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Abstract: In this work, the Legendre Polynomial is used as a basis function in the reconstruction step of the 

Weighted Essentially Non Oscillatory (WENO) method for the numerical solution of two dimensional scalar 

conservation laws. The WENO method is a high order high accurate finite volume method that has been 

designed for problems that have piecewise smooth solutions but still contain some discontinuities. The most 

common basis used in the reconstruction step of the finite volume methods are polynomial basis. The minimum 

error property of the Legendre polynomial makes it a good choice for the basis function to be used. In this work, 

we used the two-dimensional Legendre polynomial as a basis function and the resulting method is called the 

Legendre-WENO (L-WENO) method. The reconstruction procedure for the L-WENO method is clearly 

highlighted. Ten cells were used for a cubic reconstruction on triangular meshes. Two numerical tests confirm 

the efficiency and accuracy of the L-WENO method. 
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I. Introduction 
The Essentially Non-Oscillatory (ENO) method which was first proposed by Hartenet al.

1
 was the first 

successful attempt to obtain a uniformly high order accurate extension of the high resolution van Leer approach 

to higher order of accuracy. The key idea of the ENO method is to consider a suitable number of possible 

stencils covering a given control volume and to select the smoothest one, using any appropriate criterion. A 

reconstruction polynomial is then built using this stencil. Weighted Essentially Non-Oscillatory (WENO) 

schemes were first developed by Liu et al.
2
 and more comprehensively by Jiang and Shu

3
 using a convex 

combination of all involved stencils instead of just one as in the original ENO scheme. The construction of the 

WENO schemes was based on the successes of the ENO schemes with additional advantage. The distinguishing 

idea of the WENO scheme is the reconstruction procedure.Friedrich
4
 constructed WENO schemes for 

unstructured triangular grids in two space dimensions.Polynomials are probably the most common basis used in 

the reconstruction step of finite volume methods. But in practical applications, when the order of the polynomial 

becomes large, the polynomial basis tends to exhibit some numerical instability. The use of orthogonal 

polynomial basis to replace the basis function is a common way of avoiding such problem. The Legendre and 

Chebyshev polynomials are well known orthogonal polynomials due to their minimum error property.In this 

work we intend to implement the WENO method for which the Legendre polynomial is used in the 

reconstruction step as the polynomial basis. 

 

II. Methods 

WENO Approximation: The WENO approximation is based on the ENO approximation. We shall be 

assuming a uniform grid, that is ∆𝑥𝑖 = ∆𝑥, in one space dimension. 

Suppose we have 𝑘 candidate stencils  

𝑆𝑟 𝑖 = {𝑥𝑖−𝑟 , … , 𝑥𝑖−𝑟+𝑘−1}, 𝑟 = 0,… , 𝑘 − 1   (1) 

which produce 𝑘 different reconstructions to the value 

𝑢
𝑖+

1

2

=  𝐶𝑟,𝑗𝑢 𝑘−𝑟+𝑗
𝑘−1
𝑗=0       (2) 

as 

𝑢
𝑖+

1

2

(𝑟)
=  𝐶𝑟,𝑗𝑢 𝑘−𝑟+𝑗

𝑘−1
𝑗=0  , 𝑟 = 0,… , 𝑘 − 1    (3) 

The WENO reconstruction takes the convex combination of all 𝑢
𝑖+

1

2

(𝑟)
 defined in (3) as a new approximation to 

the cell boundary value 𝑢  𝑥
𝑖+

1

2

  given as  
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𝑢
𝑖+

1

2

=  𝜔𝑟𝑢𝑖+1

2

(𝑟)𝑘−1
𝑟=0      (4) 

Evidently, the success of WENO scheme lies in the choice of the weights 𝜔𝑟 . For stability and consistency, we 

require that 

𝜔𝑟 ≥ 0, 𝜔𝑟

𝑘−1

𝑟=0

= 1 

If the function 𝑢 𝑥  is smooth for all stencils in (1) then  

𝑢
𝑖+

1

2

=  𝑑𝑟𝑢𝑖+1

2

(𝑟)𝑘−1
𝑟=0 = 𝑢  𝑥

𝑖+
1

2

 + 𝑂 ∆𝑥2𝑘−1    (5) 

where𝑑𝑟  is a positive constant and  𝑑𝑟
𝑘−1
𝑟=0 = 1, due to consistency we would in this smooth case like to have 

𝜔𝑟 = 𝑑𝑟 + 𝑂 ∆𝑥2𝑘−1  , 𝑟 = 0,… , 𝑘 − 1, implying (2𝑘 − 1)𝑡𝑕  order of accuracy, such that 

𝑢
𝑖+

1

2

=  𝜔𝑟𝑢
𝑖+

1

2

(𝑟)

𝑘−1

𝑟=0

= 𝑢  𝑥
𝑖+

1

2

 + 𝑂 ∆𝑥2𝑘−1  

Also, where the function 𝑢(𝑥) has a discontinuity in one or more of the stencils (1) we would expect that the 

corresponding weight(s) 𝜔𝑟  is zero. We would also consider that the weights should be smooth functions of the 

involved cell averages and should be computationally efficient. All these analysis lead to the following form of 

weights: 

𝜔𝑟 =
𝛼𝑟

 𝛼𝑠
𝑘−1
𝑠=0

 , 𝑟 = 0,… , 𝑘 − 1    (6) 

with 

𝛼𝑟 =
𝑑𝑟

(𝜖+𝛽𝑟 )2      (7) 

where𝜖 > 0 is introduced to avoid the denominator to be zero and 𝛽𝑟  are the smoothness indicators of the stencil 

𝑆𝑟(𝑖). 

In consideration for a smooth flux and for a higher order variation we are led to the following measurement for 

smoothness; let 𝑃𝑟(𝑥) be the reconstruction polynomial on the stencil  𝑆𝑟(𝑖). Then we define  

𝛽𝑟 =   ∆𝑥2𝑙−1
𝑥
𝑖+

1
2

𝑥
𝑖−

1
2

 
𝜕 𝑙𝑃𝑟 𝑥 

𝜕 𝑙𝑥
 𝑑𝑥𝑘−1

𝑙=1    (8) 

which is based on 𝐿2 norms. We note that (2.8) is smooth and renders an accurate WENO scheme for the case 

𝑘 = 2 and 3 giving a third order and fifth order WENO scheme respectively
5
. 

 

Reconstruction procedure in two dimensions 

Given the cell averages of a function 𝑢(𝑥, 𝑦) as 

𝑢 𝑖𝑗 =
1

∆𝑥𝑖∆𝑦𝑗
 
𝑦
𝑖+

1
2

𝑦
𝑖−

1
2

 𝑢(
𝑥
𝑖+

1
2

𝑥
𝑖−

1
2

𝑥, 𝑦)𝑑𝑥𝑑𝑦    (9) 

we need to find a polynomial 𝑝𝑖𝑗 (𝑥, 𝑦) of degree 𝑘 − 1, for each cell 𝐼𝑖𝑗 , such that it is a 𝑘 − 𝑡𝑕 order accurate 

approximation to the function 𝑢(𝑥, 𝑦) inside 𝐼𝑖𝑗 : 

𝑝𝑖𝑗  𝑥, 𝑦 = 𝑢 𝑥, 𝑦 + 𝑂(Δ𝑘)     (10) 

for 𝑥, 𝑦 ∈ 𝐼𝑖𝑗 , 𝑖 = 1, 2, … , 𝑁𝑥 , 𝑗 = 1, 2, … , 𝑁𝑦 . 

This is the polynomial we will use to reconstruct the values at cell interface. When evaluated at cell boundaries, 

the polynomial gives the following approximations 

𝑢
𝑖+

1

2
,𝑗

− = 𝑝𝑖𝑗  𝑥𝑖+1

2

, 𝑦 , 𝑢
𝑖−

1

2
,𝑗

+ = 𝑝𝑖𝑗  𝑥𝑖−1

2

, 𝑦  

𝑖 = 1,… , 𝑁𝑥  , 𝑦
𝑗−

1

2

≤ 𝑦 ≤ 𝑦
𝑗+

1

2

 

𝑢
𝑖,𝑗+

1

2

− = 𝑝𝑖𝑗  𝑥, 𝑦
𝑗+

1

2

 , 𝑢
𝑖,𝑗−

1

2

+ = 𝑝𝑖𝑗  𝑥, 𝑦
𝑗−

1

2

  

𝑗 = 1,… , 𝑁𝑦  , 𝑥
𝑖−

1

2

≤ 𝑥 ≤ 𝑥
𝑖+

1

2

 

which are 𝑘 − 𝑡𝑕 order accurate. 

On a two dimensional stencil 

𝑆𝑟𝑠 𝑖, 𝑗 =   𝑥
𝑙+

1

2
,
𝑦
𝑚+

1

2

 : 𝑖 − 𝑟 − 1 ≤ 𝑙 ≤ 𝑖 + 𝑘 − 1 − 𝑟, 𝑗 − 𝑠 − 1 ≤ 𝑚 ≤ 𝑗 + 𝑘 − 1 − 𝑠  

there exist a unique polynomial 𝑃(𝑥, 𝑦) which interpolates 𝑈 at every point in 𝑆𝑟𝑠 𝑖, 𝑗 .  

For the grid cell denoted by 𝐶𝑖𝑗 =  𝑥
𝑖−

1

2

, 𝑥
𝑖+

1

2

 ×  𝑦
𝑗−

1

2

, 𝑦
𝑗+

1

2

  the cell average 𝑢 𝑖𝑗
𝑛  over the 𝑖𝑗𝑡𝑕  interval is given 

by 
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𝑢 𝑖𝑗
𝑛  𝑡 =

1

∆𝑥𝑖∆𝑦𝑗
 

𝑦
𝑗+

1
2

𝑦
𝑗−

1
2

 𝑢 𝑥, 𝑦, 𝑡 𝑑𝑥𝑑𝑦

𝑥
𝑖+

1
2

𝑥
𝑖−

1
2

 

where the length of the cell i∆𝑥 = 𝑥
𝑖+

1

2

− 𝑥
𝑖−

1

2

  and ∆𝑦 = 𝑦
𝑖+

1

2

− 𝑦
𝑖−

1

2

 

implies a numerical method of the form  

𝑢 𝑖𝑗
𝑛+1 = 𝑢 𝑖𝑗

𝑛 −
∆𝑡

∆𝑥
 𝐹

𝑖+
1

2
,𝑗

𝑛 − 𝐹
𝑖−

1

2
,𝑗

𝑛  −
∆𝑡

∆𝑦
 𝐺

𝑖 ,𝑗+
1

2

𝑛 − 𝐺
𝑖 ,𝑗−

1

2

𝑛   

where𝐹𝑛  and 𝐺𝑛  are approximations to the average flux along 𝑥
𝑖±

1

2

 and 𝑦
𝑖±

1

2

 respectively. 

A useful approach in developing methods with order of accuracy greater than two is the semi-discrete method. 

The semi-discrete finite volume formulation on Cartesian grids is given by 
𝑑

𝑑𝑡
𝑢 𝑖𝑗 (𝑡) = −

1

Δ𝑥𝑖
 𝑓 

𝑖+
1

2
,𝑗
− 𝑓 

𝑖−
1

2
,𝑗
 −

1

Δ𝑦𝑗
 𝑔 

𝑖,𝑗+
1

2

− 𝑔 
𝑖,𝑗−

1

2

   (11) 

with the numerical flux defined by: 

𝑓 
𝑖+

1

2
,𝑗

=  𝜔𝛼𝑕(𝑢
𝑖+

1

2
,𝑦𝑗+𝛽𝛼Δ𝑦𝑗

− ,𝛼 𝑢
𝑖+

1

2
,𝑦𝑗+𝛽𝛼Δ𝑦𝑗

+ )    (12) 

𝑔 
𝑖,𝑗+

1

2

=  𝜔𝛼𝑕(𝑢
𝑥𝑖+𝛽𝛼Δ𝑥𝑖 ,𝑗+

1

2

− ,𝛼 𝑢
𝑥𝑖+𝛽𝛼Δ𝑥𝑖 ,𝑗+

1

2

+ )    (13) 

where𝜔𝛼  and 𝛽𝛼  are nodes and weights of the Gaussian quadrature for approximating the integrals  

1

Δ𝑦𝑗
 𝑓  𝑢  𝑥

𝑖+
1

2

, 𝑦, 𝑡  𝑑𝑦

𝑦
𝑗+

1
2

𝑦
𝑗−

1
2

and
1

Δ𝑥𝑖
 𝑔  𝑢  𝑥, 𝑦

𝑗+
1

2

, 𝑡  𝑑𝑥

𝑥
𝑖+

1
2

𝑥
𝑖−

1
2

 

which are the interface fluxes. 

 

The algorithm for the two dimensional WENO reconstruction is given as 

1. Perform the WENO reconstruction of the values at the Gaussian points  𝑢
𝑖+

1

2
,𝑦𝑗+𝛽𝛼Δ𝑦𝑗

±
 and  

     𝑢
𝑥𝑖+𝛽𝛼Δ𝑥𝑖 ,𝑗+

1

2

±
 . 

2. Compute the fluxes 𝑓 
𝑖+

1

2
,𝑗

 and 𝑔 
𝑖,𝑗+

1

2

 as in (12) and (13). 

3. Form the scheme (11). 

 

Legendre Polynomials 

The Legendre polynomial is a class of special functions that is widely used in applied mathematics. They are 

applied in quadrature, approximation theory, solution of partial differential equations and several other areas
6
. 

They are solutions to the Legendre equation  

 1 − 𝑥2 𝑦" − 2𝑥𝑦′ + 𝜆𝑦 = 0     (14) 

which can also be written in self-adjoint form as  

[ 1 − 𝑥2 𝑦′ ]′ + 𝜆𝑦 = 0     (15) 

The singular points for this equation are 𝑥 = 1 and 𝑥 = −1 while 𝑥 = 0  is an ordinary point.  

The two variable Legendre polynomials are of higher importance in this thesis because the reconstruction to be 

carried out is for the two-dimensional conservation laws. 

We will use the definition of the two variable Legendre polynomial 𝑃𝑛 𝑥, 𝑦  as defined by Khan and Al-Gonah
7
 

in which they gave the polynomial to be 

𝑅𝑛 𝑥, 𝑦 = (𝑛!)2  
(−1)𝑛−𝑘𝑦𝑘𝑥𝑛−𝑘

(𝑘!)2[ 𝑛−𝑘 !]2
𝑛
𝑘=0     (16) 

specified by the following generating function 

𝐶0 −𝑦𝑡 𝐶0 −𝑦𝑡 =  𝑅𝑛(𝑥, 𝑦)

∞

𝑛=0

𝑡𝑛

(𝑛!)2
 

where𝐶0 𝑥  denotes the 0𝑡𝑕  order Tricomi function. The 𝑛𝑡𝑕  order Tricomi functions 𝐶𝑛(𝑥) are defined by 

Srivastava and Manocha
8
 as 

𝐶𝑛 𝑥 =  
(−1)𝑟𝑥𝑟

𝑟! 𝑛+𝑟 !

∞
𝑟=0  . 

The two variable Legendre polynomial 𝑅𝑛(𝑥, 𝑦) is linked to the one variable Legendre polynomial 𝑃𝑛(𝑥) by the 

following relation 

𝑅𝑛  
1 − 𝑥

2
,
1 + 𝑥

2
 = 𝑃𝑛(𝑥) 
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The first few two-variable Legendre polynomial (2.16) are given as: 

𝑅0 𝑥, 𝑦 = 1 , 

𝑅1 𝑥, 𝑦 = −𝑥 + 𝑦 , 

𝑅2 𝑥, 𝑦 = 𝑥2 − 4𝑥𝑦 + 𝑦2 , 

𝑅3 𝑥, 𝑦 = −𝑥3 + 9𝑥2𝑦 − 9𝑥𝑦2 + 𝑦3 . 

 

The Legendre-WENO Reconstruction Procedure 

The reconstruction on one dimensional intervals or multi-dimensional Cartesian grids is much easier than the 

reconstruction of high order polynomials on triangulations. The set 𝒫𝑛  is a vector space of dimension 𝑁 𝑛 =
1

2
(𝑛 + 1)(𝑛 + 2). We assume that the computational domain Ω ⊂ ℝ2 is discretized by a conforming 

triangulation 𝒯, formed by the set 𝒯 = {𝑇ℓ}ℓ of triangles 𝑇ℓ ∈ Ω, ℓ = 1,… , #𝒯. In the finite volume structure, 

each triangle (control volume) has a cell average value 

𝑢 ℓ =
1

 𝑇ℓ 
 𝑢(𝑥)
𝑇ℓ

𝑑𝑥      (17) 

where 𝑇ℓ  is the area of the triangle 𝑇ℓ. 
In the reconstruction, we desire to solve the following problem: 

Given the space of polynomials𝒫𝑛 , and cell average values 𝑢 ℓ𝑘 , 𝑘 = 1,… ,𝑁 (where 𝑁 =dim 𝒫𝑛 ) of the function 

𝑢 on each control volume 𝑇ℓ𝑘  , find a polynomial 𝑝 ∈ 𝒫𝑛 , that satisfies 

𝑝ℓ1
= 𝑢 ℓ1

 

𝑝ℓ2
= 𝑢 ℓ2

 

.    . 

.    . 

.. 

𝑝ℓ𝑁 = 𝑢 ℓ𝑁  

where the system has a unique solution iff the associated Vandermonde matrix is non-singular (Liu and Zhang
9
). 

In our computation, we will use three cells for linear reconstruction, six cells for quadratic reconstruction and 

ten cells for cubic reconstruction. 

Now we consider a basis function of the form  

𝑃𝑛 𝑥, 𝑦 =  𝑎𝑖𝑅𝑖(𝑥, 𝑦)𝑛
𝑖=0 =  𝑐ℓ,𝑚𝑥

ℓ𝑦𝑚𝑛
ℓ+𝑚=0    (18) 

where𝑅𝑖 𝑥, 𝑦 , 𝑖 = 0, 1, 2, … , n is the 𝑖𝑡𝑕  degree two-variable Legendre polynomial and 𝑃𝑛  is a polynomial of 

degree 𝑛. 

Then we have, 

for𝑛 = 1 

𝑃1 𝑥, 𝑦 = 𝑎0𝑅0 𝑥, 𝑦 + 𝑎1𝑅1 𝑥, 𝑦  
= 𝑎01 − 𝑎1𝑥 + 𝑎1𝑦 

= 𝑐1,001 + 𝑐1,10𝑥 + 𝑐1,01𝑦 

and in the same way we get 

𝑃2 𝑥, 𝑦 = 𝑐2,001 + 𝑐2,10𝑥 + 𝑐2,01𝑦 + 𝑐2,20𝑥
2 + 𝑐2,11𝑥𝑦 + 𝑐2,02𝑦

2 , 

     𝑃3 𝑥, 𝑦 = 𝑐3,001 + 𝑐3,10𝑥 + 𝑐3,01𝑦 + 𝑐3,20𝑥
2 + 𝑐3,11𝑥𝑦 + 𝑐3,02𝑦

2 

+𝑐3,30𝑥
3 + 𝑐3,21𝑥

2𝑦 + 𝑐3,12𝑥𝑦
2 + 𝑐3,03𝑦

3 .   (19) 

To ensure that the scheme is conservative, it needs to satisfy  

𝑝 ℓ
𝑘 = 𝑢 ℓ  ,  ℓ = 1,… , 𝑁     (20) 

whereN is the stencil size. 

On a cell 𝑇, we compute the polynomial for each stencil 𝑆𝑖  

𝑝 ℓ,𝑖
𝑘 =

1

 𝑇ℓ 
 𝑃𝑘 𝑥, 𝑦 𝑑𝑥
𝑇ℓ

= 𝑢 𝑇ℓ𝑘 = 1, 2, 3𝑙 = 1, 2, … , #𝑁𝑖  (21) 

where#𝑁𝑖  is the number of triangles in the stencil𝑆𝑖 . Using (21) enables us to obtain the coefficients for 𝑝𝑖
𝑘  on 

stencil 𝑆𝑖 . 
The WENO reconstruction is the weighted sum  

 𝜔𝑖𝑃𝑖
𝑘 𝑥, 𝑦 𝑖        (22) 

where𝜔𝑖  is the weight which is defined by  

𝜔𝑖 =
(𝜀 + Ι𝑖)

−𝜌

 (𝜀 + Ι𝑖)
−𝜌𝑘

𝑖=1

 

where𝜀 is a small positive number to avoid division by zero, Ι𝑖  is the oscillation indicator for the polynomial in 

each stencil and 𝜌 is a measure of the sensitivity of the weights with respect to the oscillation indicator.  

In this work, the following values were used: 

𝜀 = 10−6and𝜌 = 4 
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III. Result 
The efficiency and accuracy of the Legendre-WENO method is tested on two examples. The two dimensional 

linear advection equation and the Doswell’s Frontogenesis problem. The results are obtained with the use of the 

MATLAB 7.5.0 program on windows 7 operating system 

 

3.1 Example one: lonear advection equation 

The first illustration considers the two-dimensional Linear Advection Equation 

𝑢𝑡 + 𝑢𝑥 + 𝑢𝑦 = 0, 𝑢 ≡ 𝑢 𝑡, 𝐱 , 𝐱 = (𝑥, 𝑦) ∈ ℝ2   (23) 

with the initial condition 

𝑢0 𝑥, 𝑦 = sin2  𝜋  𝑥 +
1

2
  sin2  𝜋  𝑦 +

1

2
     (24) 

The results are evaluated on the computational domain Ω =  −0.5.0.5 × [−0.5,0.5] ⊂ ℝ2. The numerical 

experiment is performed on a sequence of triangular meshes of sizes h =
1

16
and

1

64
. 

 

 

  

(a) (b) 
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(c) (d) 

 

Figure 1: Solution of (3.1) subject to the initial condition (3.2) at times (a) t=0.25, (b) t= 0.5, (c) t=0.75 and 

(d) t=1 using the L-WENO scheme on mesh size h=1/16. 
 

 

  

(a) (b) 



The Legendre-WENO Method 

DOI: 10.9790/5728-1603051423                             www.iosrjournals.org                                                20 | Page 

  

(c) (d) 

Figure 2: Solution of (3.1) subject to the initial condition (3.2) at times (a) t=0.25, (b) t= 0.5, (c) t=0.75 and 

(d) t=1 using the L-WENO scheme on mesh size h=1/64. 

 

Example two: Doswell’s  frontogenesis 

Another test worth considering is the kinematic frontogenesis problem. It is a standard atmospheric 

modelling test which helps to rate the performance of a scheme in the treatment of sharp fronts. It is a 

challenging case for advection schemes but is able to numerically test the ability of a scheme in treating 

discontinuities that move with regard to each other. 

The linear equation to be solved is  

𝑢𝑡 + 𝜍1 x, y 𝑢𝑥 + 𝜍2 x, y 𝑢𝑦 = 0     (25) 

where the velocity field is a steady circular vortex with tangential velocity 

𝑣𝑡 𝑟 =
1

𝑣𝑚𝑎𝑥
.

tanh ⁡(𝑟)

cosh 2(𝑟)
 .  

This means that 

𝜍1 x, y =
𝑦−𝑐1

𝑟
𝑣𝑡 𝑟  and 𝜍2 x, y =

𝑥−𝑐2

𝑟
𝑣𝑡 𝑟  

where (𝑐1 , 𝑐2) is the center of the rotation and 𝑟 =  𝑥 − 𝑐1)2 + (𝑦 − 𝑐2)2 is the distance of any point in the 

domain from the center of rotation. The variable angular velocity is given as 𝜔 =
𝑣𝑡

𝑟 . The initial condition in 

this test case is defined as 

𝑢 x, y, 0 = 𝑢0 𝑦 = tanh  
𝑦−𝑐2

𝛿
      (26) 

on the computational domain Ω =  −5, 5 × [−5,5] ⊂ ℝ2 and the final time of  𝑇 = 4. 

The numerical experiment is performed on a sequence of triangular meshes of sizes h =
1

20
and 

1

80
. 
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(a) (b) 

  

(c) (d) 

Figure 3: Solution of (3.3) subject to the initial condition (3.4) at times (a) t=0, (b) t=2, (c) t=3 and (d) t=4 

using the L-WENO scheme on mesh size h=1/20. 
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(a) (b) 

  

(c) (d) 

Figure 4: Solution of (3.3) subject to the initial condition (3.4) at times (a) t=0, (b) t=2, (c) t=3 and (d) t=4 

using the L-WENO scheme on mesh size h=1/80. 

 

IV. Discussion 

It can be seen from Figure 1 and 2 that as the mesh is further refined, the solutions becomes smoother. 

The oscillations that can be viewed when the mesh is 
1

16
 is difficult to see when the mesh is 

1

64
. A further 

refinement of the mesh will produce better results. The simulation of the Doswell’s frontogenesis problem 

agrees with the analytic solution. The mesh size 
1

20
 (Figure 3) yields the poorest. The solution on mesh 

1

80
 

(Figure 4) produces a better result with less diffusion. Here also, it is observed that the mesh that is increasingly 

refined produces superior results. The method is seen to be numerically stable. 
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V. Conclusion 

The implementation of the Legendre-WENO method yielded a good degree of convergence for a standard test 

problem; the linear advection equation and the Doswell’s frontogenesis problem which exhibits a multi scale 

behavior. The scheme performed very well. 
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