complications resulting from secondary bacterial infections, the most common being bacterial 

pneumonia.  In order to understand the transmission and control dynamics of this infection in the presence of 

secondary bacterial infections, we formulated an eight compartmental mathematical model, which incorporated 

vaccination and treatment parameters into the deterministic model that studies the infection behaviour in the 

presence of secondary bacterial infections. 

The mathematical analysis shows that the disease free and the endemic equilibrium point of the model exist. The 

model has disease free equilibrium point which is locally asymptotically stable and is globally asymptotically 

stable whenever the basic reproduction number is less than unity i.e. )1( 0 R  and unstable when 10 R . 

Numerical simulation was carried out by Maple 18 software using differential transformation method to 

investigate the effects of vaccine, transmission rates, asymptomatic progression rate and treatment rates on the 

dynamics of the disease.  

Our results showed that increasing the rates of vaccination and influenza treatment rate has a significant effect 

of reducing influenza infection in both populations of the infected individuals and increased influenza treatment 

increases the temporarily-recovered population. The transmission rates (β1 and β2) have the effect of reducing 

the susceptible population while increasing influenza infection in both populations of the infected individuals. 

Increase in asymptomatic progression rate, ε, increases asymptomatic infection of influenza in the population, 

but lessen the number of people who are symptomatically infected with influenza. The bacteria-transmission 

rate β3 also decreases the temporarily recovered population while increasing the bacteria-infected population. 

However, bacteria treatment decreases secondary infection in the population, and greatly increases the 

population of the fully recovered individuals.  

The effect of transmission rates can be reversed when individuals take preventive measures to help slow the 

spread of germs that cause flu. Also, if screening programmes are organized for all individuals irrespective of 

whether they show symptoms or not, the infection status of all individuals would be known, and as such, the 

population of the asymptomatic infected individuals can be reduced, while their symptomatic infected 

population will be treated accordingly. 
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I. Introduction 
Influenza (also known as Flu) is a contagious respiratory illness caused by influenza viruses that infect 

the nose, throat and lungs. It can cause mild to severe illness and sometimes lead to death 
[7]

. Influenza virus 

may be transmitted among humans in three ways: (1) direct contact with infected individuals; (2) contact with 

contaminated objects (called fomites) such as toys, doorknobs, etc.; (3) inhalation by virus-laden aerosols. 

People who have influenza often feel some or all of these signs and symptoms: fever/chills, cough, sore 

throat, running/stuffy nose, muscle/body aches, headache, fatigue/tiredness and vomiting and diarrhoea 

(common in children). It should be noted that not everyone with flu have fever. The time from when a person is 

exposed to the virus to when symptoms begins is about 1 – 4 days, with an average of about 2 days 
[7]

. However, 

approximately 33% of people with influenza are asymptomatic 
[4]

. Most infected people recover within one to 

two weeks without requiring medical treatment. However, in the very young, the elderly, and those with other 
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serious medical conditions, infection can lead to severe complication of underlying condition (like asthma, 

diabetes, heart disease, etc.); secondary bacterial infections (like pneumonia, bronchitis, sinus, ear infection 

etc.); and death 
[22]

.  

To prevent influenza, the influenza vaccine is recommended by the WHO and the United states CDC to 

the high-risk group such as children, the elderly, health care workers and people with chronic illness, or are 

immuno-compromised (such as people with HIV/AIDS) among others. It can also be prevented by everybody 

preventive actions (like staying away from people who are sick, covering coughs and sneezes and frequent hand 

washing) to help slow the spread of germs that cause respiratory (nose, throat and lungs) illness like flu 
[7]

. 

There are influenza antiviral drugs (like Neuraminidase inhibitor, Oseltamivir, among others) that can be used to 

treat flu illness 
[7] [22]

.  

Influenza virus infections are associated with considerable morbidity and mortality worldwide. In the 

US alone, despite the availability of vaccine and antiviral drugs, influenza causes approximately 200,000 serious 

infections that require hospitalization and 36,000 deaths each year. Influenza pandemics and epidemics which 

mostly occur annually in the fall or winter pose threats (such as missed work, cost of hospitalisation and medical 

treatment and increased deaths) to the human population 
[21]

. As a result, it is important to understand to detail, 

the dynamics of this disease.  

A number of works has been done on the spread of multiple strains of the influenza virus with 

immunity 
[1], [15], [17], [18]

; on modelling the dynamics with different age groups
 [5], [9], [13], [19]

. However, medical 

experts and published data has shown that deaths are largely caused by respiratory complications resulting from 

secondary bacterial infections, the most common being bacterial pneumonia 
[2], [3], [16]

. In 2009, Handel et al. 

derived a mathematical model for a bacterial infection following influenza, which addressed the scientific 

problem of the infection thoroughly but with the parameters not known to details. In 2012, Chien et al. 
[8]

 

proposed a model that looks into the contribution of antibacterial intervention on the co-infection of influenza 

and secondary bacterial infection. But their model is somewhat complex. Also Henneman et al. (2013) 
[12]

 

proposed a model that studied bacterial infection following influenza. In the present study, we formulate a new 

model following the Oluyo and Adeyemi model 
[17]

, and the Henneman et al. model 
[12]

 to get a better insight 

into the dynamical transmission and control of influenza complicated by a secondary bacterial infection.  

The rest of this work is organized as follows: Section 2 gives a full description of the model and shows 

a domain where the model is epidemiologically well posed. Section 3 provides the existence of equilibria 

including a derivation of the basic reproduction number and stability analysis of the equilibria. In Section 4, we 

perform numerical simulations of the model with graphical illustrations and their discussion, and give 

concluding remark in Section 5. 

 

II. Model Formulation 
The new model which sub-divides the total human population size at time t, denoted by N(t), into 

susceptible humans S(t), Vaccinated humans V(t), Exposed humans E(t), Asymptomatic infected humans IA(t), 

Symptomatic infected humans IS(t) Recovered from influenza and temporarily susceptible to bacterial infection 

T(t), Humans infected with secondary bacterial infection Ib(t) and Fully recovered humans R(t) . Hence, we 

have: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )A s bN t S t V t E t I t I t T t I t R t        . 

 

The transmission and control of influenza Virus among human is governed by some basic 

epidemiological parameters. Susceptible individuals are recruited into the human population either by birth or 

immigration at a rate π, out of which a fraction ν is vaccinated and so, are protected against the infection, and 

the remaining fraction (1–ν) receives no vaccine. The vaccine wanes off at a rate ω and individuals of the 

vaccinated class return to susceptible class. When an infected individual, either asymptomatic or symptomatic, 

comes in contact with a susceptible human, the virus is passed onto the human and the person moves to the 

exposed class E(t) at a rate β1 and β2 respectively (the model did not include the transmissions from virus laden 

aerosols). 

The human natural and disease-induced death rates are denoted respectively as 𝜇, 𝛿1, and 𝛿2. The average 

exposure period is 
1
/ρ, after which a fraction 𝜀 of ρE(t) shows no symptom. Other parameters are as given in 

table 2.1. 

The figure 2.1 below shows the dynamics of the model with the inflow and outflow on each compartment. 
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Figure 2.1: The diagrammatic representation for the dynamics of influenza virus infection 

 

 The model is formulated as a system of coupled ordinary differential equation as: 
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together with the initial conditions: 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) .A A S S b bS t S V t V E t E I t I I t I T t T I t I R t R       
 

 

The state variables and parameters used for the transmission model are described in the following table: 
State Variables and 

Parameters 

Description 

S(t) Number of individuals susceptible to influenza infection at  time t 

V(t) Number of individuals vaccinated against influenza infection at time t 

E(t) Number of individuals exposed to influenza infection at time t 
IA(t) Number of asymptomatic infected individuals at  time t 

IS(t) Number of symptomatic infected individuals at  time t 

T(t) Number of recovered individuals from influenza that are temporarily susceptible to bacterial 

infection at  time t 

Ib(t) Number of individuals infected with secondary bacterial infection at  time t 

R(t) Number of fully recovered individuals at  time t 
N Total human population 

π Recruitment term of the susceptible individuals 

ν Per capita rate of vaccination 
ω Per capita rate of vaccine wanes off 
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β1 Rate of transmission from contact between susceptible and asymptomatic infected individuals 

β2 Rate of transmission from contact between susceptible and asymptomatic infected individuals 
β3  Rate of transmission of secondary bacterial infection  

ρ Per capita rates of progression from the exposed state to the infected states  

𝜀  Fraction of the  exposed individuals that are migrated to symptomatic infected 

𝛿1, 𝛿2  Disease-induced death rates for influenza and secondary bacterial infections respectively 
 

𝜇  Natural death rate 

γ Natural recovery rate of the infected individuals from influenza 

τ1, τ2  Per capita recovery rates due to treatment of influenza and bacterial infections respectively 

σ  Progression rate from temporary susceptibility to full recovery state 

Table 2.1: Description of Variables and parameters used in the model 

 

Existence and Uniqueness of Solution 

THEOREM 2.1 
[10]

:  Let 
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the partial derivatives nji
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THEOREM 2.2: Let  
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Then equation (2.3) has a unique solution. 
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Proof: 
We find the partial derivatives, evaluated at the origin thus: 
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Hence, following Derrick and Grossman 

[10]
 of theorem 2.1 above, the problem (2.3) has a unique solution and 

so the model (2.1) is both epidemiologically feasible and mathematically well posed. 

 

III. Mathematical Analysis Of The Model 
In this section we carry out qualitative analysis of the model (2.1) to investigate existence and stability of the 

steady states. 

 

3.1. Existence of Equilibrium Points 

Let   , , , , ,A SE S V E I I T
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Disease-free Equilibrium Points, R0 
Disease-free equilibrium points are steady-state solutions in the absence of influenza virus infection  

(i.e. IA = IS = Ib = 0). Thus, the disease-free equilibrium point, E0, for the influenza virus model (2.1) when IA = 

IS = Ib = 0 yields: 

0 1 , , 0, 0, 0, 0, 0, 0E
  


    

  
    

   
  (2.5) 

 

3.2. Derivation of Basic Reproduction Number, R0  

An important notion in epidemiological models is the basic reproduction number, usually denoted by 

R0. It is a threshold value that is often used to measure the spread of a disease. It is defined as the number of 

secondary infections in humans that arise as a result of a single infected individual being introduced in a fully 

susceptible population. When R0 < 1, it implies that on average an infectious individual infects less than one 

person throughout his/her infectious period and in this case the disease is wiped out. On the other hand, when R0 

> 1, then on average every infectious individual infects more than one individual during his/her infectious 

period and the disease persists in the population.  

The derivation of basic reproduction number is essential in order to assess the local stability of the 

system (2.1). To do this, we employ the method of next generation matrix described by Driessche and 

Watmough 
[21]

. 

 

We have the transmission and transition matrices to be given respectively as 
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The Jacobian matrices for ℱ and 𝒱 at DFE (E0) are evaluated as follows: 
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Now, the basic reproduction number, which equals ρ(F.V
-1

), is obtained as the spectra radius (i.e. the dominant 

eigenvalue) of the product F.V
-1

 thus: 
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This quantity gives the basic reproduction number. 

 

3.3. Local Stability of Disease-free Equilibrium Point 

THEOREM 3.1: 
The disease-free equilibrium is locally asymptotically stable. 

Proof: The stability of the disease-free equilibrium is determined by the eigenvalues of the Jacobian matrix of 

the full system (2.1), evaluated at the disease-free equilibrium point, given by: 
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The eigenvalues of this Jacobian matrix are obtained to be: 

1 2 3 4 1
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Since all the roots are real distinct and negative, then the disease-free equilibrium point is locally asymptotically 

stable. This completes the proof. 

 

3.4.1. Global Stability of Disease-free Equilibrium Point 
Here, we explored the global asymptotic stability (GAS) property of the disease-free equilibrium point for the 

influenza model. 

THEOREM 3.2: 
If  R0 < 1, then the disease-free equilibrium is globally asymptotically stable. Otherwise, it is unstable.  

Proof: This proof is based on the use of comparison theorem 
[14]

 using the comparison method. Thus we have: 
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where F – V  is defined as  
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D is a diagonal matrix with positive diagonal elements and therefore it is a non-singular matrix, while M is the 

remainder. The eigenvalue of J  have negative real parts iff the spectra radius (i.e. the dominant eigenvalue) of 

the matrix MD
–1 

 < 1 
[7]

, where  

   
1 2

1

0 1 1 0

0 0 0

(1 )
0 0 0

0 0 0 0

MD

  
 

            



 

 

 



    
       

          
 
 

  
 
 

 
 
 

 

The eigenvalues of MD
–1

, obtained
 
by setting |M D

–1
 – 𝜆I| = 0, where I is a 4 x 4 identity matrix, is given as the 

roots of the quartic equation: 

1 2

4 2 2

1 1 1

2 2 1 2

1 1 1

1
1,2 3,4

1 1
(1 )

0
( ) ( )

1
(1 )

0
( )

1

0
( )

Or

 
   

     
  

            


 

    
 

         


 

  
 

   

   
      

       
      

  
        

     
       

  

 
  

    


2
0

1 1 1

(1 )
.R

 

     

 
   

     

 



Transmission Dynamic Model of Influenza Complicated By a Secondary Bacterial Infection In .. 

DOI: 10.9790/5728-1603025671                              www.iosrjournals.org                                               65 | Page 

Obviously, the leading eigenvalue 0R  is less than unity if R0 < 1. In other words, the spectra radius of MD
–1 

 

< 1. Therefore, all the eigenvalue of J  have negative real parts.  

Hence, the disease-free equilibrium point of the system (2.1) is globally asymptotically stable if R0 < 1, and 

unstable if otherwise. This completes the proof. 

 

3.4. Endemic Equilibrium Point, Ee 

In addition to the disease-free equilibrium point E0, we shall show that the model (2.1) has an endemic 

equilibrium point, Ee. The endemic equilibrium point is a positive steady state solution where the disease 

persists in the population (i.e. if IA ≠ IS ≠ Ib ≠ 0). Therefore, solving the system (2.4) simultaneously gives the 

endemic equilibrium defined by: 
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Hence, an endemic equilibrium point Ee exists and is unique.

 

 

IV. Numerical Results And Discussion 
The numerical simulation for the model was carried out by Maple 18 software using differential 

transformation method to show the effects of vaccination, recovery and treatment rates on the dynamics of 

influenza virus disease. 

We used some of the parameter values compatible with the disease, obtained from literatures as given in the 

table 4.1 below, and by considering the initial conditions:  

(0) 500, (0) 175, (0) 250, (0) 100, (0) 150, (0) 200.A SS V E I I T     
 

 
Parameters Description Values Sources 
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π   Recruitment term of the susceptible individuals 0.01547 Assumed 
ν   Per capita rate of vaccination 0.40 Estimated 

ω  Per capita rate of vaccine wanes off 0.01 Estimated 

β1  Rate of transmission from contact between  
susceptible and asymptomatic infected individuals 

0.30 Assumed 

β2 Rate of transmission from contact between susceptible and 

symptomatic infected individuals 

0.25 [12] 

β3  Rate of transmission from contact between persons recovered 

from influenza and persons infected with bacterial infections 

0.325 Assumed 

ρ  Per capita rates of progression from the exposed state to the 
infected states  

1/2.6 = 0.385 [11] 

𝜀  Fraction of the  exposed individuals that are migrated to 

asymptomatic infected 

0.33 Estimated 

𝛿1   Influenza-induced death rate   0.0005/day [12] 

𝛿2   Death rate due to secondary bacterial infection  1/10 = 0.1/day [12] 

𝜇  Natural death rate 0.009493 Assumed 

γ  Natural recovery rate of the infected individuals ½(1/7+
1/14)  Estimated 

τ1  Per capita recovery rate due to treatment of influenza 1/2.4 = 0.417 [11] 

τ2   Per capita recovery rate due to treatment of bacterial infection 1/18 = 0.0556 [12] 

σ  Progression rate from temporal recovery from influenza to full 
recovery state 

1/14 = 0.0714 [12] 

Table 4.1: Parameter values used for the model 

 

4.1. Presentation of Results 

The results are given in Figures 4.1 – 4.12 to illustrate the system‟s behaviour for different values of the model‟s 

parameters. 

 

 



Transmission Dynamic Model of Influenza Complicated By a Secondary Bacterial Infection In .. 

DOI: 10.9790/5728-1603025671                              www.iosrjournals.org                                               67 | Page 

 

 



Transmission Dynamic Model of Influenza Complicated By a Secondary Bacterial Infection In .. 

DOI: 10.9790/5728-1603025671                              www.iosrjournals.org                                               68 | Page 

 

 



Transmission Dynamic Model of Influenza Complicated By a Secondary Bacterial Infection In .. 

DOI: 10.9790/5728-1603025671                              www.iosrjournals.org                                               69 | Page 

 

 
 

V. Discussion of Results 
Figure 4.1 and figure 4.2 illustrate the effect of administering influenza vaccine at birth on the 

populations. From figure 4.1, we observed that increasing the vaccination rate, ν, decreases the population of 

individuals that are susceptible to influenza, which in turn raises the population of individuals that are protected 

against the infection, i.e. the population of the vaccinated individuals increases as ν increases. This can be seen 

as shown in figures 4.2. However from figure 4.3, which is the plot of exposed population against time for 

varied values of the rate of vaccine wane-off (ω), it was seen that the exposed population increases as ω 
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increases. This will in turn has the effect of increasing influenza infection in the population since more people 

are contracted and are exposed to the infection, and hence the need for more medical research in order to 

increase the efficacy and/or expiry duration of influenza vaccines. Also, while such research is on-going, 

influenza vaccines should be retaken for renewal sake and should not be once in a lifetime 
[]
. In these ways, the 

rate at which vaccines wane off will be greatly lowered, and the infection will be lowered in the population as 

well. 

Figures 4.4 – 4.6 are plots that represent the effects of influenza transmission rates from asymptomatic 

and symptomatic infected individuals (β1, β2 respectively). From figures 4.4, which is the plots of susceptible 

population against time for varied values of β1 and β2, we observed a declining susceptible population as both 

rates β1 and β2 increases. From figures 4.5 and 4.6, which respectively represent the plot of asymptomatic and 

symptomatic infected populations against time for varied values of β1 and β2, it was seen that increase in β1 and 

β2 results into a corresponding increase in the population of asymptomatic and symptomatic infected 

individuals.  

From figure 4.7, we have the plot of influenza infected population against time when the asymptomatic 

progression rate, ε, is varied. We observed that the more the people develop asymptomatic case of the infection 

the more the population of the asymptomatic infected individuals. On the other hand, the more the people 

develop asymptomatic case of influenza the lesser the people are symptomatically infected of the infection. 

Also, we investigated the effect of influenza treatment rate (τ1) on the populations. These effects are 

shown by figures 4.8 and 4.9. From figure 4.8, the plot of infected (asymptomatic and symptomatic) populations 

against time when τ1 is varied, we observed that for the asymptomatic case, infection decreases just very slightly 

as τ1 increases, while for the symptomatic case, there is a great deal of decrease in infection as τ1 increases. This 

difference in the two cases can be attributed to the fact that only the symptomatic infected individuals are treated 

and not the asymptomatic infected individuals. Figure 4.9 is a plot of treated (recovered-from-influenza, 

temporarily-susceptible-to-bacterial-infection) population against time for varied values of τ1. It was seen that 

the treated population increases initially as τ1 increases, but with time, due to the fact that those treated are 

temporarily prone/susceptible to secondary bacterial infection within a period of 28days of recovery from 

influenza (after which some individuals progress to full recovery state, while some that contract bacteria within 

this time are secondarily infected with bacterial infection), the treated population at the long run decreases with 

time as τ1 increases. 

From figure 4.10, the plot of bacteria-infected population against time for varied values of progression 

rate to full recovery state (σ), it was noticed that the bacteria-infected population decreases with time as the rate 

at which treated individuals gain full recovery increases. In other words, the more the treated individuals 

develop immunity to fully recover, the lesser the number of individuals that would be secondarily infected with 

bacterial infection. Figure 4.11 is a graph of the recovered population against time for varied values of σ, and it 

shows that the recovered population increases as σ increases. 

Furthermore, the effects of secondary infection parameters are investigated and the results displayed in 

figures 4.12 to 4.14.  From figure 4.12, which represent the graph of bacteria-infected and recovered populations 

(combined) against time when the values of bacteria transmission rate, β3, varies, it was shown that bacterial 

infection increases as β3 increases, whereas, the recovered population decreases as β3 increases. This is a 

complication posed by any secondary bacterial infection to influenza infection and must be controlled in order 

to minimize the number of deaths due to the said complication. Figure 4.13 and 4.14 are plots that show the 

effect of the treatment of bacterial infection (τ2) on the populations. Figure 4.13 shows that there is a decline in 

secondary infection if the treatment of such infection is administered and is increased. Consequently, the 

population of the fully recovered individuals increases as depicted by figure 4.14, i.e. increasing the treatment 

rate of secondary bacterial infection results to an increase in the population of the fully recovered individuals.   

 

VI. Conclusion 
In this paper, we have formulated and analysed a compartmental model for influenza virus infection 

complicated by secondary bacterial infection. The total human population was divided into eight compartments: 

susceptible, vaccinated, exposed, asymptomatic infected, symptomatic infected, temporarily recovered, bacteria-

infected and fully recovered sub-populations. We established a region where the model is epidemiologically 

feasible and mathematically well-posed. The existence and stability of a disease-free equilibrium point as well 

as the endemic equilibrium point were determined.  

The numerical simulations were performed to see the effects of vaccine, transmission rates, 

asymptomatic progression rate and treatment rates on the dynamics of the disease. Our results showed that 

increasing the rates of vaccination and influenza treatment rate has a significant effect of reducing influenza 

infection in both populations of the infected individuals and increased influenza treatment increases the 

temporarily-recovered population (although, initially). The transmission rates (β1 and β2) have the effect of 

reducing the susceptible population while increasing influenza infection in both populations of the infected 
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individuals. Increase in asymptomatic progression rate, ε, increases asymptomatic infection of influenza in the 

population, but lessen the number of people who are symptomatically infected with influenza. The bacteria-

transmission rate β3 also decreases the temporarily recovered population while increasing the bacteria-infected 

population. However, bacteria treatment decreases secondary infection in the population, and greatly increases 

the population of the fully recovered individuals.  

The effect of transmission rates can be reversed when individuals take preventive measures (like 

staying away from people who are sick, covering coughs and sneezes, and frequent hand washing) to help slow 

the spread of germs that cause respiratory illness (particularly flu). Also, in order to keep the progression rate to 

full recovery (σ) on the increase, patients who newly recovered from influenza should be isolated for a period of 

28 days so as to prevent them from contracting any secondary infection due to bacteria. Furthermore, if 

screening programmes are organized for all individuals irrespective of whether they show symptoms or not, the 

infection status of all individuals would be known, and as such, the population of the asymptomatic infected 

individuals can be reduced, while their symptomatic infected population will be treated accordingly. Influenza 

antiviral drugs such as Neuraminidase inhibitor, Oseltamivir, etc. can be used to treat flu illness.  

These control measures will greatly reduce the transmission of the influenza virus infection. However, 

efforts should be intensified in developing improved vaccines with higher efficacy and longer expiry duration 

for influenza virus disease as this would facilitate the stimulation of the immune system in producing antibodies 

against influenza virus infection.   
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