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Abstract 
Background: This paper deals with the construction of a family of implicit one-block methods for the solution of 

stiff problems using four different linear multistep methods.  

Method: This is done by applying shift operator on the quadruple: Reversed Generalized Adams Moulton 

(RGAM), Generalized Backward Differentiation Formula (GBDF), Top Order Method (TOM) and Backward 

Differentiation Formula (BDF).  

Results: The application of the shift operator on the quadruples is done in such a manner that the resultant one-

block methods are self-starting and forms a family. Orders four and seven are L-stable.  

Conclusion: Numerical experiments carried out using orders four, seven and ten of the family show that the 

methods are good for solving stiff initial value problems. 

Keywords: Stiff initial value problem; One-block methods; Self-starting; quadruple and shift operator. 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date of Submission: 17-07-2020                                                                           Date of Acceptance: 01-08-2020 

------------------------------------------------------------------------------------------------------------------------ --------------- 

 

I. Introduction 

This paper deals with the construction of methods for finding the numerical solution )(ty  to the stiff initial 

value problems (sivp) in ode 
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The problem in (1.1) can only be handled adequately by high order A-Stable methods. These high order A-

Stable methods are difficult to come by due to the severe restrictions imposed by Dalquist order barrier theorem 
7
. To circumvent this barrier, unconventional means were adopted by many researchers to achieve high order 

numerical integrators to handle (1.1). These include but not limited to: boundary value methods 
3, 4

; second 

derivative methods 
6, 8

;  implicit two points numerical integration formula 
9
,  general linear methods 

5
, second 

derivative general linear methods 
14

 and rational one-step numerical integrators 
16

.  

The use of collocation and interpolation in the construction of some linear multistep formulas for solving 

ordinary differential equations has been mostly with two-point boundary value problems until 6 showed the 

connection to the backward differentiation formula (BDF). Current trend following Onumanyi et al 15 have 

extended this connections to many families of traditional linear multistep methods, including boundary value 

methods (BVMs) 4 possessing good stability properties suitable for efficient solutions of (1.1). Notwithstanding 

these desirable developments, the cumbersomeness in the construction process is a drawback and need to be 

eliminated. This paper will approach the construction of continuous linear multistep formulas from the 

perspective of the order definition. The already known families that will be used in this paper are: Reversed 

Adams Moulton (RAM) methods, Generalized Backward Differentiation Formulas (GBDF), Top Order 

Methods (TOM) and Backward Differentiation Formulas (BDF). These four families will be used to 

demonstrate both the construction of the continuous linear multistep formulas and the new family of methods 

which this paper is proposing. 
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This paper is divided into five sections, sections one and two deal with the introduction and construction 

processes respectively while three and four deal with stability analysis and numerical experiments respectively. 

Conclusion is made in section five.  

 

II. Construction of Linear Multistep Formula (LMF) 
Consider the classical LMF given by  
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where  1k  is the step number and nnn tth  1  is a variable step length,  k

rr 0
  and  k

rr 0
  are real 

constants and both not zero. Making use of Taylor’s series expansion on linear operator L[y(t);h] associated with 

the difference equation (2.1) defined as  
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where )(ty  is a solution which is continuously differentiable on the interval [a,b]. Expanding the function 

)( rhty   and its derivative )( rhty  about t, and collecting terms gives 
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p =  1, 2, 3, …, are constants 
13

. The constants in (2.4) play important role in the determination of the order, 

error constants and the coefficients of the methods.  

Definition 2.1: Order of a LMF (see)
6
 

The LMF (2.1) is said to be of order p if in (2.3) and  (2.4)  

0...210  pCCCC and 01 pC . The 01 pC is the error constant of the LMF (2.1). 

The order definition 2.1 will be used to determine the coefficients of (2.1). A method is defined by the choice of 

the coefficients to be determined.  

If the constant coefficients 
k

rr 0}{   and k

rr 0}{   in the general k-step LMF given in (2.1), are replaced by the 

variable coefficients 
k

rr t 0)}({   and k

rr t 0)}({  , we have a continuous LMF given as 
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where kt 0 . We now consider the derivation of the formula for the coefficients )(tr and )(tr in (2.5) 

using the order definition 2.1 as oppose to collocation and interpolation approach which makes use of basis 

function. 

2.1 Coefficients Determination  

Consider the Top Order Methods (TOM) which was first considered by Dahlquist 
7
, but was presented as 

unstable methods. The methods are of form 
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That is 
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The coefficients are determined in order to have the maximum possible order p = 2k for a k-step method. 

Making use of definition 2.1 and (2.4), the coefficients in (2.6) can be determine by the following 
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Matrices:  
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(2.8) 

The order of the resultant matrix is kq 2 . This family has no continuous scheme. For any k-step, there is only 

one method. For instance, k = 3, (2.7) and (2.8) give the following matrix equation: 
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The coefficients in (2.6) for k = 3 are determined by solving for i  and i  in (2.9). The coefficients, and error 

constants for k = 2, 3, 4, 5 and 6 are given in the tables 2.1 and 2.2 below 

 

Table 2.1: The values of 6,...,2kfori  in (2.6) 

K 
0  1  2  3  4  5  6  1pC  

2 

2

1  0  
2
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3 
60

11  
20

9  
20

9  
60

11     
2800

1  

4 

84

5  
21

8  0  
21

8  
84

5    
44100

1  

5 
7560

137  

1512

325  
189

50  
189

50  

1512

325  
7560

137   
698544

1  

6 
1320

7  
10

1  
88

25  0  
88

25  

10

1  

1320

7  
11099088

1  

 

Table 2.2: The values of
 

6,...,2kfori  in (2.6) 

K 
0  

1  
2  

3  
4  

5  
6  Order p 

2 

6

1  
3

2  
6

1  
    4 



Construction of a Family of Stable One-Block Methods Using Linear Multi-Step Quadruple 

DOI: 10.9790/5728-1604030113                               www.iosrjournals.org                                              4 | Page 

3 
20

1  

20

9  
20

9  
20

1     6 

4 
70

1  
35

8  
35

18  
35

8  

70

1    8 

5 
252

1  
252

25  

63

25  
63

25  
252

25  
252

1  
 10 

6 
924

1  

77

3
 

308

75  
231

100  
308

75  
77

3  
924

1  12 

 

The continuous Adams Moulton (AM) type methods are of the form: 
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When kt  , (2.10) gives the standard AM methods but when 1t , (2.10) gives RAM which we made use of 

in this paper. Imposing the maximum order 1 kp  on (2.10) leads to the following matrix equation:  
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Solving for  k

ii t
0

)(


  in (2.11) gives the coefficients in 2.10 as a function of ],0( kt . 

For example, for k = 5, we have the following continuous coefficients:  
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Taking t=1 in (2.11), we have the following coefficients and error constants for various k-step RAM displayed 

in the table 2.3 below: 
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Table 2.3: The coefficients and error constants of RAM for 7,...,2,1k  
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The general formula for continuous BDF is  
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Imposing order k on (2.12) and using definition 2.1 leads to the matrix equation: 
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if 1)( tt . The coefficients in (2.12) are uniquely determined by solving for 
k

ii t 1)}({    in (2.13).  

For a particular k, k different methods can be constructed using the continuous coefficients. Putting t = k, gives 

the standard BDF type methods, if t = (k+1)/2, we have GBDF. The coefficients of BDF and GBDF are 

respectively displayed in the tables below: 
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Solving for 
k

ii t 1)}({   in (2.14) gives  
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For BDF type methods take t = 5. For GBDF, take t = (5+1)/2. The coefficients and error constants of BDF and 

GBDF for k = 1, 2, 3, . . ., 7 are respectively displayed in the tables 2.4 and 2.5 below: 

 

Table 2.4: The coefficients and error constants of BDF for 7,...,2,1k  

K 
0  1  2  3  4  5  6

 7  1pC  

1 -1 1       

2

1
  

2 

2

1  -2 

2

3       

3

1
  

3 

3

1
  

2

3  -3 

6

11      

4

1
  

4 

4

1  
3

4
  3 -4 

12

25     

5

1
  

5 

5

1
  

4

5  
3

10
  5 -5 

60

137    

6

1
  

6 

6

1  
5

6
  

4

15  
3

20
  

2

15  -6 

20

49   

7

1
  

7 

7

1
  

6

7  
5

21
  

4

35  
3

35
  

2

21  -7 

140

363  
8

1
  

 

Table 2.5: The coefficients and error constants of GBDF for 7,...,2,1k  

K 
0  1  2  3  4  5  6

 7  1pC  

1 -1 1       -1 

2 

2

1  -2 

2

3       

3

1
  

3 

6

1  -1 

2

1  
3

1      

12

1  

4 

12

1
  

2

1  
2

3
  

6

5  
4

1     

20

1  

5 

30

1
  

4

1  -1 

3

1  
2

1  
20

1
    

60

1
  

6 

60

1  
15

2
  

2

1  
3

4
  

12

7  
5

2  
30

1
   

105

1
  

7 

140

1  
15

1  
10

3  -1 

4

1  
5

3  
10

1
  

105

1  
280

1  

 

2.2 Construction of the block methods 

The methodology for the construction of the methods is well explained in the proposition giving in Ajie et al 
1, 2

. 

2428

17

4

15

60

137
)(

432

0

tttt
t 

24

5

3

7

8

71

6

77
5)(

432

1

tttt
t 
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Given four different families of k-step LMF completely defined by the characteristics polynomial 

  K

kj

j

k

j

k RR
,4

1,1

][][ )(),(


   and specified by 

KkjfEhyE n

j

kn

j

k )1(1,4)1(1;)()( ][][       (2.15)  

with  ][][ , j

k

j

k   for a fixed j forming a family of variable order jkp ,  of variable step number k. The the 

resultant system of composite LMF 

4,3,2,1;)1(0;)()( ][][  jlkifEhEyEE n

j

k

i

n

j

k

i      (2.16) 

 arising from the E-operator transformation of  (2.16) can be composed as the block method 

)( 011011 nnnn FBFBhYAYA   ; 0)det( 1 A          (2.17) 

if k is chosen such that l is an integer given as  

               
3

)2(2 k
l


  ; 4k  and 0 lk      (2.18) 

where ,1nY ;nY andFn 1 nF ; ...,2,1,0n are as defined in (2.19) and 
0101 ,,, BBAA  are square 

matrices defined in (2.20). The construction of this family is possible ofor the following integer values of k: 4, 7, 

10, 13, . . . 

Here, 
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while the solution and function block vectors are given as 

;)...( 2211

T

lknnnn yyyY   ;)...( 12212

T

nnlknlknn yyyyY   

(2.20) 

;)...( 2211

T

lknnnn fffF   T

nnlknlknn ffffF ).,..( 12212   

...,2,1,0n  

 

The resultant methods for orders 4 and 7 when written in the form of (2.17) have the following coefficient 

matrices: 

For order 4 

1A  = 

 

  
 

1 0 0 0
1

2

−3

2

5

6

1

4

0
1

2
0 0

−
4

3
3 −4

25

12 

  
 

;  0A =  

 

  
 

0 0 0 −1

0 0 0 −
1

12

0 0 0 −
1

2

0 0 0
1

4  

  
 

 ;  
1B  = 

 

 
 

19

24
−

5

24

1

24
0

0 0 1 0
2

3

1

6
0 0

0 0 0 1 

 
 

;       0B =

 

 

 
 

0 0 0
3

8

0 0 0 0

0 0 0
1

6

0 0 0 0 

 
 

 

 

 

 

 

For order 7 

1A

 

 
 
 
 
 
 
 
 
 

1 0 0 0 0 0 0 0

−
1

15

3

10
−1

1

4

3

5
−

1

10

1

105
0

−
8

21
0

8

21

5

84
0 0 0 0

7

6
−

21

5

35

4
−

35

3

21

2
−7

363

140
0

−1 1 0 0 0 0 0 0
1

140
−

1

15

3

10
−1

1

4

3

5
−

1

10

1

105

−
5

84
−

8

21
0

8

21

5

84
0 0 0

−
1

7

7

6
−

21

5

35

4
−

35

3

21

2
−7

363

140 
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−
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0 0
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35
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1
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0 0 0 0
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19087
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−
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1
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0 0 0
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III. Stability Analysis of the Methods 
When (2.17) is applied to the test equation  

yy  , 0)Re(           (3.1) 

it yields the characteristics equation.    

hzBwBzAwAzw   ,))(det(),( 0101

     

(3.2) 

The region of absolute stability 
AR  associated with (2.17) is the set 

)}
3

)1(
4)(1(1,1)(:C {




k
jzwzR jA

                                          (3.3) 

For order 4 above 4)1(1),( jzw j  are given as   

{𝑤 → 0}, {𝑤 → 0}, {𝑤 → 0}, {𝑤 →
2364 + 4326𝑧 + 3151𝑧2 + 953𝑧3

2364 − 5130𝑧 + 4759𝑧2 − 2259𝑧3 + 468𝑧4
} 

For order 7 8)1(1),( jzw j
 are given as 

{{𝑤 → 0}, {𝑤 → 0}, {𝑤 → 0}, {𝑤 → 0}, {𝑤 → 0}, {𝑤 → 0}, {𝑤 → 0},  {𝑤 = 

3495902320592640 + 10746415327105080𝑧 + 12863275360428960𝑧2 + 4509468608610360𝑧3 −
6717280910860608𝑧4 − 10946604461093677𝑧5 − 7527040403669756𝑧6 −

2228006201403288𝑧7

3495902320592640 − 17220803237636040𝑧 + 38760827002552800𝑧2 − 52828441831364040𝑧3 +
48438336555493632𝑧4 −31131036972511789𝑧5 + 13948525963167340𝑧6 − 4010892550923608𝑧7 +

521283129074400𝑧8

}} 

The only non-zero value of w(z) for this family of methods are given as a rational function 
)(

)(
)(

zQ

zP
zT  . where 

)(zP  and )(zQ  are polynomials. From the above for order p = 4,  

)(zT    
2364 +4326𝑧+3151𝑧2+953𝑧3

2364−5130𝑧+4759𝑧2−2259𝑧3+468𝑧4      (3.4) 

For order p = 7,  

)(zT
 

3495902320592640 + 10746415327105080𝑧 + 12863275360428960𝑧2 + 4509468608610360𝑧3 −
6717280910860608𝑧4 − 10946604461093677𝑧5 − 7527040403669756𝑧6 −

2228006201403288𝑧7

3495902320592640 − 17220803237636040𝑧 + 38760827002552800𝑧2 − 52828441831364040𝑧3 +
48438336555493632𝑧4 −31131036972511789𝑧5 + 13948525963167340𝑧6 − 4010892550923608𝑧7 +

521283129074400𝑧8

 

These values of )(zT  tend to zero as z tends to infinity. 

Definition 3.1: A block method is said to be pre-stable if the roots of )(zQ  are contained in
C (see 

4, 12
). The 

roots of )(zQ  for order 4 are 

 𝑧 → 1.0082125369126547  − 1.164677955507617ⅈ , 
 𝑧 → 1.0082125369126547  + 1.164677955507617ⅈ , 
 𝑧 → 1.405249001548883  − 0.39236814273553433ⅈ , 
{𝑧 → 1.405249001548883  + 0.39236814273553433ⅈ}} 

While the roots of )(zQ  for order 7 are 

{{𝑧 → 0.34310043332258827  − 1.4797687914142503ⅈ}, 
{𝑧 → 0.34310043332258827  + 1.4797687914142503ⅈ}, 
 𝑧 → 0.7613416549353051  − 0.8312425541243531ⅈ , 
 𝑧 → 0.7613416549353051  + 0.8312425541243531ⅈ , 
 𝑧 → 0.8910672693695683  − 0.344548117684201ⅈ , 
 𝑧 → 0.8910672693695683  + 0.344548117684201ⅈ , 

{𝑧 → 0.8912380378302361}, {𝑧 → 2.812012113903553}} 

The entire roots are contained in
C . 

Definition 3.2: A one block method is A-stable if and only if it is stable on the imaginary axis (I-   stable)
12

:  

That is if 1)( iyT  for all y , and T(z) is analytic for 0z  (i.e. )(zQ does not have roots with  negative or 

zero real parts).  I-stability is equivalent to the fact that the Norsett polynomial defined by  

)()()()()()()(
22

iyPiyPiyQiyQiyPiyQyG    (3.5) 

satisfies 0)( yG  for all y  (see 
12

).  
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Definition 3.3: A block method is said to be StableL  if it is StableA and also 0)( zT  as z
[10]. 

Orders 4 and 7 of this family satisfy the conditions in definitions 3.1, 3.2, 3.3 and equation (3.5). Therefore they 

are StableL .  

 

IV. Numerical Experiments 
In this section, three problems were considered to test the effectiveness of the methods in solving stiff initial 

value problems. 

Problem 4.1: Linear equations (cf: see 
4, 13

), 
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Problem 4.2: Van der Pol problem (cf: see 
4
)  

200,0)0(,2)0();1( 21

2

1212

21
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
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

 yyyyyy
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Problem 4.3: A Chemical Kinetics Problem (cf: see 

10
) 

);(yf
dt

dy
 ],0[ Tt  

The function f is defined by 
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Problem 4.1 is computed using order 4 of the methods. The graph of the computed solutions and the exact 

solutions are plotted and shown in figure 4.1. 

 
Figure 4.1: Solution of problem 4.1 using order p = 4 
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The phase diagram of the computed solutions of problem 4.2 using order 7 of the methods and ode15s is plotted 

and shown in figure 4.2. The red line is that of order 7, while the blue dotted line is plotted using ode 15s.  

 
Figure 4.2: The phase diagram of problem 4.2 computed with order 7 of the method ode15s 

 

Problem 4.3 is solved using order 10 and constant step size h = 0.0001. The errors in the table 4.1 are 

the maximum absolute values of the difference between our approximate solution and that of MATLAB 

ODE15s (which we  assumed to be the exact solution of the problem). The solution computed by the two 

methods (ODE15s and order p = 10 of our methods are plotted in figure 4.3. 

Table 4.1: Errors
2

e from order p=10 using ode 15s as exact 

T 2.00 5.00 7.5 10.00 

Errors 2.30e-006 4.20e-006 4.41e-005 7.19e-005 

 

 
Figure 4.3: Graph of solutions computed by order, p = 10 and ODE15s for Problem 4.3 

 

V. Conclusion 
This paper has demonstrated how self starting block methods can be constructed using four different k-

step linear multistep formulas. The family constructed using the quadruple: RAM, GBDF, TOM and BDF is L-

stable up to order 7. This paper also showed how continuous coefficients linear multistep methods can be 

constructed using the order definition. The numerical experiments performed using orders 4, 7 and 10 of the 

family of the methods on stiff initial value problem show that the methods are effective.    
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