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Abstract: In this paper, the homotopy analysis method (HAM) is applied to solve a time-fractional nonlinear 

partial differential equation. The fractional derivatives are described by Caputo’s sense, and the (HAM) gives a 

series of solutions which converge rapidly within a few terms with the help of the nonzero convergence control 

parameter ℏ. After applying this method we reach the conclusion that the HAM is very efficient and accurate. 
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I. Introduction 
Several methods have been used to solve fractional differential equations, such as Laplace transform 

method, Fourier transform method [1], Adomian’s decomposition method [2], homotopy analysis method [3] 

and so on. A substantial amount of research work has been directed to the study of the nonlinear fractional heat 

conduction, Kaup–Kupershmidt, Fisher and Huxley equations respectively.  Dehghan et al. [3] have applied 

homotopy analysis method for solving nonlinear fractional partial differential equations. Wazwaz [4] has 

investigated exact solitary solutions for the nonlinear equation of heat conduction in two dimensions. Babolian 

et. al [5] have obtained analytic approximate solutions to a class of nonlinear PDEs such as Burgers, Fisher, 

Huxley equations and two combined forms of these equations using the homotopy analysis method. Analytic 

study on Burgers, Fisher, Huxley equations and combined forms of these equations with the tanh-coth method is 

used to determine these sets of travelling wave solutions by Wazwaz [6].  Ozi¸s et. al [7] has applied Exp-

function method for solving the Fisher equation. The homotopy analysis method is a combination of the 

classical perturbation technique [8–12] and the homotopy, a concept in topology, and does not rely on the 

small/large parameter. The advantage of the homotopy analysis method over the existing techniques is the 

excellent freedom of choosing the initial guess and the existence of the so-called nonzero convergence-control 

parameter. Based on the basic idea of the homotopy analysis method, many numerical and analytical techniques 

have been proposed. Marinca and Herisa suggested the optimal homotopy analysis method [13] in2008. In 2009, 

Niu and Wang introduced a one-step optimal homotopy analysis method [14], and the spectral homotopy 

analysis method based on the Chebyshev pseudo spectral method [15] was proposed by Motsa et al. in 2010. 

The predictor homotopy analysis method [16] was also suggested in 2010, and recently in 2018 Singh et al. 

successfully applied the homotopy analysis method and the Sumudu transform method to fractional Drinfeld–

Sokolov–Wilson equation [17]. Besides, many authors have discovered that the Adomian decomposition 

method (ADM), the homotopy perturbation method (HPM), and the variational iteration method (VIM) are all 

special cases of the homotopy analysis method (HAM) when the nonzero convergence-control parameter  

ℏ = −1 (see [18–21]). In our paper, we have used HAM successfully to find the approximate analytical 

solutions of linear / nonlinear PDEs with time-fractional derivatives. 

The current paper is organized as follows: In section 2, some necessary definitions and mathematical 

preliminaries of the fractional calculus theory. In section 3, Basic ideas of the homotopy analysis method. In 

section 4, the proposed method is applied to several examples. Also a conclusion is given in the section 5. 

 

II. Fractional Calculus 
In this section, we gives some basic definitions and properties of the Fractional calculus. 

Definition 1 A real function 𝑓(𝑥), 𝑥 >  0, is said to be in the space 𝐶µ , µ ∈ ℝ, if there exists a real number 

𝑝 > µ, such that 𝑓(𝑥) = 𝑥𝑝𝑓(𝑥), where 𝑓(𝑥) ∈ 𝐶 𝑎, 𝑏 , and it is said to be in the space 𝐶µ
𝑛 , if and only if 

𝑓 (𝑛) ∈ 𝐶µ  , 𝑛 ∈ ℕ. 
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Definition 2 The Riemann-Liouville fractional integral operator  𝐼𝛼  of order 𝛼 ≥ 0,  of a function 𝑓 𝑥 ∈
𝐶µ , µ ∈ ℕ. 

 
 

 
𝐼𝛼𝑓 𝑥 =

1

𝛤 𝛼 
  𝑥 − 𝜏 𝛼 − 1𝑓 𝜏 

𝑡

0

𝑑𝜏

𝐼0𝑓 𝑥 = 𝑓(𝑥)  
 

 
                                               (1) 

Properties of the operator 𝐼𝛼  can be found in [5-8], we mention only the following:  

𝐼𝛼𝐼𝛽𝑓 𝑥 = 𝐼𝛼+𝛽𝑓 𝑥 = 𝐼𝛽 𝐼𝛼𝑓 𝑥                                                  (2) 

𝐼𝛼𝑥𝑣 =
𝛤 𝑣+1 

𝛤 𝑣+𝛼+1 
𝑥𝑣+𝛼                                                            (3) 

For 𝑓 𝑥 ∈ 𝐶µ , µ ∈ ℕ, 𝛼, 𝛽 ≥ 0 and 𝑣 ≥ −1. 

Definition 3 Suppose that 𝛼 > 0, 𝑥 > 0, 𝛼, 𝑥 ∈ ℝ, 𝑛 ∈ ℕ, 𝑛 − 1 < 𝛼 ≤ 𝑛. The Caputo fractional differential 

operator of order 𝛼 define as:  

𝐷𝛼𝑓 𝑥 =  

1

𝛤(𝑛−𝛼)
  𝑥 − 𝜏 𝑛−𝛼 − 1𝑓(𝑛) 𝜏 

𝑡

0
𝑑𝜏

   
𝑑𝑛

𝑑𝑥𝑛 𝑓 𝑥                               𝛼 = 𝑛 ∈ ℕ 
                                         (4)                                                  

According to the Caputo’s derivative, we can obtain: 

𝐷𝛼𝐶 = 0, C is constant, 

𝐷𝛼𝑥𝑣 =
𝛤 𝑣+1 

𝛤 𝑣−𝛼+1 
𝑥𝑣−𝛼                                                          (5) 

Definition 4 The generalized Mittag-Leffler function is defined by the power series: 

𝐸𝛼 𝑧 =  
𝑧𝑘

𝛤 𝛼𝑘 + 1 

∞

𝑘=0

 ,      𝐸𝛼,𝛽  𝑧 =  
𝑧𝑘

𝛤 𝛼𝑘 + 𝛽 

∞

𝑘=0

 , 𝛼 > 0, 𝛽 ∈ ℝ         (6) 

 

 

III. Homotopy Analysis Method (HAM) 
To describe the basic ideas of the HAM, we consider the following differential equation:  

𝑁 𝑢 𝑥, 𝑡  = 0, 𝑡 > 0                                                  (7) 

where 𝑁 is a nonlinear differential operator, and 𝑢 𝑥, 𝑡  is unknown function of the independent variables 

𝑥 𝑎𝑛𝑑 𝑡. 

Based on the zero-order deformation equation constructed by Liao [5-9], we give the following zero-order 

deformation equation in the similar way: 

 1 − 𝑞 ℓ 𝜑 𝑥, 𝑡; 𝑞 − 𝑢0 𝑥, 𝑡  = 𝑞ℏ𝐻 𝑥, 𝑡  𝑁𝜑 𝑥, 𝑡; 𝑞  ,                             (8) 

Where 𝑞 ∈ [0,1] is an embedding parameter, ℏ are non-zero auxiliary parameter for 𝐻 𝑡  are non-zero auxiliary 

function, 𝑁 is nonlinear differential operator, 𝜑 𝑥, 𝑡; 𝑞  is an unknown function, and 𝑢0 𝑥, 𝑡  is an initial guess 

of 𝑢 𝑥, 𝑡 , ℓ is an auxiliary linear integral order operator and it possesses the property ℓ c = 0.  
Obviously when 𝑞 = 0 and 𝑞 = 1, we have  

𝜑 𝑥, 𝑡; 0 = 𝑢0 𝑥, 𝑡     , 𝜑 𝑥, 𝑡; 1 = 𝑢 𝑥, 𝑡                                        (9) 

Expanding 𝜑 in Taylor series with respect to 𝑞, one has 

𝜑 𝑥, 𝑡; 𝑞 = 𝑢0 𝑥, 𝑡 +  𝑢𝑚  𝑥, 𝑡 

∞

𝑚=1

                                               (10) 

Where 

𝑢𝑚  𝑥, 𝑡 =
1

𝑚!
 𝜕

𝑚𝜑 𝑥, 𝑡; 𝑞 

𝜕𝑞𝑚
 
𝑞=0

,   𝑖 = 1,2,3, … , 𝑛                         (11) 

Differentiating equation (8) m-times with respect to embedding parameter , then setting 𝑞 = 0, and dividing 

them by 𝑚! , we have, using (11), the so-called m
th

-order deformation equation 

𝑢𝑚  𝑥, 𝑡 = 𝜒𝑚𝑢𝑚−1 𝑥, 𝑡 + ℏ𝐼𝛼  𝐻 𝑥, 𝑡 𝑅𝑚 𝑢𝑚−1            𝑥, 𝑡                                  (12) 

𝑅𝑚 𝑢𝑚−1            𝑥, 𝑡  =
1

(𝑚−1)!
 𝜕

𝑚 −1 𝑁𝜑  𝑥,𝑡;𝑞  

𝜕𝑞𝑚−1  
𝑞=0

                                 (13) 

And 

𝜒𝑚 =  
0, 𝑚 ≤ 1
1, 𝑚 > 1

                                                  (14) 

Here 𝑢  𝑚−1 =  𝑢0,𝑢1, 𝑢2 , … . , 𝑢𝑚−1 . 
These equations can be easily solved using software such as Maple, Matlab and so on. 
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IV. An application 
Example 1. We consider the one-dimensional linear inhomogeneous fractional Burger equation 

𝜕𝛼𝑢

𝜕𝑡𝛼
+

𝜕𝑢

𝜕𝑥
−

𝜕2𝑢

𝜕𝑥2
= 2𝑥 − 2 + 2

𝑡2−𝛼

𝛤 3 − 𝛼 
 ,   𝑡 > 0, 𝑥 ∈ ℝ, 0 < 𝛼 ≤ 1            (15) 

subject to initial condition 

𝑢 𝑥, 0 = 𝑥2 

We can start with an initial approximation 𝑢0 𝑥, 𝑡 = 𝑥2 , and we choose the auxiliary linear operator:  

ℓ = 𝐼𝛼  , 
with the property ℓ 𝑐 = 0, where c is an integral constant. We also choose the auxiliary function to be: 

𝐻 𝑥, 𝑡 = 1 , 
Hence, the mth-order deformation can be given by: 

𝑢𝑚 𝑥, 𝑡 = 𝜒𝑚𝑢𝑚  𝑥, 𝑡 + ℏ𝐼𝛼  𝑅𝑚  𝑢𝑚−1             , 
Where  

𝑅𝑚  𝑢𝑚−1            =
𝜕𝛼𝑢

𝜕𝑡𝛼
+

𝜕𝑢

𝜕𝑥
−

𝜕2𝑢

𝜕𝑥2
−  2𝑥 − 2 + 2

𝑡2−𝛼

𝛤 3 − 𝛼 
  1 − 𝜒𝑚   , 

Consequently, the first few terms of the HAM series solution are as follows: 

𝑢1 𝑥, 𝑡 = − ℏ𝑡2 , 
𝑢2 𝑥, 𝑡 = − ℏ + ℏ2 𝑡2, 

𝑢3 𝑥, 𝑡 = −(ℏ + 2ℏ2 + ℏ3)𝑡2 
And so on, Then n-term approximate solution for (35) is 

𝑢𝐻𝐴𝑀 = 𝑢0 𝑥, 𝑡 +  𝑢𝑚 𝑥, 𝑡 

𝑛−1

𝑚=1

, 

𝑢𝐻𝐴𝑀 = 𝑥2 −  ℏ𝑡2 −  ℏ + ℏ2 𝑡2 −  ℏ + 2ℏ2 + ℏ3 𝑡2 + ⋯, 
Hence, the HAM series solution (for ℏ = −1 ) is 

𝑢𝐻𝐴𝑀 = 𝑥2 + 𝑡2 . 
which is the Analytical solution of the one-dimensional linear inhomogeneous fractional Burger equation. 

 

 

 
Figure (1): The surface shows the solution 𝑢 𝑥, 𝑡 . (a) Exact Solution (b) HAM (C) Exact solution, in case 𝑡 =

0. 
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Example 4.1 Consider the nonlinear time-fractional gas dynamics [25] 

𝐷𝑡
𝛼𝑢 +

1

2
(𝑢2)𝑥 − 𝑢 1 − 𝑢 = 0, 𝑡 > 0, 0 < 𝛼 ≤ 1,                       (16) 

with the initial condition: 

𝑢 𝑥, 0 = 𝑒−𝑥  

If we set 𝛼 = 1 then the equation (16) reduces to the classical gas dynamics equation of order one which has  

𝑢 𝑥, 𝑡 = 𝑒𝑡−𝑥  

 Since, 𝑁𝛼  𝑢 𝑥, 𝑡  = 𝐷𝑡
𝛼𝑢 +

1

2
(𝑢2)𝑥 − 𝑢 1 − 𝑢 , according to (11) and (13), we have 

𝑅𝑚 𝑢𝑚−1            𝑥  = 𝐷𝑡
𝛼𝑢𝑚−1 +

1

2
(  𝑢𝑖

𝑚−1

𝑖=0

𝑢𝑚−1−𝑖)𝑥 − 𝑢𝑚−1 +  𝑢𝑖

𝑚−1

𝑖=0

𝑢𝑚−1−𝑖   

If we take the auxiliary function 𝐻 𝑥, 𝑡 = 1, we obtain the m
th

 order deformation equation 

𝑢𝑚  𝑥, 𝑡 = 𝜒𝑚𝑢𝑚−1 𝑥, 𝑡 + ℏ𝐼α 𝑅𝑚 𝑢𝑚−1            𝑥, 𝑡    
subject to the initial conditions 

𝑢 𝑥, 0 = 𝑒−𝑥 , 
If we choose the initial guess approximation 

𝑢0 𝑥, 𝑡 = 𝑒−𝑥  , 
then we have 

𝑢1 𝑥, 𝑡 = −
ℏ𝑒−𝑥

Γ(𝛼 + 1)
𝑡𝛼  , 

𝑢2 𝑥, 𝑡 = −
(ℏ + ℏ2)𝑒−𝑥

Γ(𝛼 + 1)
𝑡𝛼 +

ℏ2𝑒−𝑥

Γ(2𝛼 + 1)
𝑡2𝛼  , 

𝑢3 𝑥, 𝑡 = −
 ℏ + 2ℏ2 + ℏ3 𝑒−𝑥

Γ 𝛼 + 1 
𝑡𝛼 + 2

 ℏ + ℏ2 𝑒−𝑥

Γ 2𝛼 + 1 
𝑡2𝛼 −

ℏ3𝑒−𝑥

Γ 3𝛼 + 1 
𝑡3𝛼  . 

and so on, the 4
th

 order approximation 𝑢 𝑥, 𝑡  is given by  

𝑢𝐻𝐴𝑀 𝑥, 𝑡 = 𝑢0 𝑥, 𝑡 +  𝑢m 𝑥, 𝑡 

3

𝑚=1

 

𝑢𝐻𝐴𝑀  𝑥, 𝑡 = 𝑒−𝑥 −
ℏ𝑒−𝑥

Γ 𝛼 + 1 
𝑡𝛼 −

 ℏ + ℏ2 𝑒−𝑥

Γ 𝛼 + 1 
𝑡𝛼 +

ℏ2𝑒−𝑥

Γ 2𝛼 + 1 
𝑡2𝛼 −

 ℏ + 2ℏ2 + ℏ3 𝑒−𝑥

Γ 𝛼 + 1 
𝑡𝛼

+ 2
 ℏ + ℏ2 𝑒−𝑥

Γ 2𝛼 + 1 
𝑡2𝛼 −

ℏ3𝑒−𝑥

Γ 3𝛼 + 1 
𝑡3𝛼 . 

Finally, if we take ℏ = −1 , then the 4
th

 approximation solution of this problem can be obtained as:  

𝑢𝐻𝐴𝑀  𝑥, 𝑡 = 𝑒−𝑥  1 +
1

Γ 𝛼 + 1 
𝑡𝛼 +

1

Γ 2𝛼 + 1 
𝑡2𝛼 +

1

Γ 3𝛼 + 1 
𝑡3𝛼 + ⋯   

Thus, we have  

𝑢𝐻𝐴𝑀 𝑥, 𝑡 = 𝑒−𝑥𝐸𝛼 𝑡𝛼 .                                                (17) 

Where 𝐸𝛼 𝑧 , is Mittag-Leffler function in one parameter. Equation (6), in particular if 𝛼 = 1 then the equation 

(17) becomes, 

𝑢𝐻𝐴𝑀 𝑥, 𝑡 = 𝑒−𝑥𝐸1 𝑡 = 𝑒−𝑥𝑒𝑡 = 𝑒𝑡−𝑥  
Which is the same as given by HPM, VISTM and HPSTM (see [23 - 25]). The solution by graphical of equation 

(16) obtained by using HAM for difference values of given by 
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Figure (2): (a) the surface shows the Solution 𝑢 𝑥, 𝑡  by HAM (4 term approximation) of equation (15), 

for 𝛼 = 1. (b) Exact Solution for 𝛼 = 1.  (c) The surface shows the Solution 𝑢 𝑥, 𝑡  of equation (16), for 

𝛼 = 0.5 (d) The surface shows the Solution 𝑢 𝑥, 𝑡  of equation (1), for 𝛼 = 0.7 

 

 
Figure (3): (a) Plots of the solution 𝑢 𝑥, 𝑡 , in case 𝑡 = 0. (b) Plots of the solution 𝑢 𝑥, 𝑡  for different values 

of 𝛼, in case 𝑥 = 0. 
 

V. Conclusion 
In this paper, the Homotopy Analysis Method (HAM) has been successfully applied to obtain the exact 

solutions for solving fractional nonlinear gas dynamics equation and time fractional Fornberg-Whitham 

equation. It is easy to see that Homotopy Analysis Method (HAM) is very powerful, and professional techniques 

for solving different kinds of linear and nonlinear fractional differential equations arising in different fields of 
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science and engineering. Furthermore, this method does not require any transformation technique, linearization, 

or discretization of the variables and it does not make closure approximation or smallness assumption. The 

fractional derivatives are described by Caputo’s sense. 
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