IOSR Journal of Mathematics (IOSR-JM)
e-ISSN: 2278-5728, p-1SSN: 2319-765X. Volume 16, Issue 4 Ser. Il (Jul.-Aug. 2020), PP 01-18
www.iosrjournals.org

Representing Energy Forward as Subordinated Hilbert-Space Of
functions

Victor Alexander Okhuese’;, Jane Akinyi Aduda® And Joseph Mung’atu®
!Department of Mathematics, Pan African University Institute for Basic Science Technology and Innovation,
Nairobi, Kenya
23 College of Pure and Applied Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi,
Kenya

Abstract: In this study, we use a Hilbert-space valued, time-inhomogeneous exponential to model the forward
curve. The energy forward is represented as an element of Hilbert-space of function. Representing energy
forward and futures contracts as a time-changing stochastic process in a Hilbert-space of functions shows
clearly, that an arbitrage-free forward price can be derived from the buy-and hold strategy in the energy market
thereby enabling investors in the market willing to be salvage from the market uncertainties as well as Arrow-
Debreu situations to execute a spot or forward contracts depending on the time and place the market becomes
favorable. With a clock measuring speed of evolution or data frequency for the energy stock market, the
distribution of the increments of the L evy process with the subordinator is subordinated to the distribution of
increments of the L evy process and the results was utilized to price forward contracts of a sample electricity
commodity.
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I. Introduction
The energy market is known to be an incomplete Arrow Debreu world and reveals inleresting

challenges to investors. One such challenge is the stochastic nature of the return process defined
in this study as X (¢ ) which a frequently changing time series data in discrete ume. Hence, there

is a need to evaluate the time-change component of the incomplete energy market.

Interestingly, adopting the completeness properties of a Banach space (a special type of
Hilbert space) such that the return process X () is defined in some normed space (i.e. com-
plete. without hele) capturing all discrete forward rates in the corresponding forward curves [11.
Also, the distance between two nodes defined by the daily change price on the curve is defined
in norm spaces with no gap in the sequence X, X, . |, X 2, ..., X yn, where n = 1,2,3...with each
representing a node in a forward curve of the energy forward contracts.

Therefore, the representation of forward price dynamics as subordinated Banach-space val-
wed Lévy process in commodity markets is very paramount as it captures the time-changed
component of a stochastic processes. According to [2] the usual subordination procedure can
be used to generate a Banach space valued Lévy processes and with the dynamics from other
commaodities markets like power and gas we pick a motivation for this study due to the presence
of strong seasonality patterns, high degree of idiosyncratic risk over different market segments
and leading to spikes in the forwards contract curve. Similarly, in the return process will be

moved from general Lévy process to a subordinated Lévy process in discrete time.
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Representing Energy Forward as Subordinated Hilbert-Space Of functions

According to [3] the arbitrage-free forward price can be derived from the buy-and-hold strat-
egy in the underlying spot commodity and the forward price dynamics is thus implied from a
given stochastic model of the spot commodity. The representation of the forward price as the
conditional expected value of the spot at time of delivery, where the expectation is calculated
with respect to an equivalent martingale measure Q is possible if we specify the price of the
spot commodity by a semimartingale dynamics.

In literature ( [4] and [3]) it is clear that the fundamental relationship between the spot and
forward is highly delicate in energy markets and it is only fair to model the forward price
dynamics directly.

Il. Preliminaries

2.1. Subordinated Lévy Processes and it's Characteristics Functions. A Lévy processes
{X(#)},>0 with non-decreasing paths almost surely, are called subordinators and such pro-
cesses can be thought of as random models of the evolution. A wide class of Lévy processes
appearing in application is obtained by subordination of Brownian motion with drift. Also,
a stochastic time-change to the Lévy process amounts to stochastically altering the clock on
which the Lévy process runs. Meanwhile, Lévy process X (), the subordinated process is such
that

(1) X(t) =L(O(1))

where the subordinator @(r) is an increasing Lévy process with independent and stationary
increments. According to [5] every semi-martingale X () can be written as a time-changed
Brownian motion, where the random time ©(z) is a positive and increasing semi-martingale. As
a results, there exist an incremental and stationary Brownian motion (B(u),u > 0) and a random

time-change @(r) which forms an increasing stochastic process

(2) X(1)=B(O(1))

Hence, every semi-martingale can also be written as a time-changed Lévy process such as
(3) X(t) =X, =L(O(t))

The distribution of increments AL(®(t)) is said to be subordinate to the distribution of increment

AL(t); where A(t) is the data frequency or a clock measuring the speed of the evolution.
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Meanwhile, in developing a subordinated Lévy process with varying time, the characteristic
function of a subordinated process X(t) is utilized which is obtained by composition of the
Laplace exponent of @(¢) with the characteristics exponent of L(z).

Suppose we let (G)fjrzﬂ be a subordinator that is a Lévy process whose trajectories are increas-
ing. Since @(t) is a positive random variable for all ¢ it is described by its Laplace transform
rather than the Fourier transform. Let the characteristic triplet of ®(t) be (®,p.a). Then the

moment generating function of @(¢) is given by;
) E [e“@f} — W <
where
L*(u) = au+ [: (e —1)p(dx)
and L* (u) is the Laplace exponent of ®(r). Since the time-changed process X, =Lg, =L(©,)isa

stochastic process evaluated at a stochastic time, its characteristics function involves expectation

over two sources of randomness

Dy (u) = E [e'-“""-“!}

Dy, (u) = E|E [0, =¢]]
where the inside expectation is taken on Lg,, conditional on a fixed value of ®; = £ and the
outside expectation is on all possible value of ®;. If the random time @, is independent of L,
the randomness due to the Lévy process can be integrated out using moment generating form
of L; given by

@, (u) = E[e™]

o) — [
and a characteristics function of X;, that is
Dy (u) = E[emﬁf]
Oy (1) = E|[E[e"0, =¢]]
Dy (u) = Ee i(u)

Dy (u) = Lo, (¥r(u))
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Under independence, the characteristics function of X; = Lg, is just the Laplace transform of @,
evaluated at the characteristics component of Z,.

Let (Z;),~q be a Lévy Process on R with characteristics exponent ¥(u) and triplet (o,v,)
and let (@, ),.q be a subordinator with Laplace exponent L*(u) and triplet (®,p,a). Then the
subordinated process X (t) defined by:

©) X(1) = L(©(1)),
is also a subordinated Lévy process with characteristics function
(6) E [¢"%] = L' (W),

Therefore. in defining a parametric Lévy process is to obtain an Lévy process by subordinating a
Brownian motion with an independent increasing Lévy process. However, for a continuous time
change process, we it is necessary to evaluate the stochastic time integral of the subordinated

Lévy process linear in each argument.

2.2. Stochastic Integrals Subordinated Hilbert Space Linear Functionals. Since the time-
changed processes X; and ¥; are independent subordinated Lévy processes evaluated at a sto-

chastic time, and using the approach in [6]. we derive some general results on the stochastic

integral represented as linear functionals in a subordinated Hilbert space. Suppose we define a

subordinated stochastic integral ¥ in the form

7) Vi) = [U W(s)dL(s).

for some Brownian motion L(r) with values in a separable Hilbert space U and an integral

stochastic process W: R, x U — H, and considering the stochastic partial differential equation
(8) dX(t)=(AX(t)+alt))di +o(t)dL(t),t € R

on the interval R = [0,T| with H being a separable Hilbert spaces equipped with some boundary
conditions where

e A:H —+ H is a first order differential operator

e o : R — H is a mapping with Brochner-integrable trajectories

e [ :[® — H is a square-integrable, H-valued stochastic process with covariance operator

QelLy.

e 6:R— L(QV?(H).H) is an operator-valued process.

Suppose for convenience, we are only interested in one-dimensional martingales, i.e., we are

interested in
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9) Y1) =Y(¥ (1),

where T is a continuous linear functional on the state space H of ¥. Therefore, by replacing

Y (r) with X () assuming the characteristic of the subordinated process we have;
i
(10) X(1) = [ (ToW(s))dL(s).
Jo

Suppose we take U as finite dimensional, and some standard (real-valued) Brownian motion

{B(1)},-¢ and It integral stochastic process o such that

t
(11) x(0) = [ o(s)aB(s)
0
This leads us to Theorem 1 which shows that a similar representation holds if U is any separable

Hilbert space.

Theorem 1. Let n € N and H, U be separable Hilbert spaces. Let L be a square integrable and

mean zero U-valued Wiener process with coveriance Q € L'l". Assume that Dimran(Q) > n and

Q is positive definite. Let W € ¥3,Y € L(H,R") and define

X(t) =T ( [D r %)m:(ﬂ) .

Then there is an n-dimensional standard Brownian motion B such that
i
X(t) = / o (s)dB(s),
Jo

where &/(s) = (T¥(s)Q¥(s)" T*)'/? € X3(R*). If o(s) is invertible in R"*" for A ® P-almost
any s € R, then 6! € R3(R") and

(12) B(:):/ﬂr (o(s)) 1 dX (s).

Proof: Let ¥ be an elementary random variable such that there existn e N, 0 < a; < bj < oo,
and F, -measurable square integrable random variables ¥; and y; € L(U,H ) such that
n
b jg:l Yj'] [f‘j_-bj] v
By definition of L, we have L(z) = W (®(r)) for a U/-valued Wiener process W with martin-
gale covariance Q" and a subordinator ®. Let I” be the isometric embedding given in Lemma

(1). Note that T(TW = YT (¥)) because this holds if ¥ is elementary. From Lemma (1) and
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Theorem (1) we have;

r( ﬁly(s}fm{sj) _ ﬁw{s]dm}

B(r)
. [} YT (W) (5)dW (s)

B(r)
— [} o1(s)dB(s)
where B is a standard Brownian motion on " and
Gilf) = T ((T'LPQW'LP*T*)”?) (1).
Applying Lemma (1) again gives

(13) Y ( [} r‘P[s}dL{s]) - [D o (s)dN (s)
where N(t) = B(©(t)).t € R, and

olt) = (YP(r)0"¥()T).
Here, N is an n-dimensional Lévy process with the desired properties and the martingale co-
variance QF of L and Q" of W coincide based on the above theorem ( [6]).
Based on results in [2] we conclude the construction of the stochastic integral based on Equa-
tion (10):
X(t) = [0 "T(s)dL(s)

where L € M?(U) and T'(s) = Y o ¥(s) are operators from U to another Hilbert space H.
However, in order to express the subordination in terms of standard Brownian motion, we

make the following definition:

Definition 1. A subordinated Brownian moion L with values in some Hilbert space U is a
Lévy process such that there is a U-valued Brownian motion B and a subordinator ® which is

independent of B such that
L(t) = B(O(r)).

Subordinated Brownian motion L, N are of same type if there are Brownian motions Br,
Wy and subordinators ®p, ®y such that By, ®y are independent, By, @, are independent,
©r. Oy have the same law and for any r € ;. Subordinated Brownian motions have some
similarities with Brownian motion if the subordinator has finite first moment. In particular, the

set of integrands can be compared easily. First, we recall the notion of time-changed filtrations:

DOI: 10.9790/5728-1604020118 www.iosrjournals.org 6 | Page



Representing Energy Forward as Subordinated Hilbert-Space Of functions

Definition 2. A time-change is a right-continuous increasing family (©(t)),.n of stopping
times with respect to some right-continuous filtration ( Fi)icm,. The time changed filtration is
the filtration given by
&}
F® =Fou) = [ | Fo)t € Ry

5=

Let X be an F-adapted stochastic process and assume that the time-change is finite valued.
The time-changed process by X€(¢) =X (@(t)).t € R... Therefore, adding the following results

on stochastic integration with respect to subordinated Brownian motions.

Lemma 1. Let B be a mean-zero Brownian motion with values in a separable Hilbert space U
relative to some filtration (F;),p, . H be another separable Hilbert space, y € ®7(G.H), O be
a non-zero subordinator with finite moment such that ©(t) is a stopping time for eacht € E_.
Let (Gr]lrER1 be the time-changed filtration given by G, = Fg(,) and L(t) = B(®(t)), t € R,.
Then L is a U-valued square integrable Lévy process and there is an isometric embedding

[: %7 (G,H) — W5 (F,H) such that

t Q)
(14) _/0 w(s)dL(s) = /0 ['(y)(s)dB(s), P — almost surely

where the left stochastic integral is with respect to the filtration (Gf)r:—:R, , the right stochastic

integral is with respect to the filtration (F, )rFR| .

Proof: See proof in [7]

Therefore, we can see from the above construction that Equation (14) holds for elementary
integrands, and thus for all integrands by a density arsument in the Hilbert space. We can
use results from Lemma (1) to derive a link between functionals of the infinite-dimensional

stochastic integral and finite dimensional versions of it.

2.3. Representing Energy Forward Dynamics as Hilbert Space of Functions. In this sec-
tion, we use the properties of Hilbert space to represent the forward and futures prices in energy
markets as an element of Hilbert space of functions. Motivated by results in [6], it is observed
that the various relevant forwards and futures contracts traded in energy markets, which deliver
the underlying over a period rather than at a fixed time in the future, can be understood as a

bounded operator on a suitable Hilbert space.
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We begin by stating the following relevant assumption from the Filipovic space [8] which
supports the Hilbert space appropriate for our considerations.

H1: The functions 7 € H are continuous and the pointwise evaluation #¢(h) = h(7) is a
continuous linear functional on H, forallt € R..

H2: The semigroup {S(t)|r € R} is strongly continuous in H with infinitesimal generator
denoted by A.

Therefore, we use the previously defined class of Hilbert space which follows from the Fil-
ipovic space satisfying (H1)-(H2) and which are coherent with economical reasoning about the
forward curve T <+ h(1).

Since in practice the forward curve is obtained by smoothing data points using smooth fitting

methods it is reasonable to assume;

(15) | @R <o
defined on H,, of absolutely continuous functions i: B, — . Moreover, the curve flattens for
large time to maturity . There is no reason to believe that the forward rate for an instantaneous
loan that begins in 10 years differs much from one which one day later. We take this into account
by penalizing irregularities of 4(7) for large T by some increasing weighing function w(t) > 1,
that [;”w(z)A'(t)%dt for a given continuous and increasing weight function w : Ry — [1,e0)

with w(0) = 1. The norm of H, is ||g||>. = (g.g) for the inner product

(1.1 = 1O)n(0)+ " w(o)H (1) £ (2)dx.

Here f.h € H,,. We assume that |’ w1 (1)dt < 0. The typical choice of weight function is that
of an exponential function w(t) = e/"%) for a constant w > 0, in which case the integrability
condition on the inverse of w is trivially satisfied. From [8], we know that H,, is a separable
Hilbert space. As we shall see, one can realize energy forward prices as linear operators on H,,
and in fact interpret energy forward prices as stochastic processes with values in this space.

A simple motivation for the appropriate choice of H,, is the classical model for the dynamics
of energy spot prices in the so-called Schwartz dynamics [9].

Here, the spot price S(¢) at time ¢ > 0 is given by
S(t) = exp(X (1))

for a standardized subordinated return process X (f) defined in an Ornstein-Uhlenbeck (OU)

process

(16) dX (t) = pdt +odL(t)
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with a corresponding risk-neutral process given by
(17) dX(t)=o(pu —X(r))dt +odL(t),

driven by a Lévy process L(r). We assume that (1) has exponential moments, p > 0, p are
constants, and InS(0) = X(0) = ¢ € R. It is simple to see that T —— f(¢,7) is continuously

differentiable for every ¢, and

d
oL 00 = 10,7 (e (=X (1) + 9 ))

From [9]. we get the forward price f(r.T) at time r = 0, for a contract delivering at time T > r,
is given;
T—t
flt,T)=exp (e_a[r_')X(f] +u(l—e @Iy 4 o] (e_a‘]ds)
0

with ¢ being the logarithm of the moment generating function of L(1). Suppose we model the
spot price directly under the pricing measure Q. Letting Tt =7 —r > 0, we find (by slightly

abusing the notation)
flt.t)=exp (e‘“‘:T:’X{r] +u(l—e ) 4 [qub(e_“’)ds) .
Assuming that the weight function w is such that
w(t)e 2®T e LI(R,).

Then it follows that [;"|¢ (exp(—eaT))|ds < oo from the Cauchy-Schwartz inequality and the

assumption [;° w 1(T)dT < oo. Hence, f is uniformly bounded in T since
e < e (X0 4+ [ ot )]as ).
"~ Assumin g that the weight function w is such that
w(t)e 2%T e LY (R ).

Then it follows that [;°|¢ (exp(—oT))|ds < e from the Cauchy-Schwartz inequality and the

assumption [y w1 (t)dt < oo. Hence, f is uniformly bounded in t since
1.0l < exp (X0 +u+ [ foe)]ds).
But then
LI = lexpX @)+ [ w()£2,7) (ce™ ™ (1 =X (1)) + 9 (e~ ™)) v
< ce™* ) (1 — Amwv[r)e_zardr+ [;m w[r)qbz[e_ar)dr) s

which shows that f(r,.) € H,,. If L is a driftless Lévy process, the exponential moment condition

on L(1) yields that ¢(7) has the representation

(18) o(t) = %62124— /]R{er:— 1 —7tz}v(dz)
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for a constant & > 0 and Lévy measure v(dz). But by the monotone convergence theorem and

L'Hopital’s rule, we find that

lim — LE v(d /Uf
s ot

such that Equation (18) becomes

(1) = % (-::Fz—l-fmzzv(dz})

and therefore ¢ (t) ~ 7> when t is small. Thus, a sufficient condition for f(z,.) € H,, is
w(t)e! 2% e LY(R; . R).

Therefore, we now represent the realization in H,. of general energy forward and futures
contracts with a delivery period. Suppose that F(¢.T;,7>) is the forward price at time ¢ of a
contract on energy delivering over the time interval [Tj,T3). where 0 <t < T} < 7> [9]. Then

we can express this price as
I
(19) F(,1,2) = [ W(T3T ) f(0,T)aT,
= TL

where f(t,T),t < T is the forward price for a contract "delivering energy” at the fixed time

T, and w(T;Ty.T>) is a deterministic weight function defined by

1
20 (T, 7,Th) =
(20) w(T:, T, Th) HoT,
for the forward-style contracts and
F—rT
(21) w(T: T, ) =
fT} e g

for the futures style.
Here r > 0 is the risk-free interest rate which we suppose to be constant. In the energy market
on NYMEX, say, WTT oil is delivered physically at a location over a given delivery period like

month or quarter. We will therefore have the same expression (19) for the oil forward prices

as in the case of energy forwards. Meanwhile, futures on WTI oil index delivers the money-
equivalent from the aggregate index value over a specified period. Hence, the futures can be
expressed as

T2
F.1,T) = [ £,

where f(t,T) is the futures price of a contract that delivers the corresponding index at the fixed

delivery time T > t, i.e., the weight of the futures contracts can be expressed by (19) with

(22) Ww(T:T,T7) =1
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as the weight function. Aiming at a so-called Museila representation of F(¢,T7,7>) in (19).
Define T = T; —t as the time until start of delivery of the swap and ¥ = 75 — T7 > 0 as the length
of delivery of the swap. With the notation g(t,y) = f(t.f +y). we write

T+f
(23) Gy =F(t,t+1,t+17+F) :f wylt, T,v)g(t,y)dy
T
for the weight function w(t, 7.y) defined by

(24) welt, T,y) =wlt+yit + 1,0+ T+ £),

where y € [t, 7+ f], T = 0 and r > 0. Referring to the different cases of the weight function v,
we find that we(r, 7,y) = 1 for a forward contract and wy(r.7,y) = 1/¢ for the forward-style oil
swap. Slightly more interesting are the future-style energy swaps, yielding

r

y—1)
1 —e 7t .

(25) welt, T,y) = e "

Here, we use the future-style contract as defined in Equation (21). Note that all these cases
result in a weight function wy which is independent of time. Furthermore, the only case that
depend on 7 =T —r and y is given in Equation (25), which becomes in fact stationary in the
sense that wy depends on y — 1.

However, when the asset price is a spot commodity, the solution for forwards price F(S,7,T)

(under deterministic interest rates. futures prices equal forward prices) is given by;

(26) F(S.t,T) = Selr—X®)t

where T = T —r is the time to expiration of the contract, and with L(¢) = InS(¢) and hence
S(t) = -0

where L(r) is defined by the geometric Lévy process given by:

L(t) = L(0)e"

and

1 ~ t
W = ({x— EG_)I +G{JB{I}+.[D -/IZI<R {In(1 +y(s,z)) — y(s,2) }vidz)ds

i
+ In(1+y(s,z))N(ds,dz
[ [ m (5,2 M s, dz)
then Equation (26) becomes
(27 F(S-.f-.T] _ EL{r}{r—X[r)}re

Therefore, suppose that the rate of convenience yield follows the mean-reverting process then

recall from Equation (17) that SDE;
(28) dX(t)=a(u—X(t))dt +odL,

where o > 0 is the speed of adjustment, u is the long-run mean yield, and 4L(r) is the increment
to a standard Lévy process. However, from [10], the cov(dL,dL) = pdr. where p denotes the

correlation coefficient. The variance of the change in the net marginal rate of convenience
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yield (volatility) is o representing the measure of jump sizes in the forward driven incomplete
market.

Hence, we adopt [11] approach and construct a no-arbitrage portfolio that includes two fu-
tures contracts of different maturities and the spot commodity and this approach leads to the
following differential equation for futures price;

1

1 _
o) FssSP0? + EFXz(r}crz +Fax ()P0’ + FsS(r—X(t))

+Fx () (a(p—X(t))—Ac)—F =0

with boundary condition
(30) F(S,X(t),0) = S.

Since convenience yield is non-traded, the differential equation in (29) depends on investor
risk preferences embedded in the market price of risk for convenience yield, A. To obtain a
solution, a version of the Feynman-Kac Theorem is involved and, for tractability, the market
price of risk is assumed to be constant. The is equivalent to assuming in a general equilibrium
framework that the representative investor has a logarithmic utility function. In this special case,

the marginal utility of wealth is independent of wealth; and the market price of risk, which is

given by the covariance of the change in the convenience yield with the rate of change in the
marginal utility wealth, is constant.

Therefore, the Feynman-Kac solution for futures (forwards) price F(¢,T) is given by;
(31) F(1,T) = E(St),

where the expectation is taken with respect to the risk-neutral processes from Equation (17);

(32) dS = S(r—X (t))dt + SodL,
and
(33) dX ()= (a(u —X(t)) —Ac)dt + cdL.

Then, we define the two-factor theoretical futures and forward prices depend on the current
level of the spot price S(t), the current level of the convenience yield, X (r). time to maturity,

the parameters of the joint process, and the price of a zero-coupon bond with maturity at time
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T, P(¢.T ) based on similar approach by [10] such that suppose;
T
(34) ¥(f)=InS— [ F(v)dv.
Jf

The standard Jump-diffusion for ¥ (r) follows the transformation (34), Ito’s lemma, and the

risk-neutral diffusion for spot prices in Equation (??), and

(35) JY{I} = (r—X{I) —%62) dt + odL—d (/Tr(v)dv> :

Integrating (35) on both sides with respectto T > t;

T . T 1, (7 T T T
av() = [ [r—X{t})fh’——G-/ dv+cr/ m;[p)_[ d ([ r{v)d'v)
Jt Jdf 2 S S < L
T . T T 1 L T T T
/ dY(t) = [ r{v}dv—[ X(v]dv—icr“/ dv—|—-:5/ dL(v]—[ r(v)dv
S S S i r S
T 1, T T
Y(r) = y*{:)_f X(v)dv—;-::r‘/ ch=+-::=/ dL(v)
t L S s
however, from Equation (34) we take Y *(¢) = InS, then;

(36) Y(r) = InS(r) —%crz (T —1)— /T X(v)dv+o /T-ﬂ.(v)

since the effect of the interest rate in the drift of the spot process cancels out the effect of the

interest rate discount factor. The forward solution is therefore given by

Er [ems{r}_%azlr—f)—fk’[1’)41’—0JI}TJL(1,-)]
(37) F(t,T) =

P(t,T)
The solution for the forward price in Equation (37) is independent of the assumption of stochas-
tic interest rates as long as & is independent of the spot interest rate, and P(¢,T) matches the
market price of the zero-coupon bond with maturity at 7 in a no-arbitrage interest model.

For the diffusion assumed for spot price, ¢ is independent of S and r, the distribution of ¥ (1)
is normal, and E, [e”':’} is the moment-generating function of a normal distribution. In this
case, the solution for the forward price is

B Y ()] +gvar[¥ (1))

(38) F(1.T) = )
The expected value of ¥ (r) is
N 1, T
(39) E,[Y(1)] =InS(r) —50° (T —1) _f B [X(v))dv
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To solve the integral in (39), the solution for the risk-neutralized stochastic differential equation

for convenience yield is used which is given by

X(v)=p _}”_G+ (Xm —p+ J"_G) e (v1)
(40) o o 1.-
+oe” ™ f e*dL(s).

J1
Substituting the expected value of Equation (40) into Equation (39) and integrating with respect

tot =T —1 gives

(41) E [Y(T)] =1InS(r) — %GET - (u - %5) T— (X(r) — U+ %5) H(T).
where
E (-::Fe_m’ /vfmd.[.{s}> =
and
| — i)
H(T—t)=H(t)= p

The variance of ¥ (r), equation (36), is

(42) var [Y (T)| = var [[TX(P](JV] +621—2cov [[TX(V)Q‘V, [rT GdL(z)] X

The variance and the covariance terms in Equation (42) are obtained by replacing X (v) with the

random part of the process (40), giving

T v )
var [Y (T)] = var [[ cre_m’[ emcf.{.(s)dv} +o’t
Ji

Ji

T v T
_2{-015 [[ Gﬁ_a], /. {’asdl’T [ Gf{L(Z):| .
S S S

Solving for the variance and covariance in Equation (43) gives

(43)

2 252 2
o o°H 2po
} 2 (t—H).

(44) var [Y (T )] = {—(H—T]?— 5| o
The final result for F(¢,T) is obtained by using E; [e? ‘:T:’] , equation (41), and var [¥ (t)]. equa-

tion (44) in Equation (38) the forward solution is given by;

1

(45) F(S(1),X(1),1.T) = S(t)A(z)e *PXO P(t.T)
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where

(H—1) (o’ —aho —$ +pola) o’H?

A(T) = exp P io

] _ E,—ar

o

H =

which gives the pricing framework for estimation of the energy forward curve modeled as

Hilbert space Lévy process.
I11. Main Results

The data contains the daily prices of front month WTI (West Texas Intermediate) oil price
traded by NYMEX (New York Mercantile Exchange). The front month WTI oil price is a
futures contract with the shortest duration that could be purchased in the NYMEX market.

In Figure (1) the WTI daily oil price is normalized to refine the time series properties of
the pricing data and the weight functions of the forward-style and the futures-style contract
to enhance better pricing model for estimation of the forward prices. Between the first 50
monthly price observation, it is clear that noise exist in the data. However, the spikes level is
benchmarked using the properties Hilbert space linear functional to reduce the price movement
because the stochastic price return contains high volatility with massive jumps. This is obvious
in the daily change prices for the underlying asset as seen in Figure (2) and risk averse investors
tend to drive the market with demand, the daily price change seems to favour the market share

capitalization for a long period as seen in the forward curve.

WTI Oil log price with normalized jumps

0.10

oil log price
0.00
L

-0.10

0 200 400 600 800 1000

time

FIGURE 1. WTI crude oil price return with no-jump model
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Furthermore, it follows from Equation (23) and as seen in Figure (2) and Figure (3) that the
dynamics of forward price curves can be represent as Hilbert space functional H,, as a result of
this assertion we accept that if A(z) is an H,,-valued stochastic process, then t — G}/ (r) will be

a stochastic process with values in H,, as well.

WTI Oil Daily change price with jump-diffusion

Daily change price
34 3B 42 46

0 200 400 600 800 1000
time
FIGURE 2. Forward rates forward curve of WTI crude oil price return with

jump-diffusion

WTI Gasoil Futures - Forward Curve 2017-01-01/2019-09-27

45 45
4.0 4.0
35 35

[ T T T T T T T T T T 1

Jan 012017 Jul012017 Jan012018 Jul012018 Jan012019 Jul012019
FIGURE 3. West Texas Intermediate Futures-forward curve with big-jumps

(Poisson process)

As the subordinated process, the time change stochastic process X (¢) as shown in the forward
curve in Figure (3) defines how the incomplete market trading options of WTI oil futures and
forwards displays the highs and lows of the market situation. Investors in the energy market are
either willing to be risk neutral and trade for high profits or not but the energy forward pricing
framework clearly favors the idea that with changing p and o the forward rates f(¢,7T) is bound

to increase marginal yield over time T =T —1.
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IV. Conclusion
Representing energy forward and futures contracts as a time-changing stochastic process in

a Hilbert-space of functions shows clearly, that an arbitrage-free forward price can be derived
from the buy-and hold strategy in the energy market thereby enabling investors in the market
willing to be salvage from the market uncertainties as well as Arrow-Debreu situations to exe-

cute a spot or forward contracts depending on the time and place the market becomes favorable.

V. Primary Contribution
e The multivariate subordinated processes are deduced as a moment generating function

in order to bench mark the time-change process.

e The subordinated process in a continuous time is represented as a stochastic integral in

Hilbert space.

e The energy forward is represented as Hilbert space of function for no-arbitrage trading

and incorporating the completeness properties of Banach space (Hilbert space) for an

incomplete energy market.

e The pricing framework for energy forward contracts is used to evaluate the daily change

price of an underlying energy contracts.
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