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Abstract: The performances of five traditional methods for unconstrained nonlinear optimization problems are 

evaluated using a test problem. Efficiency index is based on convergence rate, application to a wider class of 

functions and ease of manual application. It is seen that optimization techniques that make use of the gradient 

vector are better-off than those that do not involve it in their operations. The former is observed to converge 

quadratically. 
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I. Introduction 
Generally speaking, operation research is an approach to the analysis of the operation that to a greater 

of lesser extent adopts scientific methods (Observation, hypothesis, deduction and experimentation as far as 

possible) and an explicit formulation of complex relationships. Operation research can be said to be the 

application of the methods of science to complex problems arising in the direction of management of large 

system of men, machines and materials. 

An optimization problem in operation research is that which seek to minimize or maximize a specific 

quantity called the objective function which depends on a finite number of input variables. 

We see optimization techniques discussed in artificial neural network, clustering and classifications, 

constraint-handling, queueing theory, support vector machine and multi-objective optimization, evolutionary 

computation, nature-inspired algorithms and many other topics. Even in the area of statistics, the theory of 

stochastic optimization has been growing rapidly in popularity over the last few decades, with a number of 

methods now becoming “industry standard” approaches for solving challenging optimization problems ([8], [9] 

and the references therein). 

This research work on comparison of various methods of solving unconstrained non-linear problems 

has been thought of as being of immense importance following the fact that, in many situations, assumption of 

linearity as applied to a real world process might be questionable. It considers other various methods of solving 

unconstrained minimization problems, applies each method manually or by means of a computer program 

written in BASIC programming language to the sample problem: 

Minimize
2 2

1 2 1 2 1 1 2 12 2f ( x ,x ) x x x x x x     . 

This is done with the aim to recommend a method of solution which is more efficient and yet easier to go about. 

It suggests possible modifications for easier convergence of functions. 

An unconstrained minimization problem is one where a value of the design vector 
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is sought that minimizes the function )(Xf . This problem can be considered as a particular case of the general 

(constrained) non-linear programming problem. The special characteristic of this problem is that the solution 

vector X need not satisfy any constraint. It is true that rarely a particular design problem would be constrained. 

Several methods are available for solving an unconstrained minimization problem. These methods can be 

classified into two broad categories as direct search methods and descent methods as shown below: 
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Direct search methods Descent methods 

1. Random search method 1. Steepest descent method 

2. Univariate method 2.   Conjugate gradient method (Fletcher-Reeves) 

2. Pattern search methods 

a. Powell’s method 
b. Hooke and Jeeves method 

3.   Newton’s method 

4. Rosenbrock’s method of rotating coordinate 4.   Variable metric method  

(Davidon-Fletcher-Powell) 
5. Simplex method 

 

The direct search methods require only objective function evaluations and do not involve the partial 

derivatives of the function in finding the required minimum and hence are often called the non-gradient methods 

[1]. The descent techniques require, in addition to objective function evaluations, the evaluation of first and 

possibly higher order derivatives of the objective function 

This work selectively investigates five methods of solving unconstrained non-linear optimization 

problems namely, the Univariate method, Powell’s method, Hooke and Jeeves method, Conjugate gradient 

method (Fletcher-Reeves) and the Variable metric method (Davidon-Fletcher-Powell), carries out an analysis of 

each of them with a view to observing their rate of convergence, application to a wider class of functions and 

ease of manual application.All the unconstrained minimization methods are interactive in nature and hence start 

from an initial trial solution and proceed towards the minimum point in a sequential manner ([1], [2], [3], [4], 

[7]). 

 

II. Univariate Method 

The univariate method as a direct search method involves the changing of only one variable at a time 

and trying to produce a sequence of improved approximations to the minimum point being sought. By starting at 

a base point Xiin the ith iteration, we fix values of n–1 variables and vary the remaining variable. Since only one 

variable is changed, the problem therefore becomes a one – dimensional minimization problem and the method 

of producing a new base point Xi+1 is illustrated as in the sample below [10]. This search is now continued in a 

new direction. The choice of the direction and the step length in the univariate method for  an n – dimensional  

problem can be summarized as follows. 

i. Choose the starting point Xi and set i=1 

ii. Find the search direction Si as 


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,12,1,1)0,...,0,0,1(

nnifor

nnifor
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nnifor

S T

i . 

iii. Determine whether Xi should be positive or negative.This means that for the current direction Si, we 

find whether the function value decreases in the positive or negative direction. For this, we take a small probe 

length e and evaluate if f (X ) , i if f (X eS )    and i if f (X eS )   . If f
+ 

< f1, Si will be the 

correct direction for decreasing the value of f and if  if f  , -Si will be the correct one. If both f
+
 and f

-
 are 

greater than fi, we take Xi as the minimum along the direction Si. 

iv. Find the optimal step length 
*

i  such that 
i

* *

i i i i i if (X S ) min (X S )


    , where + or – has to be 

used depending upon whether Si or –Si is the direction for decreasing the function value. 

v. Set 1

*

i i i iX X S    depending on the direction of decreasing the function value, and 

1 1i if f (X )  . 

vi. Set the new value of i = i +1, and go to step (ii). Continue this procedure until no significant change is 

achieved in the value of the objective function.  

 

Application: We minimize
2 2

1 2 1 2 1 1 2 22 2f ( x ,x ) x x x x x x      with the starting point as 

1 0 0X ( , ) . We will take the probe length (e) as 0.01. it is important to note here that the method of 

differential calculus will be used to find the optimum step length 
*

i . 

Iterationi =1: 
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The search direction is chosen as 









0

1
1S . 

To find whether the value of fdecreases along S1 or – S1, we use the probe length e.  

Since 1 1 0 0 0f f (X ) f ( , )   , 

1 1 1

1 1 1

0 0 01 0 2 0 0001 0 0 0 0102

0 0 01 0 2 0 0001 0 0 0 9998

f f (X eS ) f ( e, ) . ( . ) . f ,

f f (X eS ) f ( e, ) . ( . ) . f .





         

            
 

Therefore, 1S  is the correct direction for minimizing f from X1. To find the optimum step 
*

i , we minimize 

2 2

1 1 1 1 1 1 10 2 0 0 2f (X , S ) f ( ) ( )                 

We now set 

1

0
f







 i.e, )014( 1   

*

1  = ¼  

Set 

1
4

2 1 1 1

0 11

0 0 04

*X X S
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f2 = f( -¼, 0) = 8
1  

Iteration i =2: 

Choose the direction 









1

0
2S . 

Since  2 2 0 125f (X ) .   , 

2 2 2

2 2 2

0 25 0 01 0 1399

0 25 0 01 0 1099

f f (X eS ) f ( . , . ) . f ,

f f (X eS ) f ( . , . ) . f .





      

      
 

Therefore, S2 is the correct direction minimize f from X2. 

We shall now minimize 2 2 2f (X , S )  to find 
*

2 . 

Here,
2 2 2

2 2 2 2 2 2 2 2 20 25 0 25 2 0 25 2 0 25 1 5 0 125f (X , S ) f ( . , ) . ( . ) ( . ) . .                  , 

2

2

2 1 5 0
f

.

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
 at 75.0*

2  . 

Set 
2

3 2 2

0 25 0 0 25
0 75

0 1 0 75

*
. .

X X S .
.
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      

         
     

, 

3 3 0 6875f f (X ) .   . 

As a result of the clumsy nature of the manual application of the univariate method, a computer program in 

BASIC codes wasimplemented. The convergence of 
*f ( X )  is found to be -1.25. 

 

III. Hooke and Jeeves Method 
The pattern search method of Hooke and Jeeves is a sequential technique, each step of which consists of two 

kinds of moves, one called the exploratory move and the other called the pattern move. The general procedure 

can be described by the following steps [11]: 

i. Start with an arbitrary chosen point 
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 called the starting base point, and prescribed step 

length iX  in each of the coordinate directions 1 2iU , i , , ,n   
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ii. Set k = 1 and compute fk = f(Xk). Set 
0

1 k ki , Y x   and start the explanatory more as stated in the 

next step. 

iii. The variable Xi is perturbed about the current base point 1k ,iY  to obtain the new temporary base point 

as 

 
 

1 1 1

1 1 1

1

k ,i i i k ,i i i k ,i

k ,i k ,i i i k ,i i i k ,i k ,i i i

k ,i k ,i

Y X U , if f Y X U f f (Y )

Y Y X U , if f (Y X U ) f f (Y ) f Y X U

Y , if f (Y ) min ( f , f )



  

 

  

 



       


         
  

 

The process of finding the new temporary base point is continued for i = 1, 2,… until Xnis perturbed to find k ,nY

. 

iv. If  the point k ,nY remains the same as Xk, reduce the step length iX  (say by a factor of 2), set i = 1 

and go to step 3. 

If k ,nY  is different from Xk, obtain the new base point 1  k k ,nX Y  and go to step 5. 

v. With the help of the base point Xk  and Xk+1establish a pattern direction as 1k kS X X  and find a 

point Yk+1,0 as
1 0 1  k , kY X S   , where λ is the step length which can be taken as 1 for simplicity. 

vi. Set k = k + 1, fk = f(Yk,0), i=1 and repeat step 3. If at the end of step 3,     k ,n kf Y f X , the new 

base point is taken as Xk+1 and k ,nY  and control is transferred to step 5. On the other hand, if 

   k ,n kf Y f X , set Xk+1 = Xk, reduce the step length ∆Xi, set k = k + 1 and go to step 2. 

vii. The process is assumed to have converged whenever the step lengths fall below a small certain number 

e. Thus, the process is terminated if i
i

max( X ) e  . 

Application: Minimize   2 2

1 2 1 2 1 1 2 2   2  2  f x , x x – x x x x x    starting from the point 
1

0

0
X

 
  
 

. 

Take ∆X1 =∆X2 = 0.8 and e = 0.01. 

Step 1:We take starting point 
1

0

0
X

 
  
 

 and step length as ∆X1 =∆X2 = 0.8, along the coordinate directions U1 

and U2 respectively. Set k = 1. 

Step 2:f1 = f(X1) = 0, i = 1 and Y10 = 
1

0

0
X

 
  
 

. 

Step 3:To find new temporary base point, we set i=1 and evaluate f = f(Y10) = 0.0. 

10

10

0 8 0 0 2 08

0 8 0 0 0 408

i i

i i

f f (Y X U ) f ( . , . ) . ,

f f (Y X U ) f ( . , . ) . .





   

     
 

Since f < min(f
+
,f

-
) we take Y11 = X1.  Next, we set i = 2 and evaluate f = f(Y11)= 0.0. 

11 2 2 0 0 0 8 0 16f f (Y X U ) f ( . , . ) .       . 

Since f
+
< f, we set  










8.0

0.0
12Y . 

Step 4:As Y12 is different from X1, the new base point is taken as 
2

0 0

0 8

.
X

.

 
  
 

 

Step 5: A pattern direction is established as 
2 1

0 0 0 0 0 0

0 8 0 0 0 8

. . .
S X X

. . .

     
         

     
. 

The optimal step length λ
*
 is found by minimizing 

2

2 0 0 0 8 0 8 0 6 0 48 0 16f (X S ) f ( . , . . ) . . .         . 
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375.0048.028.10 *  


f
. 

We obtain the point Y20 as 

20 2

0 0 0 0 0 0
0 375

0 8 0 8 0 5

*
. . .

Y X S .
. . .


     

         
     

. 

Step 6: Set k = 2,f = f2 = f(Y20) = - 0.025 and repeat step 3. Thus with i = 1, we evaluate  

 

 

Since    f f f   , we take 











5.0

8.0
21Y . 

Next we set i = 2 and evaluate f = f(Y21) = -0.57 and    21 2 2 0 8 1 3 1 21f f Y X U f . , . .       .As f
+ 

< f, we take 









3.1

8.0
22Y . 

Since f(Y22) = 1.21 < f(X2) = -0.25, we take the new base point as 









3.1

8.0
223 YX  and go to step 5 

Step 5:A pattern direction S is established as  





























5.0

8.0

8.0

0.0

3.1

8.0
23 XXS . 

2

3 0 8 0 8 1 3 0 5 0 73 0 32 1 21f (X S ) f ( . . , . . ) . . .            . 

219.0032.046.10 * 







f
. 

We obtain the point Y30 as 
30 3

0 8 0 8 0 975
0 219

1 3 0 5 1 410

*
. . .

Y X S .
. . .


       

         
     

. 

Step 6: Set k = 3, f = f2 = f(Y30) = -1.235 and repeat step 3. By setting i = 1, we evaluate 

30 1 1

30 1 1

0 175 1 410 0 018

1 775 1 410 0 105

f f (Y X U ) f ( . , . ) .

f f (Y X U ) f ( . , . ) .





     

    
. 

Since f < min (f
+
, f

-
), we set 










410.1

975.0
3031 YY . 

Next we set i = 2to obtain 

31

31 2 2

31 2 2

1 235

0 975 2 210 0 695

0 975 0 610 0 501

f f (Y ) .

f f (Y X U ) f ( . , . ) .

f f (Y X U ) f ( . , . ) . .





  

      

    

 

Since f < min (f
+
 , f

-
), we set 










410.1

975.0
3132 YY , and as Y32is different from X3, we take the new base 

point as 









410.1

975.0
324 YX  and go to step 5. 

Step 5: A pattern direction S is established as  





























11.0

175.0

3.1

8.0

410.1

975.0
34 XXS , 

4 20 975 0 175 1 41 0 11 1 237 0 22 0 0341f (X S ) f ( . . , . . ) . . .             , 

20 1 1

20 1 1

0 8 0 5 2 63

0 8 0 5 0 57

f f (Y X U ) f ( . , . ) . ,

f f (Y X U ) f ( . , . ) . .





   

     
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67.3
66.0

22.0022.06.0 * 







f
, 











40.0

64.0
*

440 SxY  . 

Step 6:f = f4 = f(Y40) = 1.7312. Set k = 4 and repeat step 3. By setting k = 4, we evaluate  

40 1 1

40 1 1

1 44 0 4 6 5

0 16 0 4 0 4768

f f (Y X U ) f ( . , . ) .

f f (Y X U ) f ( . , . ) .





   

    
. 

Since f
+
< f < f

-
, we take  










4.0

16.0
41Y .  We then set i = 2 and evaluate f = f(Y41) = -0.4768, 

f
+
 = f(Y41 + ∆X2U2) = f(-0.98, 1.48) = -1.25. 

As f
+
< f, we take 










48.1

98.0
42Y ,  f(Y42) = - 1.25 and f(X4) = -1.245. 

Since f(Y42) < f(X4), we take the new base point as 









5.1

0.1
425 YX  which can be seen as the optimum 

point.  

 

 

IV. Powell’s method 

Theorem 4.1.If a quadratic function 1
2

T TQ( X ) X AX B X C    is minimized sequentially, once along 

each direction of a set of n – linearly independent, A –conjugate directions, the global minimum of Qwill be 

located at or before the n
th

 step regardless of the starting point. 

 

This method is an extension of the basic pattern search method and is known to be a method that makes use of 

conjugate directions.According to Theorem4.1, it is known that a conjugate direction method minimizes a 

quadratic function in a finite number of steps. 

 

Definition4.1Let A be an n x n symmetric matrix. A set of n vectors (or directions) {S} is said to be conjugate 

(more accurately A – conjugate) if  0T

i jS AS   for all i j , 1 2i , ,...,n , 1 2j , ,...n . 

Definition 4.2If a minimization always locates the minimum of the general quadratic function in no more than a 

pre-determined number of operations and if the limiting number of operations is directly related to the number 

of variables n, then the method is said to be quadratically convergent. 

 

The quadratic convergent property of Powell’s method has ranked it as the most efficient direct search method. 

This is not because we often get quadratic functions for minimization, but because of the fact that most of the 

function can be approximated very closely by a quadratic function near their minima [5]. 

 

Application:  Minimize   2 2

1 2 1 2 1 1 2 22  2  f x ,x x – x x x x x     starting from the point 
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This implies that f cannot be minimized along S2 and therefore 5 1
2

1
X

 
  
 

is the optimum point. 

V. Conjugate Gradient Method 
The conjugate gradient method as a method makes use of conjugate direction which leads to fast 

convergence. Any minimization method that makes use of conjugate direction is quadratically convergence 

which is a very useful property because it ensures that the method will minimize a quadratic function in two 

steps or less. This also applies to non-quadratic functions because they can be approximated by a quadratic near 

the optimum point and any quadratically convergent function is supposed to converge to an optimum within a 

finite number of iterations [12].The algorithm is as follows: 
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Begin with an initial point X1 

Let S1 = -∆f(X1) = -∆f1 

X2 = X3 + λ1*S1, set i =2 and proceed 

Compute ∆fi = ∆fXxi) and set 12

1

2
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i
ii S

f

f
fS  

The optimum length 
*

i  is computed in the Si direction and the new point is given as 1

*

i i i iX X S    

Test for optimality of the point xi+1 (x1+1 is optimum if there is no search direction to reduce f further). If 

optimality is not satisfied, set I = I + 1 and repeat steps (iv), (v) and (vi) until optimality condition is met. 

 

Application:  We want to minimize   2 2
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This shows that there is no search direction to reduce f further and hence 
3

1

1 5
X

.

 
  
 

 is the optimum point. 

 

VI. Variable Metric Method 
This is a method for determining numerically local minima of differentiable functions of several variables. In 

the process of locating each minimum, a matrix which characterizes the behavior of the function about the 

minimum is determined. For a region in which the function depends quadratically on the variables, no more than 

N iterations are required, where N is the number of variables [6].  

This method makes use of the derivatives that are currently available and has the following algorithm. 

i. Start with an initial point X1 and an n x n positive semi-definite matrix H1. For simplicity, H1 can be 

taken as the identity matrix I. set I = 1 

ii. )( iiii xfHS   

iii. iiii Sxx *

1   

iv. Test 1ix for optimality ( 1ix is optimal if 0)( 1  ixf ) if not optimal proceed. 

v. Update matrix H as follows: 
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vi. Set I = I + 1 and go to step 2 

 

Application:We minimize   2 2
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For iteration i = 2 
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 is the optimum point. 

 

VII. Conclusion 
There is at present no  universal  optimization  routine  which  will  solve any  given  problem  more  

efficiently  than  any  other  method  and  it should  always be borne  in mind  that  there  are  some  problems  

for which  those  algorithms  usually  considered  to be  inefficient  may  prove  very  useful. The initial choice  

lies between  direct  search  and gradient  methods,  and  gradient  methods  should  only be used  if the  

derivatives  of the  function  can  be obtained  analytically.It is obvious from the investigation carried out so far 

that methods which make use of the gradient function are much more effective than those void of the gradient 

function, which simply knocks off the direct search methods. The variable metric method (descent method) is 

observed to be the most efficient of all the methods of solving unconstrained non-linear optimization problems 

considered in this work since it converges to the optimum in a considerably smaller number of iterations and it 

is also very stable and cuts across a much wider class of functions. If analytic derivatives don’t exist, then  a 

direct  search  method  should be used  and  of these  Powell’s  algorithm  is probably the  most  effective, 
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