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Abstract: In this paper, we construct the module of derivations of a perm algebra, and we de ne the space of
differential n-forms. Studying abelian extensions, we get the cohomology of perm algebras as a symmetric
Hochschild cohomology. Finally, we relate these constructions with a notion of smoothness in a nonunitary
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I. Introduction

Discovered by F. Chapoton, " perm algebras" are governed by a quadratic operad whose dual operad is that
of "pre-Lie algebras" factorizing the classical Liezation functor, As — Lie, (see |2| and |6]). Parallelelv, these
algebras arise when one tries to define the notion of " extended Leibniz algebra". Explicitly, a perm algebra
is a non-unital binary algebra subjected to the identities: (ab)c = a(be) = a(eb). Most examples of perm
algebras come from the following observation. Given a right A-module R over a commutative and associative
algebra A, equipped with an A-module morphism f: B — A, then the product defined by (r,r") = r- f(r")
endows R with a perm algebra structure.

This article begins by the fundamental examples of perm algebras, namely the construction of the free
perm algebra over a E-module V; here K the ground field over which we are working. We define the
enveloping algebra of a perm algebra R and we define R-representations. This leads to the construction of
the module of derivations and its representation. This vields a suitable definition of the space of differential
forms as a "perm differential graded algebra". The study of abelian extensions of a perm algebra allows
us to define the cohomology of a perm algebra out of the classical Hochschild cohomology. At the end, we
axiomatize a notion of "almosi-freeness" for perm algebras relatively to homomorphism lifting. A conjectural
theorem asserts that we expect an Hochschild-Konstant-Rosenberg tvpe isomorphism

Hy o () = Homp (25 (R), R},
when R is an almost-free perm algebra.

As pointed out by M. Markl, this work seems to be a " Perm-geometry" where Perm is the operad of perm
algebras, as it is well-known for the operads Comm (usual geometry) and Ass (non-commutative geometry),
see [10], Section 3. These gepmetries make sense since the three operads are defined in the category of sets.

I1. Perm algebras
Definition 2.1. A perm algebra is a EK-module R equipped with a bilinear map (—,—): R@ R — R
satisfving the (right commutative and associative) identities

(ab)e = a(be) = a(ch) Va,bece R. (2.1)

Example 2.2. 1. Any associative and commutative algebra is a perm algebra. Conversely, a perm alge-
bra with a unit-element is nothing but a unital associative and commutative algebra. But in sequel,
we shall deal only with non-unital perm algebra.

2. 1f (A, d) is a commutative differential algebra [ie. d: A — A satisfies dod = 0 and d(ab) =
ad(b) + bd(a)| then the product given by (a,b) — ad(b), satisfies identities (2.1) of perm algebras.
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More generally, a procedure for constructing perm algebras is the following:

Proposition 2.3. Let A be an associative and commutative algebra. Let R be a right A-module with A-
module morphism @ Re—— A, Then the product given by (r,r") — v f(r") endows the K-module R with a
perm algebra structure that we denote by Ry.

Proof. Indeed, for any r, 7" and v in R, we have successively:

()" = () F) = (£ F67)
= rf( £17)) = r(F ")) = 1('7")
=rf(r"f(r")) =r(f(r"r")) = r(r"r).

O

Assume now that V is a K-module and let S(V) := ©,205,(V) be the "free symmetric algebra" on V.
Then we have

Proposition 2.4. The "free perm algebra” on Vs the E-module Perm(V') =V @ S(V) equipped with the
product given by

(u@a) (v@b)=u® (avh), wveV,abe S(V). (2.2)

Proof. Ones easily checks that formula (2.2) defines a product satisfving identities (2.1). Now, given a K-
linear map ¢ : V — R where R is any perm algebra, then the K-linear map ¢ : Perm(V) — R defined
on generators by ¢(v) = p(v) and ¢(ve @ v1--- @ v) 1= (vo)e(vi) ---@(va), v, v; € V is a perm algebra
morphism: the unique one such that ¢oi = where i : V(2 V@ K) — V @ S(V) is the natural inclusion.
This proves the universality of the perm algebra Perm(V'). |:|

Observe that the free perm algebra Perm(V) = V @ S(V) is a special case of Proposition 2.2 where
A=5V)and R =V @5(V) with the obvious right A-module structure. and f: R — A is the fusion map
f(v)=vand

flo@vr---@vn) := f(vo)f(v1) - flvn), v, i €V.

Moreover it is shown that the category of perm algebras is governed by a quadratic operad whose dual
operad is that of Pre-Lie algebras characterized by the identity:

(ab)e — a(be) = (ac)b — alch).

These operads are both Koszul after [2] and [6].

I11. Derivations Of A Perm Algebra
In this paragraph. R is denote a perm algebra. and we evolve an idea by D). Husemoller.

Definition 3.1. A representation of R (or R-representation) is a K-module M equipped with two actions
of R.say Rx M — M and M x R — M. satisfving the axioms

{(mb]c L m(be) 2 m(ch) (31)

(am)b = a(mb) = a(bm) = (ab)m,
for any a,b,e € R and m € M.

In fact, relations 1, 3 and 5 say that M is a (non-unital) bimodule over the associative algebra R; relations
2 and 4 express the right-commutativity of M with respect to the actions of R.

For example, any perm algebra R is an R-representation. Other examples will come together with
following notion of "enveloping algebra".
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a" @b aj a,.
a@b | (aa)® (BB | (aa") @b | a @ (ba')
ay (aa") @ b (aa"); a@a
i, a’ @ (ab) a @a (aa"),

3.1 Enveloping algebra of perm algebra
Let B and R, be two copies of R, seen as B = R@K and R- =K ® K. We consider the K-module
ER)=ReoR & R &R,
equipped with associative product defined by the following table:
Proposition 3.2. Any R-representation is equivalent to a lefi E(R)-module.
Proof. Ones can easily see an H-representation via the operations
(a®@a")-m:=(am)a’ = a(ma’),
@y - M= am, a, -m = ma'.
Conversely, and left E{R)}-module M is a R-representation by a-m :=a;-m and m-a = a, -m. O
3.2  Universal derivation of perm algebra
Definition 3.3. A "derivation" from R to a R-representation M is a map 6 : R — M such that
d(ab) = ad(b) + d{a)b, Ya,be R.
For example, given a fixed element u € M. the map
[u,—:R— R, a+ [u,a]=ua— au,

is a derivation from R to M. called "inner derivation".
We denote by Der(R, M) the set of all derivations from R to M it a right F-module with the action:

(6x)(a) :=d(a)z. Ya,r e R.

Definition 3.4. A derivation d : B — M is said to be "universal" if for any derivation 4 : R — N, there
exists a unique R-linear map ¢ : M — N such that 6 = ¢od.

Consider the R-linear map
p:B(R)—» R, w=) a®@b+aj+al—) ab+a +a"

An element w belongs to ker p iff Z ab+a' +a"=0iea" =— Z ab—a’. So one can write

W= Za®b+ ay — (Zab—f— a’),
=Y (a@b— (ab),) +aj —a,
=3 (@—a) b+ (g —a}).
Therefore I == ker g is genetated by the symboles da + (da”) - b where da := a; — a,. We denote by
Qp(R) = I/T°.
It is a R-representation and we have

a(db) + (da)b

alby—b.]+ [a; —a,]b
[(ab); —a®b] + [a ® b— (ab),]
— d(ab).
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Thus, the map
d: R— QF(R), arsda:=a —a,,

is a derivation. It is universal since, for any other derivation é : R — N, the map ¢ : Q(R) — N given by
é(da) == ¢la; — a,)=d(a) and o(da-b) := ¢(da)b = 4(a)b
is the unique one satisfving ¢ o d. Now, it is obvious that we have a representability interpretation
Der(R, M) = Homp (Q%(R), M) .
Proposition 3.5. The K-module Qk(R) is in fact a right-symmetric bimodule over R that is
a-a-db=a-db-a, Yo,a,be R.
Proof. Indeed we have
afadb) — dba) = « [a(by — b ) — (bi — b ) a]
= (qab) —na@b—ab@a+a@ ba
=aba)j—b&a—a®@b+ (ba),]
=a-(bh—b)- (@ —a,) eI
Thus, we have finished. O
3.3 Differential forms
Since the underlying K-module of the free perm algebra over V is V' ® S(V), one can put
QE(R) = Qk(R) © AR (QK(R).
Each n-forms space £2z(R) is generated by the symboles
w = apday @ das A --- Adan +dby @dba A -+ Adby,  ai, b £ R,
and we have a map
d:QF(R) — QF Y(R), w = dag @ day Adag A--- Ada,.
Here we have put ﬂ%(R} =Rand d(a) =a; —a,.a e R

IV. Perm Differential Graded Algebras

Definition 4.1. A "perm differential graded algebra" ("PDG algebra" for short) is a graded E-module
P, := @nzoPn equipped with a binary produet (—, =) : @ Ps = Py, and amap d : P — Pryy satisfving

the identities
(ab)e = a(be) = (—1)" a(ch)
d(ab) = (da)b + (—1)"a(db)
dod=10

foranva € P.,be P, and c € F,.

Remark 4.2. Any commutative differential graded algebra (A,d) is a PDG algebra. Furthermore, given
a commutative differential algebra (A, d), then the product given by (a,b) — adb satisfies axioms (4.1) of

PDG algebra with the same map d.
Recall that Qg (R) is the sum @,>0825(R) where each Qp(R) is generated by symboles

w = apday @das N+ Ada, +dby @ dba Ao A dby,

together with the map d(w) = dag @ dag A das A -+ - Aday,. Moreover, P, be a PDG algebra for any perm

morphism ¢ : R —+ Py, we put

b(w) = pla0)dp(ar) ® dp(ag) A--- A dp(an) + dip(by) ® di(by) A--- Adp(b,).
Then get a well-defined morphism ¢ : Q(R) — P. such that ¢ od = . So we have
Theorem 4.3. The algebra (Qg(R).d) is the wniversal PDG algebra over R.
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V. Cohomology of perm algebras
5.1 Abelian extensions of a perm algebra

Here we trv to define the eohomology of perm algebras by studving abelian extensions of a given perm
algebra R by an R-representation M, fixed for this paragraph.
An abelian exrtension of 12 by M is short exact sequence of perm algebras

0-sMLHEBRR 0

where M is seen as an abelian perm algebra (i.e., mm’ = 0, ¥m,m" € M) Two such extensions (E) and (E")
are said "equivalent" if there exists a perm algebra morphism @ @ E — E" such that

pop=p and ¢oj=j

that is . making commutative the diagram:

0 M—>E_?-R 0
.
0 M—2-p-L-R 0

By the " Five Lemma", such morphism ¢ is necessarily bijective. For instance, the direct sum R & M in
abelian extension of R by M (with the obvious inclusion and projection). Moreover this latter is trivially
W ) ot 4 ) : ol s W Tl ST 4 . . - . .

split". In fact, one says that an abelian extension (E) is "split" if there exists a K-linear map s : R —+ E
such that po s = idp. Moreover, if the "section" s is a perm algebra morphism, then the extension (E) is
said to be “strongly split" or "inessendial".

Any abelian extension (E) with a section s yields another R-representation structure on M by

re-m = s(r)j(m) and m-r = j{m)s(r),

the last products being taken in E (this has a sense since M = kerp). This new structure is naturally
independant of the choice of the section s. Indeed, if ¢" is a another section of p, then we have

p(s'(r) — s(r) = ps'(r) — ps(r) =7 —7 =0
that is, §'(r) — s(r) € kerp = im j. And since M abelian, we have
s'(r)j(m) = s(r)j(m) and j(m)s'(v) = j(m)s(r), Yme M VreR.

From now on, we are interested only in set of equivalence classes of split abelian extensions such that the
R-representation structure of M is the prescribed one.
Let us consider a K-bilinear map f : R x R — M and let R @y M be the E-module R ® M equipped
with the product given by
(rom) - (r',m') = (rr',rm’ +mr" + f(r,r"). (3.1)

Then it is straightforward to check that the product (5.1) is associative iff
flr,e" )" + fler' ")y = v f(r.e") + flro'r") Yo' r" e R (5.2)
and is right-commutative iff
rf(r', ")+ f(r,r' "y = f(r" ") + e ") Yr.r'r'" e R. (5.3)
In fact, relation (5.2) can be rewritten
rf(r', ") = flre' ")+ fleoe' ") = e ") =0

which is nothing but the 2-cocyelicity condition for the Hochschild coboundary of (unital) associative alge-
bras, see [8]. On the other hand, the relation (5.3) expresses the fact that

r(f(r' ") = f(r" ")) = fr ") = f(roe"r)
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that is, the double dual version (linearly speaking) to the right-commutativity. It can be seen as the
conjonction of the following generalizations:

a’f(ﬂa{l)f"':aa'(n+1]:] :a'f(ﬂl:"'aﬂn+l)'. VO—E"S‘H—L {3 1:
and
f[ﬂ,g L .,aj,-_l._baj,-._ LS P ,ﬂn) = f(ao._al._ e .._ﬂj_]_,ﬂjb,ﬂ.j_]_._ ey ﬂnj {J 5}
where f: R¥"F 5 M and j =1,....n. We need some other relations
af(bao,a1,...,...,an) = aflach,ai, ..., a.) ).6)
aa’f(ag. ay,....a,) = aa; f(ag,ay, ... a;_y,a5, a;,1,...,0,), §=0,...,n, (5.7)
af(ao,....aj_1,a;b,aji1,....an) = af(ach,as,...,a,), j=1,...,n. (5.8)

Proposition 5.1. If f 1 R — M satisfies (5.4). (5.7). (5.5). (5.6) and (5.8). so does the Hochschild
coboundary ().

We shall this proposition in following subsection.

5.2 Cohomology of a perm algebra

According to Proposition 3.1, we define the " cohomology of perm algebra R with values in an R-representation
M" to be the cohomology of the complex B* (R, M) = ($,>oB" (R, M), §) where

BY(R,M):=M, BY(R,M):={f:R— M:af(be) =af(ch),¥a,b,ce R},

and
B* (R, M) = {f £ Hom(R®"™, M) satisfving (5.4), (5.7). (5.5). (5.6) and (5.8)} .

for n = 2, where the Hochschild coboundary 4 acts usual by

n—1
+ (_1)i+1f[:a'02 e ea'é—lfaie'ﬂ'€+1:a€+23 e s'ﬂ'n) + E_l)n+1ftaﬂe e ea'n—].}'
=0
We denote it by HY o, (1, M) or simply by Hp o (B) 1= Ho o, (R, 1),

For n =0, Hggrm[R._ M) is the submodule of "invariants" of M that is,

HY (B M) =M= {meM:rm=mr,¥re R}.

perm

For n =1, a l-cocycle is a E-linear map D : B — M such that
D{ab) = D(a)b+ aD(b), Va.be R

that is, a "derivation" from R to M Observe that the additional relation alX(b) = aD(eb) is fulfilled by
any derivation thanks to right-commutativity in M. The set of all derivations from R to M is denoted by
Der(R, M) and we have

Hégrm(R._ M) = Der(, M)/ {inner derivations}

where "{inner derivation}" is the subset of derivation of the form ady,(r) = [m,r] = mr — rm, for a fixed
element m € M.
For n =2, we have the classical classification theorem

Theorem 5.2. Let R be perm algebra and let M be an R-representation. Then, there is a canonical bijection
Heem(R, M) 2 Ext(R, M)

that is. the set of equivalence classes of split abelion extension of R by M.
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Proof. By construction of the cohomology Hporm (R, M), any element f £ B2(R, M) is a 2-cocycle iff the
algebra R @y M is a perm algebra for the produet (i). To be more precise, any 2-cocycle f € B*(R, M)
determines a split abelian extension of R by M and any split abelian extension defines a 2-cocycle f €
B2(R, M) given by

fla,b) = s(ab) — s(a)s(b), Yabe R (5.9)

where s is a section splitting the extension. In fact, the cocycle f measures the obstruction for s to be an
algebra morphism that is, the obstruction to this extension to be inessential.

Therefore, it is left to us to show that its equivalence class, characterized by the morphism @, only involves
coboundaries of BY(R, M). To this end. let ¢ : R @y M — E be an equivalent abelian extension to R &y M
that is, a commutative diagram

0—=M—5~Re;M = —=R——=0
| )
0 M2 g * _R 0

Denoting by 0 : R — R@y M. v+ (r,0), the trivial section of m: Ry M — R. (r,m) — r, we have
pe(poa)=(ped)ed=moa=idg.

Therefore the map § '= ¢ o 7 is also a section of p. It corresponds to s a 2-cocyele f° € B2(R. M) related
to the extension (E). Since the map f' is given by the formula (5.9). one easily checks that the difference
f— f"is nothing but the coboundary §(g) where g: R — M is the map a + g(a) := o(a) — s(a). In fact, a
priori, the map g takes its values in the direct sum R @ M. But since the initial R-representation structure
of M coincide with the structure induced by the sections, we have mog =pog = 0. So im(g) C M; from
whence the Theorem. |

V1. Conjectural smoothness
From now, we refer to the paper by Cuntz-Quillen ([3]). Let R be a perm algebra with an abelian ideal M

_— . E] P . .
and let p : R — A be a surjective morphism such that the sequence 0 — M = R — A — 0is exact. We
are looking for a perm algebra morphism I : A — R such that pol = ids. Then we have an isomorphism

R = A® M relative to which I becomes an inclusion of A. Therefore ng,.m{Aeﬁd) = Ext(A, M) = 0 for
all R-representation in M.

Definition 6.1. A perm algebra A is called "almost-free” when for any abelian extension R of A, there
exists a lifting homomorphism A4 — R.

We expect an interpretation of the cohomology theory Hperm(A, M) as Extp) (A, M), and the exact
sSeuence

0— QLA) — B(A) — A —0
could vield the isomophism
HA L (AM) = Extg“{j){A._ M) = Extly 4 (Qg(A), M).
These suppose the construction of derived functors in a non-unitary context.
Theorem 6.2. The following condilions are equivalent:
1. The perm algebra A is almost-free:
2. The A-bimodule Q(A) is projective;

3. The perm algebra A has cohomology dimension < 1 with respect to the symmetrie Hochschild cohomol-

ogy Hl;erm(A)~

We can see that any classical smooth algebra A (commutative and unital) is almost-free. Also. any free
perm algebra is almost-free.

Theorem 6.3. The following properties arve equivaleni:

1. The perm algebra A has cohomological dimnension zero with respect to symmetric Hochscehild cohomology.
2. The A-module A is projective.
3. Any derivation D1 A — M is inner.

Definition 6.4. We call "separable" a perm algebra A when it has the above equivalent properties.
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VIl.  Proof of the Proposition
We separate the proof into two lemmas which help understanding the reason of these five relations over
which the cohomology of perm algebra built.

Lemma 7.1. If f: R®U"Y 5 M satisfies (5.6) and (5.5). so does the Hochschild coboundary 8(f).

Proof. If § =n+ 1, then by assumption and perm axioms we have

=d(f)ao,...,0n, Cne1b).

If 2 < j < n. then we have
5(f] [an e :a'j—l-. ba'j! L,!j+1:' . '1a'n—1.) = é(f:](aﬂf' . '1a'j—]_-.a'jb: t—“:_';'+11 e fa'n—l)

by assumption and because

f(ao,-..,a;_1,(ba;)a; 11,0542, ..., 08,11)
= flao,...,aj_1.blaj11a5), ai12,...,8n11) by perm axioms
= flao,...,a;_1,(@;410;)b, @542, .., anp1) by assumption
= flag,....0;_1,8;,1(a;0),@; 9, ... ,8,1) by associativity
= f[:ﬂ{;., ceea g, (ﬂjb)ﬂj_]_.. @iy yens san+1) }}\ F_'I.‘"iS]lITl]}T-iOI'I
If § =1, then we have
d(f)(ao,bay, as, ..., an+1) = 0(f)(ao,a1b, az, ..., an+1)

flao, (bay)asz, az, ... any1) = flao, blasay), as n+1) by perm axioms
= flag, (asay)b,az,....a,.1) by assumption
= flag,as(ab), as @,.1) by associativity
= f(ap, (a1b)asz, as n+1) by assumption

One the other hand. we have
a"j(f)(baﬂ‘ Ay, :a'n—l) =ﬂ(ba9)f(al._ =eay ﬂﬂ+1) - a.f((bﬂ[))ﬂ.l,ﬂ.g, E faﬂ+1)
+ Z(—l)“lﬂfﬁbﬂn,ai,- e i1, B0 1, @2y 1)
=1

+ (_1)na'f(bﬂﬂ'. Ayye- - :ﬂn)a’n—l

=a(aob) f(a,...,an41) —af((aob)as, az,...,ani1)
+ Z(—l)é+1ﬂftﬂgb,ﬂ,1,. R P AR P AR, PR eaﬂ+1)
i=1

+ (—1)"aflaoh,ar, ... 40 )00t

=ﬂ(5[f)[:ﬂgb,ﬂl,. .. 3an+1):
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by assumption and because we have

af((bag,)ay,as,...,a,1) =af(blajag),as, ..., a,.1) by perm axioms
=afl(ajag)b,as, ..., a,,1) by assumption
=aflai(aoh),as,...,ant1) by associativity
=af((agh)ay. aq, ... . a,,1) by assumption.
This achieves proving the Lemma. |:|

Lemma 7.2. If f: R®(n+1) £y satisfies (5.4). (5.7). (5.6) and (5.8), so does the Hochschild coboundary
5(f)-

Proof. Let us first show the stability of relation (5.8) with respect to the coboundary 6. If 2 < j < n, then
observe first that we have
aapf((aib,az, ... ane1) = alaib) f(ao, az, ..., an41) by (5.7)
= (ab)ay f(ag, as,...,a,11) by perm axioms
= (ﬂb)aﬁf(ﬂla g, ... :ﬂ"i't+l:J h\ {STF
= alanh) f(ay, az,...,anpy1) by perm axioms.

Therefore, by assumption and perm axioms, we have

ﬂ5[_f)(ﬂ0, ey i1, ajb dj41 - ﬂn+1)
=aagf(ay,...,a;_1,a;bai1,... anp1) —af(aeay, az, ..., i1, aibagg, ..., 1)
-2
+Z(_1)€+lﬂf(ﬁ0,...,ﬂ'j_]_._ﬁiﬂ.g'_‘_lfﬂi_‘_g,...,a.j_lfa.jb._ﬂj_‘_l,...,ﬂ.n_',l)
i=1
+ (—1VYaf(ag,...,a;_2,a;_1(a;b),aj 11, ... a0 1)
+(—1)j'laf(ﬂn>---ﬂj—i(ajb)-.ﬁjnfaj—z-.----.ﬂn+1J
+ Z (—1)6_laf(ﬂg,...,ﬂ T U PR FRE Y F1: P O E S B |
i=j+1
+ (=D)"af(ag,...,a; q.a;b.a;.4,...,a0,)a,. 1
—ﬂﬂgf(ﬂ]_b Qg ...y 0yyq) —af((agaq)b,ag, ... 6,,1)

+Z(—1)€+1af(ﬂnbeﬂ1= RN FE Y 11 S I« FE N PR |

+(— 1)Ja.f(ﬂ.gb Mgyenns (052,05 105, i1y s Onil)

+ (—1Y af(agh, aq, ..., g, 0G0 g B a, . Oy

+ Z (—1) ‘ 1af(ﬂgb 1y @i 1. @1, 022, ..., Opyl)
i=j+1

+ (—D)"af(anh, ay, ..., Oy )41
ad(f)(aoh, ay, ..., anq1).

The cases j = 1 and j = n + 1 are obvious thanks to relation (5.4) for o = (1.2) and 0 = (2.n + 1)
respectivily.

Observe that the proof of the stability of relation (5.6) is independent of the other relations, so we can
avoid it in this Lemma. Thanks to relation (5.4), it is sufficient to have relation (5.7) done for j =0:

aayd(f)(ag. . ... 0,.1) =(aag)agf(a. ..., Oneq) — ady f(apay, o, ..., 0,41)
n
+Z t+lﬂﬂ fﬂD-.ﬂ]_-.---- A1, Q41,054 2:"':ﬂn+l)
i=1
+ (—1)"aag f(ao, ai, .. .. Gn)@ng1
=(aag)agf(a1,... any 1)—aaof({aga1 A2, ..oy Gpi)
n
+Z )+ aaq f( (ah, @y, o Oy, 030,41, 050, Oy y)
i=1

+ (—1)aao f(af, a1, ..., @n)ani1
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by assumption, perm axioms and because

aag f(apay, ag, ... an1) = alagay) fag, az, ..., a,p1) by assumption
= (aa)ag f(ag, @z, ..., a,01) by perm axioms
= (aay)agf(ag, as,...,8,,1) by assumption
= a(agar) f(ao, as, ..., an+1) by perm axioms
= aapflagag,as, ... an41) by assumption.

Therefore o( f) satisfies relation (5.7).

Since the svmmetric group Spi2 is generated by the transpositions, it is enough to establish the stability
of relation (5.4) for the transpositions 7 = (1,n+2) and 7= (4,7 + 1) where 1 < j<n+1. For 7 =(1,2).
we have

ad(f)(ar(1ys- s Br(nyn)) =0d(f)(az, a1, as, ..., ani2)
aas fay, a3 ... a0, 40) —af(asay, as, ... a,9)
+af(az,a1as, a4, ... an2) + (—1)"af(az, a1.as. ... Gni1)dnso
n+1
+Z(_1}T+lﬁf[:a2¢a'l¢a'3-.----.a'é—lfa‘éﬂi—l-.ﬁi—z-.----.ﬂn+QJ
i=3
=aa; f(as, @3, ..., 8n2) —af(aiasz,az,.... a4, 2)
+af(ai,a2as,a4,. .. ani2) + (—1)"af(ar, a2, ..., an11)ans2
n+1
+Z( 1}““&)’[&1 A2y ney B 1. Bii1, Qig2, .. .. 0ny2) by assumption
i=3
=ad(f)(ay,..., Gpia)

by assumption and because we have

L'!f[:al, RN ¢ . [ 4 1 S R ﬂn+2)

=aflaj,as,...,05 2,0; 10:1,01,0549,....0n32) by (5.4) withe = (1,5 —1)
=af(a;a; 1.0, ...8; 1,01,85,9,...,0,,3) by (5.8)
=af(a;;10;,09,...,8;_1,01,0;49,...,0,,2) by (5.6)
=af(tji1.00,....0j 2,05 10,01,0;19,....0n:2) by (3.8)

=af(ay,....0; 2.0; 10;,05,1,0;3,....0,.2) by (5.4) witho = (1, 7),

af(ay,....05-1,0511054105,8542, ... 0ny2)

=af(ajy10,a2,...,0;-1,01,05+3,...,0,42) by (5.4) witho = (1,7)
=af(ajaj 1,09,...,0;_1,01,8549,...,85,2) by (5.6)
= af(al, SN O L R I T PR ﬂn+2) })\ (5. 1:' witha = [:1.}:].

ani

af(ay, ... a;-1,05+1,050542,0743,...,0542)

=af(ajjio, 0o, ..., 041,001,813, ..., 0n42) by (5.4) withe = (1,7 +1)
=af(a;, az,...,0;_1,0;,10;.5,01.043,...,0,,3) by (5.8)
= ﬂf(ﬂ-l, N T P EE LN Y . P :ﬂn+2) })\ {3 1:' with o = (1} + 1)

For 7 = (n+1,n 4 2), we have
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ad(fi(ar (1), riniz)) = ad(f)ai,...,an+2)

by assumption and because we have

af(a1, ... 01,000,012, ...,0542) = @f(Aplpi2,02,...,8n_1,01,0,+1) by (5.4) withe = (1,n)
=af(a, 00,09, ... .0y 1,01, 0,.1) bv (5.6)
=af(t, 0,00, .. .0, 1,04, ,H_la,,] by (5.8)
=af(@ni10n. a0, .... SOp_1,01, 0ne3) by (3.4) withe = (1. n)
=af(, 0y 1.0 ... 0y 1,01, 8,.5) by (5.6)
=af(ay.ag, ... 0y 1,0,0,1,05.9) by (5.4) witho = (1,n),
af(ar, ... 00, 0ni90,11) = f(Qni20ni1, 02, ... 0n,a1) by (5.4) witho = (1,n+ 1)
=af(@ni1@ny0. Q2. .. 0y, 01) by (5.6)
=af(ay,ag,...,0,, 0, 10,.2) by (5.4) witheo = (1,n),
andd
af(ay, .. 0nytni9)0ni) =@y 1 f(0n19,05,...,8,,a1) by perm axioms and (5.4)
= nsof (1,02, ... 0n,a1) by (3.7)

=af(a,az,...,0n,0n1)an12 |

-

v perm axioms and (5.4).

For 7 = (1,n+ 2), we have

ﬂé[f)[ Ar(1)s :ar[n—Q)) =a"5(f)(ﬂn+2:a2r' cen s a’l)

=a'a'n+2f(ﬂ2: R ﬂﬂ-l-l?a'l:] - ﬂf[:ﬂn+2ﬂ2,ﬂ.3, e :an+lfa'l)

+ Y (D) af(anya, a0, 01, @11, @iy, - Gns,a1)
+ (—D)"af(@niz, a2, ... Gn. Gni101) + (1" Paf(anio, az,... anp1)a;.
But we have
i yaf (@, .. 0ni1,01) = ada f(@ni2, 83, ... Gnet,a1) by (3.7)

= ads f(@y,03,...,8y41, 0y 2) by assumption

= ﬂ.ﬂlf(ﬂg,ﬂ.g,. .. :an—l—l!a'n—?J h\ {BT:'-

and
af(d, 005, a3,...,0,,1,01) =af(ajas,as,...,0n1.0,,5) by (5.6) and (5.8)
=af(tni2, 02, ... 0y, Gne1ar) by (5.6)
=af(ay, ... 050, CGuy10n42) by (3.8)
=af(a, 9,09, ...,0, 1)
= aay f(ag,as,...,any9)

by assumption and perm axioms. Therefore, for 7 = (1,n + 2), we have

a'o(f)(ﬂr(l.} ----- Or(n42) ) - ﬂlﬂ'(f:](a.]_ ----- L'!:|'3+‘7J-.
which ends the proof of the Lemma, and that of Propesition 5.1. O
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