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Abstract: In this article, the theory of continued fractions is presented. There aretwo types of continued 

fraction, one is the finite continued fraction and the other is the infinite continued fraction. A rational number 

can be expressed as a finite continued fraction. The value of an infinite continued fraction is an irrational 

number. The ratio of two successive Fibonacci numbers, which is a rational number, can be written as a simple 

finite continued fraction. The golden ratio can be expressed as an infinite continued fraction. The concept of 

golden ratio finds application in architecture. Using the convergents of finite continued fraction, the relation 

between Fibonacci numbers can be calculated and Linear Diophantine equations will be solved. 
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I. Introduction 
The credit for introducing continued fraction goes toFibonacci. The nickname of famous Italian mathematician 

Leonardo Pisano(1170-1250) is Fibonacci. In his book LiberAbaci, while dealing with the resolution of fractions 

into unit fractions, Fibonacci introduced a kind of “continued function”. For example, he used the symbol  
1 1 1

3 4 5
 

as an abbreviation for 

1+
1+

1
5

4

3
=

1

3
+

1

3.4
+

1

3.4.5
 (1) 

Continued fraction is two types, (a) Finite continued fraction and (b) Infinite continued fraction.A fraction of the 

form given below is known as finite continued fraction. 

𝑎0 +
1

𝑎1+
1

𝑎2+
1

𝑎3+
1
⋱
1

𝑎𝑛−1+
1
𝑎𝑛

(2) 

Where, the numbers 𝑎1 , 𝑎2 , … , 𝑎𝑛  are the partial denominators of the finite continued fraction and they all are 

real numbers. The number 𝑎0 may be zero or positive or negative. This fraction is denoted by the symbol 
 𝑎0; 𝑎1, 𝑎2 , … . , 𝑎𝑛  and it is called simple if all of the 𝑎𝑖  are integers. The value of any finite simple continued 

fraction will always be a rational number. 

If 𝑎𝑛 > 1 in the finite continued fraction (2), then 𝑎𝑛 =  𝑎𝑛 − 1 + 1 =  𝑎𝑛 − 1 +
1

1
, where  𝑎𝑛 − 1  is a 

positive integer. Hence, every rational number has two representations  𝑎0; 𝑎1, 𝑎2 , … . , 𝑎𝑛   and 
 𝑎0; 𝑎1, 𝑎2 , … . , 𝑎𝑛−1 , 1  as a simple finite continued fraction if  𝑎𝑛 > 1. 

If 𝑠 =  𝑎0; 𝑎1 , 𝑎2, … , 𝑎𝑛 , where 𝑠 > 1, then 
1

𝑠
=  0; 𝑎0 , 𝑎1 , 𝑎2 , … , 𝑎𝑛  (3) 

Although due credit is given to Fibonacci for introducing continued fractions, most authorities agree that the 

theory of continued fractions began with Rafael Bombelli, the great algebraist of Italy. In his book L’Algebra 

Opera (1572), Bombelliattempted to find the value of square roots of integers by means of infinite continued 

fractions.He expressed  13 as an infinite continued fraction. 

 13 = 3 +
4

6+
4

6+
4

6+
⋱

 (4) 

In general, an infinite continued fraction is written as 

𝑎0 +
𝑏1

𝑎1+
𝑏2

𝑎2+
𝑏3
𝑎3+
⋱

(5) 
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Where 𝑎0 , 𝑎1 , 𝑎2 , …. and 𝑏1, 𝑏2 , 𝑏3, …. are real numbers. The expansion of an infinite continued fraction 

continues for ever. The infinite continued fraction in which there is 1 in all the numerators is called simple 

infinite continued fraction. Putting 𝑏1 = 𝑏2 = 𝑏3 = ⋯ = 1  in (5), the simple infinite continued fraction is 

written as 

𝑎0 +
1

𝑎1+
1

𝑎2+
1

𝑎3+
1

𝑎4+ 
⋱

(6) 

The notation  𝑎0; 𝑎1 , 𝑎2, …  indicates a simple infinite continued fraction. The value of any infinite continued 

fraction is an irrational number.  

 

II. Finite Continued Fractions 
Theorem2.1: Any rational number can be written as a simple finite continued fraction. 

Proof: Let 𝑎 𝑏,  where 𝑏 > 0, is an arbitrary rational number. Now, let us write the following equations. 

𝑎 = 𝑏𝑎0 + 𝑟1                           0 < 𝑟1 < 𝑏 

𝑏 = 𝑟1𝑎1 + 𝑟2                         0 < 𝑟2 < 𝑟1  

𝑟1 = 𝑟2𝑎2 + 𝑟3                         0 < 𝑟3 < 𝑟2  (7) 

   .......................                 ................... 

𝑟𝑛−2 = 𝑟𝑛−1𝑎𝑛−1 + 𝑟𝑛                0 < 𝑟𝑛 < 𝑟𝑛−1 

𝑟𝑛−1 = 𝑟𝑛𝑎𝑛 + 0                                     
The above equations are rewritten as follows. 

𝑎

𝑏
= 𝑎0 +

𝑟1

𝑏
= 𝑎0 +

1
𝑏

𝑟1

 

𝑏

𝑟1

= 𝑎1 +
𝑟2

𝑟1

= 𝑎1 +
1
𝑟1

𝑟2

 

𝑟1

𝑟2
= 𝑎2 +

𝑟3

𝑟2
= 𝑎2 +

1
𝑟2
𝑟3

     (8) 

    .................................. 
𝑟𝑛−1

𝑟𝑛
= 𝑎𝑛  

Eliminating  𝑏 𝑟1  in the above first equation using the second equation, we get 
𝑎

𝑏
= 𝑎0 +

1

𝑎1+
1
𝑟1
𝑟2

(9) 

 Eliminating 𝑟1 𝑟2  in (9) using third equation of (8), we obtain 
𝑎

𝑏
= 𝑎0 +

1

𝑎1 +
1

𝑎2+
𝑟2
𝑟3

 

Continuing in this way we get the following expression.                                                                
𝑎

𝑏
= 𝑎0 +

1

𝑎1 +
1

𝑎2+
1

𝑎3+
1
⋱
1

𝑎𝑛−1+
1
𝑎𝑛

 

Thus, the rational number 𝑎 𝑏 is expressed as a simple finite continued fraction. Hence, the Theorem2.1 is 

proved.  As an example, let us apply this Theorem 2.1 to the rational number  
71

55
. 

71 = 1 × 55 + 16                   
71

55
= 1 +

16

55
 

55 = 3 × 16 + 7                     
55

16
= 3 +

7

16
 

    16 = 2 × 7 + 2                       
16

7
= 2 +

2

7
 

    7 = 2 × 3 + 1                  
7

2
= 3 +

1

2
 

From the above equations, we obtain 
71

55
= 1 +

1
55

16

= 1 +
1

3 +
7

16

= 1 +
1

3 +
1

2+
2

7

 

⇒
71

55
= 1 +

1

3+
1

2+
1

3+
1
2

(10) 
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This is the simple finite continued fraction of the rational number 71/55. Since, in general, the finite continued 

fraction (2) is denoted by the symbol  𝑎0; 𝑎1, 𝑎2 , … . , 𝑎𝑛  , the above continued fraction is denoted by the symbol 
 1; 3,2,3,2 . As, 2 =1 + 1/1, this continued fraction can also be denoted by the symbol    1; 3,2,3,1,1 . That is, 

71

55
=  1; 3,2,3,2 =  1; 3,2,3,1,1  

Now, using (10), let us represent 55/71 as continued fraction. 
55

71
=

1
71

55

=
1

1+
1

3+
1

2+
1

3+
1
2

   (11) 

Hence, the rational number 55/71 is represented as [0;1,3,2,3,2] or [0;1,3,2,3,1,1].The examples (10) & (11) 

prove the statement (3).Similarly, the rational numbers
19

51
, 

172

51
,  −

710

457
  and  −

15

23
  are denoted as given below. 

19

51
 =  0; 2,1,2,6 =  0; 2,1,2,5,1  

172

51
=  3; 2,1,2,6 =  3; 2,1,2,5,1  

−
710

457
=  −2; 2,4,6,8 =  −2; 2,4,6,7,1  

−
15

23
=  −1; 2,1,6,1  

The sequence of numbers introduced by Italian mathematician Leonardo Pisano is known as Fibonacci 

sequence, given by 

                                               1,1,2,3,5,8,13,21,34,55,89,144,233, .........        (12) 

Each term in the sequence after the first two is the sum of the immediately preceding two terms. The 𝑛𝑡ℎ term, 

denoted by  𝐹𝑛  , is called 𝑛𝑡ℎ  Fibonacci number. Note that 

𝐹3 = 𝐹2 + 𝐹1 = 1 + 1 = 2  and   𝐹6 = 𝐹5 + 𝐹4 = 5 + 3 = 8 

In general, we can write 

𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2,   (𝑛 ≥ 3)(13) 

Let us write the following equations for Fibonacci numbers using (13). 

𝐹𝑛+1 = 1 × 𝐹𝑛 + 𝐹𝑛−1        

𝐹𝑛+1

𝐹𝑛
= 1 +

𝐹𝑛−1

𝐹𝑛
 

𝐹𝑛 = 1 × 𝐹𝑛−1 + 𝐹𝑛−2

𝐹𝑛
𝐹𝑛−1

= 1 +
𝐹𝑛−2

𝐹𝑛−1

 

   ................................                      .........................                    (14)    

𝐹4 = 1 × 𝐹3 + 𝐹2

𝐹4

𝐹3

= 1 +
𝐹2

𝐹3

 

𝐹3 = 2 × 𝐹2 + 0                                    
𝐹3

𝐹2

= 2 

Using the above equations, we obtain 
𝐹𝑛+1

𝐹𝑛
= 1 +

1
𝐹𝑛

𝐹𝑛−1

= 1 +
1

1 +
1

𝐹𝑛−1
𝐹𝑛−2

 

Continuing in this manner, one will get 
𝐹𝑛+1

𝐹𝑛
= 1 +

1
𝐹𝑛

𝐹𝑛−1

= 1 +
1

1+
1

𝐹𝑛−1
𝐹𝑛−2

⋱

                     1+
1
2

(15) 

⇒
𝐹𝑛+1

𝐹𝑛
=  1; 1,1, … ,1,2 =  1; 1,1, … ,1,1,1 (16) 

The above expression (16) shows that the ratio of two successive Fibonacci numbers 𝐹𝑛+1 𝐹𝑛  , which is a 

rational number, can be written as a simple finite continued fraction. 

 

III. Convergentsof Finite Continued Fraction 
Definition: The continued fraction made from  𝑎0; 𝑎1 , 𝑎2, … . , 𝑎𝑛   by cutting off the expansion after the 𝑘𝑡ℎ  

partial denominator 𝑎𝑘  is called the  𝑘𝑡ℎconvergent of the given continued fraction and denoted by  𝐶𝑘 . 

𝐶𝑘 =  𝑎0; 𝑎1, 𝑎2 , … , 𝑎𝑘  (17) 

𝐶0 = 𝑎0(18) 

The convergent  𝐶0  is called the zeroth convergent. Going back to the example (10), let us write the successive 

convergents of
71

55
=  1; 3,2,3,2 . 
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𝐶0 = 1 

𝐶1 =  1; 3 = 1 +
1

3
=

4

3
= 1.3333. .. 

𝐶2 =  1; 3,2 = 1 +
1

3+
1

2

=
9

7
= 1.2857 …(19) 

𝐶3 =  1; 3,2,3 = 1 +
1

3 +
1

2+
1

3

=
31

24
= 1.2916. .. 

𝐶4 =  1; 3,2,3,2 =
71

55
= 1.2909… 

The above values of convergents show that, except for the last convergent 𝐶4, these are alternately less than or 

greater than 71/55, each convergent being closer in value to 71/55 than the previous one. 

The following are the three important properties of convergents of a continued fraction. 

(a) The convergents with even subscripts form an increasing sequence, that is, 

𝐶0 < 𝐶2 < 𝐶4 < ⋯ 
(b) The convergents with odd subscripts form a decreasing sequence, that is, 

𝐶1 > 𝐶3 > 𝐶5 > ⋯ 

(c) Every convergent with an odd subscript is greater than every convergent with an even subscript. That  

is, 

𝐶0 < 𝐶2 < 𝐶4 < ⋯ < 𝐶2𝑛 < ⋯ < 𝐶2𝑛+1 < ⋯ < 𝐶5 < 𝐶3 < 𝐶1 

 

Theorem3.1: The value of  𝑘𝑡ℎ  convergent 𝐶𝑘  of the finite simple continued fraction  𝑎0; 𝑎1 , 𝑎2, … . , 𝑎𝑛  is 

𝑝𝑘 𝑞𝑘 .  

𝐶𝑘 =
𝑝𝑘

𝑞𝑘
(20) 

The numbers 𝑝𝑘  and 𝑞𝑘  (𝑘 = 0,1,2, … , 𝑛)are defined as 

𝑝0 = 𝑎0                                     𝑞0 = 1(21) 

𝑝1 = 𝑎1𝑎0 + 1                         𝑞1 = 𝑎1(22) 

𝑝𝑘 = 𝑎𝑘𝑝𝑘−1 + 𝑝𝑘−2                   𝑞𝑘 = 𝑎𝑘𝑞𝑘−1 + 𝑞𝑘−2𝑓𝑜𝑟𝑘 = 2,3, … , 𝑛(23) 

Proof: As per (17) and (18), the convergents of  𝑎0; 𝑎1 , 𝑎2 , … . , 𝑎𝑛   are given by 

𝐶0 = 𝑎0 =
𝑎0

1
=

𝑝0

𝑞0
  [Using (21)]  (24) 

𝐶1 =  𝑎0; 𝑎1 = 𝑎0 +
1

𝑎1
=

𝑎1𝑎0+1

𝑎1
=

𝑝1

𝑞1
   [Using (22)](25) 

𝐶2 =  𝑎0; 𝑎1 , 𝑎2 = 𝑎0 +
1

𝑎1+
1

𝑎2

=
𝑎2 𝑎1𝑎0+1 +𝑎0

𝑎2𝑎1+1
(26) 

For 𝑘 = 2, we have from(21),(22) & (23), 

𝑝2 = 𝑎2𝑝1 + 𝑝0 = 𝑎2 𝑎1𝑎0 + 1 + 𝑎0(27) 

𝑞2 = 𝑎2𝑞1 + 𝑞0 = 𝑎2𝑎1 + 1(28) 

Substituting (27) & (28) in (26), we obtain 

𝐶2 =
𝑝2

𝑞2
(29) 

 Noting (24), (25) and (29), we can write in general that 

𝐶𝑘 =
𝑝𝑘
𝑞𝑘

 

Hence,the Theorem3.1 is proved.  

Let us see how this theorem works in case of the example  
71

55
=  1; 3,2,3,2  . In this case 𝑎0 = 1, 𝑎1 = 3, 𝑎2 =

2, 𝑎3 = 3 &𝑎4 = 2.Using (21), (22) and (23), we calculate 𝑝𝑘  and 𝑞𝑘  for 𝑘 = 0,1,2,3 &4. 

𝑝0 = 𝑎0 = 1                                                              𝑞0 = 1 

𝑝1 = 𝑎1𝑎0 + 1 = 3 × 1 + 1 = 4                          𝑞1 = 𝑎1 = 3 

𝑝2 = 𝑎2𝑝1 + 𝑝0 = 2 × 4 + 1 = 9                        𝑞2 = 𝑎2𝑞1 + 𝑞0 = 2 × 3 + 1 = 7 

𝑝3 = 𝑎3𝑝2 + 𝑝1 = 3 × 9 + 4 = 31                      𝑞3 = 𝑎3𝑞2 + 𝑞1 = 3 × 7 + 3 = 24 

𝑝4 = 𝑎4𝑝3 + 𝑝2 = 2 × 31 + 9 = 71                   𝑞4 = 𝑎4𝑞3 + 𝑞2 = 2 × 24 + 7 = 55 

Using the above values, the convergents of
71

55
=  1; 3,2,3,2  aregiven by 

𝐶0 =
𝑝0

𝑞0
=

1

1
= 1, 𝐶1 =

𝑝1

𝑞1
=

4

3
,    𝐶2 =

𝑝2

𝑞2
=

9

7
,  𝐶3 =

𝑝3

𝑞3
=

31

24
and 𝐶4 =

𝑝4

𝑞4
=

71

55
 

The above values for convergents are same as those given in (19) for the continued fraction [1;3,2,3,2]. So, the 

Theorem3.1 is proved for the continued fraction [1;3,2,3,2]. 

Theorem3.2: If 𝐶𝑘 =
𝑝𝑘

𝑞𝑘
 is the 𝑘𝑡ℎconvergent of the finite simple continued fraction  𝑎0; 𝑎1 . 𝑎2 , … , 𝑎𝑛  , then 

𝑝𝑘𝑞𝑘−1 − 𝑞𝑘𝑝𝑘−1 =  −1 𝑘−11 ≤ 𝑘 ≤ 𝑛(30) 
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Proof: 

(a) For 𝑘 = 1, the LHS of (30) = 𝑝1𝑞0 − 𝑞1𝑝0 

=  𝑎1𝑎0 + 1 × 1 − 𝑎1 × 𝑎0  [Using (21) & (22)] 

= 1 =  −1 1−1 = RHS of (30) for 𝑘 = 1 

So, the given theorem is proved for 𝑘 = 1. 
(b) Let us assume that the formula (30) is true for 𝑘 = 𝑚, where 1 < 𝑚 < 𝑛. 
For 𝑘 = 𝑚 + 1, LHS of (30) = 𝑝𝑚+1𝑞𝑚 − 𝑞𝑚+1𝑝𝑚  

=  𝑎𝑚+1𝑝𝑚 + 𝑝𝑚−1 𝑞𝑚 −  𝑎𝑚+1𝑞𝑚 + 𝑞𝑚−1 𝑝𝑚  

 [Using (23) for 𝑘 = 𝑚 + 1] 

= − 𝑝𝑚𝑞𝑚−1 − 𝑞𝑚𝑝𝑚−1  
= − −1 𝑚−1                      [Using (30) for 𝑘 = 𝑚] 

=  −1 𝑚  

= RHS of (30) for 𝑘 = 𝑚 + 1 

Hence, the theorem is true for 𝑘 = 𝑚 + 1, whenever it holds good for 𝑘 = 𝑚.It follows by induction that the 

theorem is valid for all 𝑘 with 1 ≤ 𝑘 ≤ 𝑛. 
Corollary 3.1: If 𝐶𝑘 = 𝑝𝑘 𝑞𝑘  is the 𝑘𝑡ℎ  convergent of the simple finite continued fraction  𝑎0; 𝑎1 , 𝑎2 , … . , 𝑎𝑛   
and 𝑎0 > 0, then 
𝑝𝑘

𝑝𝑘−1
=  𝑎𝑘 ; 𝑎𝑘−1, …… , 𝑎1 , 𝑎0   (31) 

                                   and                   
𝑞𝑘

𝑞𝑘−1
=  𝑎𝑘 ; 𝑎𝑘−1, …… , 𝑎2 , 𝑎1 (32) 

Proof:  Using (21),(22) and (23), we obtain  

𝑝𝑘 = 𝑎𝑘𝑝𝑘−1 + 𝑝𝑘−2

𝑝𝑘
𝑝𝑘−1

= 𝑎𝑘 +
𝑝𝑘−2

𝑝𝑘−1

 

𝑝𝑘−1 = 𝑎𝑘−1𝑝𝑘−2 + 𝑝𝑘−3

𝑝𝑘−1

𝑝𝑘−2

= 𝑎𝑘−1 +
𝑝𝑘−3

𝑝𝑘−2

 

𝑝𝑘−2 = 𝑎𝑘−2𝑝𝑘−3 + 𝑝𝑘−4

𝑝𝑘−2

𝑝𝑘−3

= 𝑎𝑘−2 +
𝑝𝑘−4

𝑝𝑘−3

 

.......................................                  ............................... 

𝑝1 = 𝑎1𝑎0 + 1 = 𝑎1𝑝0 + 1                  
𝑝1

𝑝0

= 𝑎1 +
1

𝑝0

= 𝑎1 +
1

𝑎0

 

𝑝𝑘
𝑝𝑘−1

= 𝑎𝑘 +
1

𝑝𝑘−1

𝑝𝑘−2

= 𝑎𝑘 +
1

𝑎𝑘−1 +
𝑝𝑘−3

𝑝𝑘−2

= 𝑎𝑘 +
1

𝑎𝑘−1 +
1

𝑎𝑘−2+
𝑝𝑘−4
𝑝𝑘−3

 

⋱ 
1

𝑎1 +
1

𝑎0

 

⇒
𝑝𝑘
𝑝𝑘−1

=  𝑎𝑘 ; 𝑎𝑘−1 , … . , 𝑎1 , 𝑎0  

Hence, the relation (31) is proved. Similarly, using (21),(22) & (23), we can write 

𝑞𝑘 = 𝑎𝑘𝑞𝑘−1 + 𝑞𝑘−2

𝑞𝑘
𝑞𝑘−1

= 𝑎𝑘 +
𝑞𝑘−2

𝑞𝑘−1

 

𝑞𝑘−1 = 𝑎𝑘−1𝑞𝑘−2 + 𝑞𝑘−3

𝑞𝑘−1

𝑞𝑘−2

= 𝑎𝑘−1 +
𝑞𝑘−3

𝑞𝑘−2

 

𝑞𝑘−2 = 𝑎𝑘−2𝑞𝑘−3 + 𝑞𝑘−4

𝑞𝑘−2

𝑞𝑘−3

= 𝑎𝑘−2 +
𝑞𝑘−4

𝑞𝑘−3

 

  .......................................            ............................... 

𝑞2 = 𝑎2𝑞1 + 𝑞0

𝑞2

𝑞1

= 𝑎2 +
𝑞0

𝑞1

= 𝑎2 +
1

𝑎1

 

 
𝑞𝑘
𝑞𝑘−1

= 𝑎𝑘 +
1

𝑞𝑘−1

𝑞𝑘−2

= 𝑎𝑘 +
1

𝑎𝑘−1 +
𝑞𝑘−3

𝑞𝑘−2

= 𝑎𝑘 +
1

𝑎𝑘−1 +
1

𝑎𝑘−2+
𝑞𝑘−4
𝑞𝑘−3

=  𝑎𝑘 ; 𝑎𝑘−1, … . , 𝑎2 , 𝑎1  

⋱ 
1

𝑎2 +
1

𝑎1
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Thus, the expression (32) is proved. 

 

Corollary 3.2:If 𝐶𝑘 = 𝑝𝑘 𝑞𝑘  is the 𝑘𝑡ℎ  convergent of the simple finite continued fraction  𝑎0; 𝑎1, 𝑎2 , … . , 𝑎𝑛  , 
then 

𝐶𝑘 − 𝐶𝑘−1 =
(−1)𝑘−1

𝑞𝑘𝑞𝑘−1
 (33) 

 

Proof: 𝐶𝑘 − 𝐶𝑘−1 =
𝑝𝑘

𝑞𝑘
−

𝑝𝑘−1

𝑞𝑘−1
=

𝑝𝑘𝑞𝑘−1−𝑞𝑘𝑝𝑘−1

𝑞𝑘𝑞𝑘−1
 

             Using (30) in the numerator of RHS of the above expression, we get 

𝐶𝑘 − 𝐶𝑘−1 =
(−1)𝑘−1

𝑞𝑘𝑞𝑘−1

 

              Hence, the relation (33) is proved. 

 

IV. Relation Between Fibonacci Numbers UsingConvergents 

 
In modern usage, the Fibonacci sequence begins with 0. The Fibonacci sequence is given by 

                                           0,1,1,2,3,5,8,13,21,34,55,89,.....(34)  

If 𝐹𝑘  with 𝑘 ≥ 0  denotes 𝑘𝑡ℎFibonacci number, then 

𝐹0 = 0, 𝐹1 = 1, 𝐹2 = 1, 𝐹3 = 2, 𝐹4 = 3, 𝐹5 = 5, 𝐹6 = 8,… ..(35) 

The Fibonacci sequence (34) satisfies the relation 

𝐹𝑘 = 𝐹𝑘−1 + 𝐹𝑘−2for   𝑘 ≥ 2(36)                    

Consider the continued fraction  0; 1,1,1, … ,1  in which all the patial denominators are equal to 1. The first few 

convergents of this continued fraction are written in terms of Fibonacci numbers as given below. 

𝐶0 = 0 =
0

1
=

𝐹0

𝐹1
,             𝐶1 =  0; 1 = 0 +

1

1
=

1

1
=

𝐹1

𝐹2
,           𝐶2 =  0; 1,1 = 0 +

1

1+
1

1

=
1

2
=

𝐹2

𝐹3
, 

𝐶3 =  0; 1,1,1 =
2

3
=

𝐹3

𝐹4

,                    𝐶4 =  0; 1,1,1,1 =
3

5
=

𝐹4

𝐹5

 

Looking at the above relations, we can write in general 

𝐶𝑘 =
𝐹𝑘

𝐹𝑘+1
        for  𝑘 ≥ 2(37) 

Using the above expression in (20), we obtain 

𝐶𝑘 =
𝑝𝑘

𝑞𝑘
=

𝐹𝑘

𝐹𝑘+1
(38) 

Hence, we can take 

𝑝𝑘 = 𝐹𝑘  and 𝑞𝑘 = 𝐹𝑘+1(39) 

Taking the relation (30), we have 

𝑝𝑘𝑞𝑘−1 − 𝑞𝑘𝑝𝑘−1 = (−1)𝑘−1 

Using (39) in the above expression,we obtain 

𝐹𝑘𝐹𝑘 − 𝐹𝑘+1𝐹𝑘−1 = (−1)𝑘−1 

⇒ 𝐹𝑘
2 − 𝐹𝑘+1𝐹𝑘−1 = (−1)𝑘−1  (40) 

Thus, the relation between Fibonacci numbersis derived from convergents of continued fraction. Forexample, if 

𝑘 = 4, LHS of (40) is𝐹4
2 − 𝐹5𝐹3 = 32 − 5 × 2 = −1 = (−1)4−1, which is the RHS of (40). 

 

V. Solutionof Linear Diophantine Equation UsingConvergents 
The linear Diophantine equation is  

𝑎𝑥 + 𝑏𝑦 = 𝑐(41) 

Where 𝑎, 𝑏 &𝑐 are given integers. A solution of the above equation is obtained by solving the Diophantine 

equation 

𝑎𝑥 + 𝑏𝑦 = 1 (42) 

Putting 𝑥 = 𝑥0 and 𝑦 = 𝑦0 in (42), we get 

𝑎𝑥0 + 𝑏𝑦0 = 1  (43) 

Multiplication of both sides of above equation with 𝑐 gives 

𝑎 𝑐𝑥0 + 𝑏 𝑐𝑦0 = 𝑐(44) 

The solution of Diophantine equation (41) is given by comparing it with (44). So, the desired solution is  

𝑥 = 𝑐𝑥0  and 𝑦 = 𝑐𝑦0(45) 

Let the rational number 
𝑎

𝑏
 is expanded into simple finite continued fraction as given below 

𝑎

𝑏
=  𝑎0; 𝑎1 , 𝑎2, … , 𝑎𝑛   
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According to (17) and (20), the last two convergents of the above continued fraction are 

𝐶𝑛−1 =
𝑝𝑛−1

𝑞𝑛−1
  and  𝐶𝑛 =

𝑝𝑛

𝑞𝑛
=

𝑎

𝑏
(46) 

From the above equation, we can write 

𝑝𝑛 = 𝑎  and  𝑞𝑛 = 𝑏(47)   

By changing the index𝑘 to 𝑛, the Eqn.(30) can be written a 

𝑝𝑛𝑞𝑛−1 − 𝑞𝑛𝑝𝑛−1 =  −1 𝑛−1 

Using (47) in the above expression, we have 

𝑎𝑞𝑛−1 − 𝑏𝑝𝑛−1 = (−1)𝑛−1(48) 

Let us now consider two cases for finding the solution of linear Diophantine equation. 

(a) If 𝑛 is odd, the Eqn. (48) is𝑎𝑞𝑛−1 − 𝑏𝑝𝑛−1 = 1.Then,the Eqn.𝑎𝑥 + 𝑏𝑦 = 1 has a particular solution 

𝑥0 = 𝑞𝑛−1and 𝑦0 = −𝑝𝑛−1. Hence, according to (45), the solution of linear Diophantine equation is 

𝑥 = 𝑐𝑞𝑛−1 and  𝑦 = −𝑐𝑝𝑛−1(49) 

(b) If 𝑛is even, the Eqn. (48) is (−𝑎𝑞𝑛−1 + 𝑏𝑝𝑛−1) = 1. So, the Eqn. 𝑎𝑥 + 𝑏𝑦 = 1 has a particular 

solution 𝑥0 = −𝑞𝑛−1 and 𝑦0 = 𝑝𝑛−1. Then, the solution of linear Diophantine equation is 

𝑥 = −𝑐𝑞𝑛−1 and 𝑦 = 𝑐𝑝𝑛−1(50) 

The general solution of Linear Diophantine equation (41) is given by the equations 

𝑥 = 𝑐𝑥0 + 𝑏𝑡 ,  𝑦 = 𝑐𝑦0 − 𝑎𝑡,    for    𝑡 = 0, ±1, ±2,… ..(51) 

Example: Let us solve the linear Diophantine equation 18𝑥 + 5𝑦 = 24. In this example 𝑎 = 18, 𝑏 = 5 and 

𝑐 = 24. 

18 = 3 × 5 + 3          
18

5
= 3 +

3

5
 

5 = 1 × 3 + 2            
5

3
= 1 +

2

3
 

3 = 1 × 2 + 1             
3

2
= 1 +

1

2
 

18

5
= 3 +

1

1 +
1

1+
1

2

=  3; 1,1,2  

 

In this continued fraction 𝑛 = 3 and the convergent 𝐶2 is given by 

𝐶2 =  3; 1,1 = 3 +
1

1 +
1

1

=
7

2
=

𝑝2

𝑞2

 

Therefore, 𝑝2 = 7 and 𝑞2 = 2. For 𝑛 = 3, the Eqn. (48) is 

𝑎𝑞2 − 𝑏𝑝2 = 1 ⇒ 18 × 2 − 5 × 7 = 1 

So, as per the above expression, the particular solution of 18𝑥 + 5𝑦 = 1 is given by 

𝑥0 = 2 and 𝑦0 = −7 

According to (45), the particular solution of the Diophantine equation 18𝑥 + 5𝑦 = 24 is   

𝑥 = 𝑐𝑥0 = 24 × 2 = 48 

𝑦 = 𝑐𝑦0 = 24 ×  −7 = −168 

Using (51), the general solution of the givenDiophantine equation is 

𝑥 = 48 + 5𝑡 ,     𝑦 = −168 − 18𝑡,    𝑡 = 0, ±1, ±2,…… 

 

VI. Infinite Continued Fraction 

 
An irrational number can be expressed as an infinite continued fraction.The infinite continued fraction in which 

there is 1 in all the numerators is known as simple infinite continued fraction. Two distinct infinite continued 

fractions represent two distinct irrational numbers. 

An early example of an infinite continued fraction is found in the work of William Brouncker. In 1655, hehad 

converted Wallis’s famous infinite product 
4

𝜋
=

3 × 3 × 5 × 5 × 7 × 7 × ……

2 × 4 × 4 × 6 × 6 × 8 × ……
 

into an infinite continued fraction 

4

𝜋
= 1 +

12

2 +
32

2+
52

2+
72

2+⋱
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 Srinivasa Ramanujan (22 December 1887 – 26 April 1920) had contributed many problems on continued 

fractions to the Journal of the Indian Mathematical Society and his note books contain about 200 results on such 

fractions. The following are twoinfinite continued fractions given by Ramanujan. 

 𝑒2𝜋 5   
5+ 5

2
−  

1+ 5

2
  =

1

1+
𝑒−2𝜋

1+
𝑒−4𝜋

1+
𝑒−6𝜋

1+⋱
⋱

 

 𝜋 =
4

1+
12

2+
32

2+
52

⋱
⋱

 

 

(1) Algorithm for expanding an irrational number into a simple infinite continued fraction: 

Let 𝑥0 is an arbitrary irrational number and the sequence of integers 𝑎0, 𝑎1 . 𝑎2 , …. is defined as given below. 

𝑥1 =
1

𝑥0−𝑎0
, 𝑥2 =

1

𝑥1−𝑎1
, 𝑥3 =

1

𝑥2−𝑎2
, …….   (52) 

In general, the above sequence can be written as 

𝑥𝑘+1 =
1

𝑥𝑘−𝑎𝑘
⇒ 𝑥𝑘 = 𝑎𝑘 +

1

𝑥𝑘+1
    (𝑘 ≥ 0)  (53) 

Let us now expand  𝑥0 into an infinite continued fraction using the above expression. 

𝑥0 = 𝑎0 +
1

𝑥1

 

Then, by successive substitutionsof (53), we obtain 

𝑥0 = 𝑎0 +
1

𝑎1 +
1

𝑥2

= 𝑎0 +
1

𝑎1 +
1

𝑎2+
1

𝑥3

 

⋮ 

⇒ 𝑥0 = 𝑎0 +
1

𝑎1+
1

𝑎2+
1

𝑎3+⋱
1

𝑎𝑛 +
1

𝑥𝑛+1

=  𝑎0; 𝑎1 , 𝑎2 , … , 𝑎𝑛 , 𝑥𝑛+1 (54) 

Applying the definition (17) and the theorem (20) for the convergent to the above expression, we can write 

𝑥0 =  𝑎0; 𝑎1 , 𝑎2 , … , 𝑎𝑛 , 𝑥𝑛+1 = 𝐶𝑛+1 

⇒ 𝑥0 =
𝑝𝑛+1

𝑞𝑛+1
(55) 

Using (23) in the above expression, we have 

𝑥0 =
𝑥𝑛+1𝑝𝑛 + 𝑝𝑛−1

𝑥𝑛+1𝑞𝑛 + 𝑞𝑛−1

[∵ 𝑎𝑛+1 = 𝑥𝑛+1𝑖𝑛 (54)] 

Subtracting the convergent 𝐶𝑛  from 𝑥0, we get 

𝑥0 − 𝐶𝑛 =
𝑥𝑛+1𝑝𝑛 + 𝑝𝑛−1

𝑥𝑛+1𝑞𝑛 + 𝑞𝑛−1

−
𝑝𝑛
𝑞𝑛

 

=
𝑞𝑛𝑝𝑛−1 − 𝑝𝑛𝑞𝑛−1

 𝑥𝑛+1𝑞𝑛 + 𝑞𝑛−1 𝑞𝑛
 

=
−(−1)𝑛−1

𝑞𝑛+1𝑞𝑛
 [ Using (23) & (30)] 

⇒ 𝑥0 − 𝐶𝑛 =
(−1)𝑛

𝑞𝑛+1𝑞𝑛
 

Since, 𝐶𝑛 = 𝑝𝑛 𝑞𝑛 ,the values (19) for convergents of  
71

55
=  1; 3,2,3,2  show that, as 𝑛 increases, the integers 

𝑞𝑛  are increasing. Hence, the above expression gives that 

lim
𝑛→∞

 𝑥0 − 𝐶𝑛 ≈ 0 

⇒ 𝑥0 = lim𝑛→∞ 𝐶𝑛 =  𝑎0; 𝑎1 , 𝑎2, …… .                        (56) 

Thus, the irrational number𝑥0 is expanded into an infinite continued fraction  𝑎0; 𝑎1 , 𝑎2 , 𝑎3 … .  .The following 

are four examples for expressing a given irrational number as an infinite continued fraction using this algorithm. 

Example 1: Let 𝑥0 =  5 ≈ 2.236. The calculations for finding the simple infinite continued fraction expansion 

of  5 using (53) are given below. 

𝑥0 =  5 = 2 +   5 − 2 = 𝑎0 +
1

𝑥1
 .                  i.e., 𝑎0 = 2 

𝑥1 =
1

 5−2
=

 5+2

  5−2   5+2 
=  5 + 2 = 4 +   5 − 2 = 𝑎1 +

1

𝑥2
 .         i.e., 𝑎1 = 4 
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So, 𝑥2 =
1

 5−2
. According to the above expression, 𝑎2 = 4.similarly, 𝑎3 = 𝑎5 = ⋯ = 4. Hence, the simple 

infinite continued fraction representation of  5 is 

 5 =  2; 4,4,4,4, …… .    (57) 

Example 2: Let us now expand  7 ≈ 2.6457 as a simple infinite continued fraction. Taking 𝑥0 =  7, let us 

make the following calculations using (53). 

𝑥0 =  7 = 2 +   7 − 2 = 𝑎0 +
1

𝑥1
                             .                                  i.e., 𝑎0 = 2 

𝑥1 =
1

 7−2
=

 7+2

  7−2   7+2 
=

 7+2

3
=

3+  7−1 

3
= 1 +

 7−1

3
= 𝑎1 +

1

𝑥2
 .         i.e., 𝑎1 = 1 

𝑥2 =
3

 7−1
=

3( 7+1)

  7−1   7+1 
=

3 7+3

6
=

6+ 3 7−3 

6
= 1 +

 7−1

2
= 𝑎2 +

1

𝑥3
 .         i.e., 𝑎2 = 1 

𝑥3 =
2

 7−1
=

2( 7+1)

  7−1   7+1 
=

2 7+2

6
=

6+ 2 7−4 

6
= 1 +

 7−2

3
= 𝑎3 +

1

𝑥4
 .         i.e., 𝑎3 = 1 

𝑥4 =
3

 7−2
=

3( 7+2)

3
=

12+ 3 7−6 

3
= 4 + ( 7 − 2) = 𝑎4 +

1

𝑥5
 .                       i.e., 𝑎4 = 4 

𝑥5 =
1

 7−2
= 𝑥1 . Then, we get 𝑥6 = 𝑥2 , 𝑥7 = 𝑥3&𝑥8 = 𝑥4. So, 𝑎5 = 𝑎1 = 1, 𝑎6 = 𝑎2 = 1, 𝑎7 = 𝑎3 = 1and 

𝑎8 = 𝑎4 = 4. Then, we obtain 𝑥9 = 𝑥5  ,𝑥10 = 𝑥6, 𝑥11 = 𝑥7&𝑥12 = 𝑥8. So, 𝑎9 = 1, 𝑎10 = 1, 𝑎11 = 1and 

𝑎12 = 4. This shows that the block of integers 1,1,1,4 repeat indefinitely. Thus, the simple infinite continued 

fraction expansion of  7 is given by 

 7 =  2; 1,1,1,4,1,1,1,4,1,1,1,4, ……  (58) 

Example 3: Let us find out the infinite continued fraction expansion of 𝜋 = 3.14159265 …. 
𝑥0 = 𝜋 = 3 + (𝜋 − 3)  i.e., 𝑎0 = 3 

𝑥1 =
1

𝜋−3
=

1

0.14159265 …
= 7.06251330 … = 7 + 0.06251330 …  i.e., 𝑎1 = 7 

𝑥2 =
1

0.06251330 …
= 15.99659440 … = 15 + 0.99659440 …                       i.e., 𝑎2 = 15 

𝑥3 =
1

0.99659440…
= 1.00341723 … = 1 + 0.00341723 …                            i.e., 𝑎3 = 1 

𝑥4 =
1

0.00341723 …
= 292.63467 … = 292 + 0.63467…     i.e., 𝑎4 = 292 

        ......                                    .......                                                                 ......  

Thus, the simple infinite continued fraction for 𝜋 is written as 

𝜋 =  3; 7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,2… . .  (59) 

Example 4: Let us express 𝑒, the base of natural logarithms, as an infinite continued fraction. 

𝑒 = 2.718281828 …. 
𝑥0 = 𝑒 = 2 +  𝑒 − 2 𝑎0 = 2 

𝑥1 =
1

𝑒 − 2
=

1

0.718281828
= 1.39221119         𝑎1 = 1 

𝑥2 =
1

0.39221119
= 2.549646785                         𝑎2 = 2 

𝑥3 =
1

0.549646785
= 1.819350221                       𝑎3 = 1 

𝑥4 =
1

0.819350221
= 1.220479319                       𝑎4 = 1 

𝑥5 =
1

0.220479319
= 4.535572789                       𝑎5 = 4 

    ........                     .........                                     ......... 

Thus, the pattern of infinite continued fraction expansion of  𝑒 is given by 

𝑒 =  2; 1,2,1,1,4,1,1,6,1,1,8,1,1, …… .   (60) 

The continued fraction representation of 𝑒 was found by Euler. In 1737, Euler showed that 
𝑒−1

𝑒+1
=  0; 2,6,10,14,18, … .  (61) 

     and       
𝑒2−1

𝑒2+1
=  0; 1,3,5,7,9, ……  (62) 

In the above two infinitecontinued fractions, the partial denominators form an arithmetic progression.Following 

the given procedure, the value of 𝑥 in equation 3 2 = 2𝑥can be represented by an infinite continued fraction as 

shown below. 

𝑥 =
log 3 2 

log 2
= 0.584962500721 … 

⇒ 𝑥 =  0; 1,1,2,2,3,1,5,2, , … . .  (63) 
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Corollary 6.1: We have shown that an irrational number is represented by an infinite continued fraction. The 

converse is that an infinite continued fraction represents an irrational number. This statement is proved by taking 

the infinite continued fraction  

𝑥0 =  1; 2,3,1,3,1,3,1, … .   

⇒ 𝑥0 = 1 +
1

2+
1

𝑦

(64) 

     Where, 𝑦 =  3; 1,3,1,3,1,3,1, … .   

⇒ 𝑦 = 3 +
1

1 +
1

𝑦

 

Solving the above equation, we obtain 

𝑦2 − 3𝑦 − 3 = 0 

The solutions of this quadratic equation are 𝑦 =
3± 21

2
.  Since 𝑦 > 3, we have to take 𝑦 = (3 +  21) 2  . 

Substituting this value of 𝑦 in (64), we get 

𝑥0 = 1 +
1

2+
2

3+ 21

=
19− 21

10
, which is an irrational number. 

Thus, the value of an infinite continued fraction 𝑥0 is an irrational number. 

(2) simple periodic infinite continued fraction: 

If a simple infinite continued fraction contains a block of partial denominators 𝑏1, 𝑏2 , … , 𝑏3that repeats 

indefinitely, then the continued fraction is known as periodic. A simple periodic infinite continued fraction is 

denoted as 

 𝑎0; 𝑎1, 𝑎2 , … , 𝑎𝑚 , 𝑏1 , 𝑏2, … , 𝑏𝑛 , 𝑏1 , . . , 𝑏𝑛 , … . .   

In short, it is represented as  𝑎0; 𝑎1 , 𝑎2 , … , 𝑎𝑚 , 𝑏1, 𝑏2 , … . , 𝑏𝑛                 , where the over bar indicates that this block repeats 

over and over. The block  𝑏1 , 𝑏2, … , 𝑏3 is known as the period of the infinite continued fraction expansion and 𝑛 

gives the length of the period. The following are few examples of simple periodic infinite continued fraction. 

 

(a)  23 =  4; 1,3,1,8,1,3,1,8,……  =  4; 1,3,1,8           
    In this example, the period is 1,3,1,8 and the length of the period is 4. 

(b)  2 =  1; 1,2,2,2,2, ……  =  1; 1, 2   

(c)  3 =  1; 1,2,1,2,1,2, ……  =  1; 1,2      

(d)  5 =  2; 4,4,4,4, …… .  =  2; 4   

(e)  6 =  2; 2,4,2,4,2,4, ……  =  2; 2,4      

(f)  7 =  2; 1,1,1,4,1,1,1,4, ……  =  2; 1,1,1,4           

(g)  8 =  2; 1,4      

(h)  10 =  3; 6   
The following are the three general expressions for finding simple periodic infinite continued fractions of 

irrational numbers. For any positive integer 𝑛, 

                                                 (i)   𝑛2 + 1 =  𝑛; 2𝑛     (65) 

                                                (ii)   𝑛2 + 2 =  𝑛; 𝑛, 2𝑛       (66) 

                                                (ii)   𝑛2 + 2𝑛 =  𝑛; 1,2𝑛       (67) 

Proof of (65):                                                 𝑛 +  𝑛2 + 1 = 2𝑛 +   𝑛2 + 1 − 𝑛  

⇒ 𝑛 +  𝑛2 + 1 = 2𝑛 +
1

𝑛 +  𝑛2 + 1
 

Substituting the above expression successively in RHS, we obtain 

𝑛 +  𝑛2 + 1 = 2𝑛 +
1

2𝑛 +
1

𝑛+ 𝑛2+1

= ⋯ = 2𝑛 +
1

2𝑛 +
1

2𝑛+
1

2𝑛+⋱
⋱

 

⇒  𝑛2 + 1 =  𝑛; 2𝑛, 2𝑛, …  =  𝑛; 2𝑛      
Thus, the expression (65) is proved. For 𝑛 = 1,2,3, … 𝑒𝑡𝑐.,this expression gives the infinite continued fractions 

of rational numbers  2,  5,  10,  17,… , 𝑒𝑡𝑐. 

Proof of (66):                                                𝑛 +  𝑛2 + 2 = 2𝑛 +   𝑛2 + 2 − 𝑛 (68) 

⇒ 𝑛 +  𝑛2 + 2 = 2𝑛 +
2

𝑛 +  𝑛2 + 2
 

= 2𝑛 +
1

 𝑛 +  𝑛2 + 2 2 
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Applying (68)successively in RHS ofabove expression, we get 

𝑛 +  𝑛2 + 2 = 2𝑛 +
1

 2𝑛 +   𝑛2 + 2 − 𝑛  2 
= 2𝑛 +

1

𝑛 +
  𝑛2+2−𝑛 

2

= 2𝑛 +
1

𝑛 +
1

 𝑛+ 𝑛2+2 

 

= 2𝑛 +
1

𝑛+
1

2𝑛+  𝑛2+2−𝑛 

= 2𝑛 +
1

𝑛+
1

2𝑛+
1

 𝑛+ 𝑛2+2 2 

= 2𝑛 +
1

𝑛+
1

2𝑛+
1

𝑛+
  𝑛2+2−𝑛 

2

=..... 

= 2𝑛 +
1

𝑛 +
1

2𝑛+
1

𝑛+
1

2𝑛+
1

𝑛+
1
⋱
⋱

 

⇒ 𝑛2 + 2 =  𝑛; 𝑛, 2𝑛, 𝑛, 2𝑛, …  =  𝑛; 𝑛, 2𝑛        
 

Hence, the expression (66) is proved. Using this expression, we can write the infinite continued fractions of 

rational numbers  3,  6,  11,  18,… , 𝑒𝑡𝑐., taking 𝑛 = 1,2,3, … 𝑒𝑡𝑐. 
 

Proof of (67):                                              𝑛 +  𝑛2 + 2𝑛 = 2𝑛 +   𝑛2 + 2𝑛 − 𝑛 (69) 

⇒ 𝑛 +  𝑛2 + 2𝑛 = 2𝑛 +
2𝑛

𝑛 +  𝑛2 + 2𝑛
 

= 2𝑛 +
1

 2𝑛 +   𝑛2 + 2𝑛 − 𝑛  2𝑛 
 

= 2𝑛 +
1

1 +
1

𝑛+ 𝑛2+2𝑛

 

 

By successive substitutions of (69) in RHS of above expression, we obtain 

 

𝑛 +  𝑛2 + 2𝑛 = 2𝑛 +
1

1 +
1

2𝑛+  𝑛2+2𝑛−𝑛 

= 2𝑛 +
1

1 +
1

2𝑛+
2𝑛

𝑛+ 𝑛2+2𝑛

 

= 2𝑛 +
1

1 +
1

2𝑛+
1

1+
1

𝑛+ 𝑛2+2𝑛

= ⋯ = 2𝑛 +
1

1 +
1

2𝑛+
1

1+
1

2𝑛+
1

1+
1
⋱
⋱

 

⇒ 𝑛2 + 2𝑛 =  𝑛; 1,2𝑛, 1,2𝑛, …  =  𝑛; 1,2𝑛        
Thus, the expression (67) is proved. This expression gives the infinite continued fractions of rational numbers 

 3,  8,  15,  24,… , 𝑒𝑡𝑐., for 𝑛 = 1,2,3, … 𝑒𝑡𝑐. 
 

(3) Golden ratio as infinite continued fraction: 

 

Consider the infinite continued fraction 

𝑥 =  1 +
1

1+
1

1+
1

1+
1

1+
1
⋱

=  1; 1,1,1, … . .  (70)                                               

The above fraction shows that 

𝑥 = 1 +  
1

𝑥
  or  𝑥2 − 𝑥 − 1 = 0 

The solutions of this quadratic equation are 𝑥 =  
1± 5

2
. Since, 𝑥 > 1, we must take the solution having positive 

sign in the numerator of its RHS.  Therefore,𝑥 =  
1+ 5

2
= 1.61803…, which is the golden ratio ø. Hence, the 

infinite continued fraction (70) represents the golden ratio. That is, 

ø =  
1+ 5

2
=  1; 1,1,1, …  =  1; 1  (71)  

 

Importance of golden ratio: A rectangle, whose length and breadth are in the ratio,∅: 1, is Known as the golden 

rectangle. The ratio of the diagonal of a regular pentagon to its side is equal to the golden ratio ∅.Golden ratio 
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finds application in architectural designs.It has been observed that the Greeks have used the concept of golden 

ratio in the construction of temples. The Parthenon in Athens is the classic example of the golden ratio being 

used in architecture. It was constructed between 448-432 BC as a temple for the Goddess Athena. The great 

pyramid in Giza, Egypt, is another example of an ancient structure where golden ratio is used in its design. The 

ratio of the height of its triangular face to half of the side of its square base approximates to golden ratio. Some 

ratios in the human body, like the ratio of the height of a person to the distance between the naval point and the 

foot, are very close to golden ratio. If the ratios between two different parts of human body are close to golden 

ratio, the body appears beautiful. 

VII .Conclusion 

 
The theory of finite and infinite continued fractions was discussed in this article. A rational number can 

be expressed as a finite continued traction and an irrational number can be expressed as an infinite continued 

fraction. Linear Diophantine equations were solved using convergents of finite continued fraction. The golden 

ratio was represented as an infinite continued fraction.   
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