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Abstract:We define the primal and dual linear programming problems involving interval numbers as the way 

of traditional linear programming problems. We discuss the solution concepts of primal and dual linear 

programming problems involving interval numbers without converting them to classical linear programming 

problems. By introducing arithmetic operations between interval numbers, we prove the weak and strong 

duality theorems. Complementary slackness theorem is also proved. A numerical example is provided to 

illustrate the theory developed in this paper. 
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I. Introduction 
Linear programming is a most widely and successfully used decision tool in the quantitative analysis of 

practical problems where rational decisions have to be made. In order to solve a Linear Programming Problem, 

the decision parameters of the model must be fixed at crisp values. But to model real-life problems and perform 

computations we must deal with uncertainty and inexactness. These uncertainty and inexactness are due to 

measurement inaccuracy, simplification of physical models, variations of the parameters of the system, 

computational errors etc. Interval analysis is an efficient and reliable tool that allows us to handle such problems 

effectively. 

Linear programming problems with interval coefficients have been studied by several authors, such as 

Atanu Sengupta et al. [5, 6], Bitran [8], Chanas and Kuchta [9], Nakahara et al. [23], Steuer [29] and Tong 

Shaocheng [34]. Numerous methods for comparison of interval numbers can be found as in Atanu Sengupta and 

Tapan Kumar Pal [5, 6], Ganesan and Veeramani [11, 12] etc. 

By taking maximum value range and minimum value range inequalities as constraint conditions, Tong 

Shaocheng [34] reduced the interval linear programming problem in to two classical linear programming 

problems and obtained an optimal interval solution to it. Ramesh and Ganesan [27] proposed a method for 

solving interval number linear programming problems without converting them to classical linear programming 

problems. 

The duality theory for inexact linear programming problems was proposed by Soyster [30–31] and 

Thuente [33]. Falk [10] provided some properties on this problem. However, Pomerol [26] pointed out some 

drawbacks of Soyster‟s results and provided some mild conditions to improve them. Masahiro Inuiguchia [17] 

et al has studied the duality of interval number linear programming problems through fuzzy linear programming 

problems. Bector and Chandra [7] introduced a pair of linear primal-dual problems under fuzzy environment 

and established the duality relationship between them. Hsien-Chung Wu [15,16] introduced the concept of 

scalar product for closed intervals in the objective and inequality constraints of the primal and dual linear 

programming problems with interval numbers. He introduced a solution concept that is essentially similar to the 

notion of nondominated solution in multiobjective programming problems by imposing a partial ordering on the 

set of all closed intervals. He then proved the weak and strong duality theorems for linear programming 

problems with interval numbers. Rohn [28] also discussed the duality in a interval linear programming problem 

with real-valued objective function. In this paper, we attempt to develop the duality theory for interval linear 

programming problems without converting them to classical linear programming problems. 

The rest of this paper is organized as follows: In section 2, we recall the definitions of interval number 

linear programming, interval numbers and some related results of interval arithmetic on them. In section 3, we 

define the interval number primal and dual linear programming problems as the way of traditional linear 

programming problems. We then prove the weak and strong duality theorems. Complementary Slackness 
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theorem is also proved. In section 4, a numerical example is provided to illustrate the theory developed in this 

paper. 

II. Preliminaries 
The aim of this section is to present some notations, notions and results which are of useful in our further 

consideration. 

 

2.1. Arithmetics of Closed Intervals 

Let us denoted by 𝔗 the class of all closed intervals in ℝ. If 𝐴 is closed interval, we also adopt the notation 

𝐴 =  𝑎𝐿 , 𝑎𝑈 , where 𝑎𝐿 and 𝑎𝑈  means the lower and upper bounds of 𝐴  respectively. 

For any two intervals 𝐴 =  𝑎𝐿 , 𝑎𝑈  and 𝐵 =  𝑏𝐿 , 𝑏𝑈  and for ∗∈  +,−,×,÷ , the arithmetic operations on 𝐴 and 

𝐵 are defined as: 

𝐴 ∗ 𝐵 =  𝑎𝐿 , 𝑎𝑈 ∗  𝑏𝐿 , 𝑏𝑈  
=  𝑀𝑖𝑛 𝑎𝐿 ∗ 𝑏𝐿 , 𝑎𝐿 ∗ 𝑏𝑈 , 𝑎𝑈 ∗ 𝑏𝐿 , 𝑎𝑈 ∗ 𝑏𝑈 , 𝑀𝑎𝑥 𝑎𝐿 ∗ 𝑏𝐿 , 𝑎𝐿 ∗ 𝑏𝑈 , 𝑎𝑈 ∗ 𝑏𝐿 , 𝑎𝑈 ∗ 𝑏𝑈   

 

If𝐴 = 𝑎𝐿 = 𝑎𝑈 = 𝑎, then𝐴 =  𝑎, 𝑎 = 𝑎. 

 

In particular 

(i) Addition:𝐴 + 𝐵 =  𝑎𝐿 + 𝑏𝐿 , 𝑎𝑈 + 𝑏𝑈  
(ii) Subtraction:𝐴 − 𝐵 =  𝑎𝐿 − 𝑏𝑈 , 𝑎𝑈 − 𝑏𝐿  
(iii) Multiplication: 

𝐴 × 𝐵 =  𝑀𝑖𝑛 𝑎𝐿 × 𝑏𝐿 , 𝑎𝐿 × 𝑏𝑈 , 𝑎𝑈 × 𝑏𝐿 , 𝑎𝑈 × 𝑏𝑈 , 𝑀𝑎𝑥 𝑎𝐿 × 𝑏𝐿 , 𝑎𝐿 × 𝑏𝑈 , 𝑎𝑈 × 𝑏𝐿 , 𝑎𝑈 × 𝑏𝑈   
(iv) Division: 

𝐴 ÷ 𝐵 =  𝑎𝐿 , 𝑎𝑈  ×  
1

𝑏𝑈
,

1

𝑏𝐿
 =  𝑀𝑖𝑛  

𝑎𝐿

𝑏𝑈
,
𝑎𝐿

𝑏𝐿
,
𝑎𝑈

𝑏𝑈
,
𝑎𝑈

𝑏𝐿
 , 𝑀𝑎𝑥  

𝑎𝐿

𝑏𝑈
,
𝑎𝐿

𝑏𝐿
,
𝑎𝑈

𝑏𝑈
,
𝑎𝑈

𝑏𝐿
   with 𝐵 ≠  0, 0 . 

 

2.2. Solution Concepts 

For 𝐴 =  𝑎𝐿 , 𝑎𝑈  and 𝐵 =  𝑏𝐿 , 𝑏𝑈 , we write𝐴 ≼ 𝐵 , if and only if 𝑎𝐿 ≤ 𝑏𝐿 and 𝑎𝑈 ≤ 𝑏𝑈 . 

This means that 𝐴  is inferior to 𝐵  or 𝐵  is superior to 𝐴 . It is easy to see that ≼ is a partial ordering on 𝔗. We also 

define 𝐴 ≼ 𝐵  if and only if 𝐵 ≽ 𝐴 . 
Now, we define 𝐴 ≺ 𝐵  if and only if 𝐴 ≼ 𝐵  and 𝐴 ≠ 𝐵 . We also define 𝐴 ≺ 𝐵  if and only if 𝐵 ≻ 𝐴 . 
Equivalently 𝐴 ≺ 𝐵  if and only if 𝑎𝐿 < 𝑏𝐿 , 𝑎𝑈 = 𝑏𝑈or𝑎𝐿 = 𝑏𝐿 , 𝑎𝑈 < 𝑏𝑈 or𝑎𝐿 < 𝑏𝐿  , 𝑎𝑈 < 𝑏𝑈 . 

 

III. Materials and Methods 
This part is devoted to the study of the simplex method. This method is the main tool for solving linear 

programming problems. It consists of following a certain number of stages before obtaining the solution of a 

given problem. It is an iterative algebraic method which allows to find the exact solution of a linear 

programming problem in a finite number of steps. 

 

3.1. Mathematical Formulation of LP 

3.1.1. The primal LP problem 

Standard Form 

Consider the following primal linear programming problem 

𝑍 𝑥1 , … , 𝑥𝑛 = 𝑐1𝑥1 + ⋯+ 𝑐𝑛𝑥𝑛 ⟶𝑀𝑎𝑥 

(SF)Subject to  

𝑎𝑟1𝑥1 + 𝑎𝑟2𝑥2+ .  .  . + 𝑎𝑟𝑛𝑥𝑛 ≤ 𝑏𝑟  , 1 ≤ 𝑟 ≤ 𝑝
𝑎𝑠1𝑥1 + 𝑎𝑠2𝑥2+ .  .  . + 𝑎𝑠𝑛𝑥𝑛 ≥ 𝑏𝑠  , 𝑝 + 1 ≤ 𝑠 ≤ 𝑚

𝑥𝑗 ≥ 0, 1 ≤ 𝑗 ≤ 𝑛

𝑏𝑖 > 0, 1 ≤ 𝑖 ≤ 𝑚

  

in an equivalent way 

𝑍 𝑥1 , … , 𝑥𝑛 = 𝑐1𝑥1 + ⋯+ 𝑐𝑛𝑥𝑛 ⟶𝑀𝑎𝑥 

(SF)  Subject to  

𝑎𝑟1𝑥1 + 𝑎𝑟2𝑥2+ .  .  . + 𝑎𝑟𝑛𝑥𝑛 ≤ 𝑏𝑟  , 1 ≤ 𝑟 ≤ 𝑝
−𝑎𝑠1𝑥1 − 𝑎𝑠2𝑥2− .  .  . − 𝑎𝑠𝑛𝑥𝑛 ≤ −𝑏𝑠  , 𝑝 + 1 ≤ 𝑠 ≤ 𝑚

𝑥𝑗 ≥ 0, 1 ≤ 𝑗 ≤ 𝑛

𝑏𝑖 > 0, 1 ≤ 𝑖 ≤ 𝑚

  

where 𝑎𝑖𝑗 , 𝑐𝑗 , 𝑏𝑖 , 𝑥𝑗 ∈ ℝ, 𝑖 = 1,2, … ,𝑚 and 𝑗 = 1,2, … , 𝑛. 
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Canonical Form 

We introduce a slack variable 𝑥𝑛+𝑖 ≥ 0 (slack variable for i-th contraint) and write the canonical for 

 

𝑍 𝑥1 , … , 𝑥𝑛 = 𝑐1𝑥1 + ⋯+ 𝑐𝑛𝑥𝑛 + 0𝑥𝑛+1 + ⋯+ 0𝑥𝑛+𝑚 ⟶𝑀𝑎𝑥 

(CF)Subject to  

𝑎𝑟1𝑥1 + 𝑎𝑟2𝑥2+ .  .  . + 𝑎𝑟𝑛𝑥𝑛 + 𝑥𝑛+𝑟 = 𝑏𝑟  , 1 ≤ 𝑟 ≤ 𝑝
−𝑎𝑠1𝑥1 − 𝑎𝑠2𝑥2− .  .  . − 𝑎𝑠𝑛𝑥𝑛 + 𝑥𝑛+𝑠 = −𝑏𝑠  , 𝑝 + 1 ≤ 𝑠 ≤ 𝑚

𝑥𝑗 ≥ 0, 1 ≤ 𝑗 ≤ 𝑛 + 𝑚

𝑏𝑖 > 0, 1 ≤ 𝑖 ≤ 𝑚

  

3.1.2. The dual LP problem 

In accordance with the duality theory of linear programming the dual problem for (SF)is as follows: 

𝑊 𝑥1 , … , 𝑥𝑛 = 𝑏1𝑦1 + ⋯+ 𝑏𝑝𝑦𝑝 − 𝑏𝑝+1𝑦𝑝+1 −⋯− 𝑏𝑚𝑦𝑚 ⟶𝑀𝑖𝑛 

(DLP)  Subject to  

𝑎1𝑗𝑦1 + ⋯+ 𝑎𝑝𝑗 𝑦𝑝 − 𝑎 𝑝+1 𝑗𝑦𝑝+1− .  .  . − 𝑎𝑚𝑗 𝑦𝑚 ≥ 𝑐𝑗
𝑦𝑖 ≥ 0

 1 ≤ 𝑖 ≤ 𝑚
1 ≤ 𝑗 ≤ 𝑛

  

3.2. Simplex table: 𝑻(𝒔) 

We propose the simplex table model as follows: 

Initial table of the simplex 𝑻(𝟎)from (CF)
Basic 
variables 

𝑥𝐵
(0)

 

Coefficients 
of basis in  
𝑍 𝑥 : 

𝐶𝐵
(0)

 

𝑐1 𝑐2 .                    .                  . 𝑐𝑛+𝑚  Current values 

𝑋𝐵
(0)

 

𝐴1
(0)

 𝐴2
(0)

 .                    .                  . 𝐴𝑛+𝑚
(0)

 

𝑥𝑛+1 0 𝑎11 𝑎12 .                     .                 . 𝑎1(𝑛+𝑚) 𝑏1 

 . 
. 

. 

. 

. 

. 

. 

. 

. 

.                     .                 . 

.                     .                 . 

.                     .                 .   

. 

. 

. 

. 

. 

 . 

𝑥𝑛+𝑝  0 𝑎𝑝1 𝑎𝑝2 .                     .                 . 𝑎𝑝(𝑛+𝑚) 𝑏𝑝  

𝑥𝑛+𝑝+1 0 𝑎(𝑝+1)1 𝑎(𝑝+1)2 .                     .                 . 𝑎(𝑝+1)(𝑛+𝑚) −𝑏𝑝+1 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

.                     .                 . 

.                     .                 . 

.                     .                 .   

. 

. 

. 

. 

. 

. 

𝑥𝑛+𝑚  0 𝑎𝑚1 𝑎𝑚2 .                     .                 . 𝑎𝑚(𝑛+𝑚) −𝑏𝑚  

𝑍𝑗
(0)

= 𝐶𝐵
(0)
𝐴𝑗

(0)
 0 0 .                    .                 . 0 𝑍 𝑥 

= 𝐶𝐵
(0)
𝑋𝐵

(0)
 ∆𝑗

(0)
= 𝑍𝑗

(0)
− 𝑐𝑗  −𝑐1 −𝑐2 .                    .                 . 0 

In the iteration (𝑠) or in the s-th table called the simplex table 𝑻(𝒔). 

In the simplex table 𝑻(𝒔) and for 1 ≤ 𝑗 ≤ 𝑛 + 𝑚 we have: the basic variables column is 𝑥𝐵
(𝑠)

=

 𝑥𝐽1
, 𝑥𝐽2

, … , 𝑥𝐽𝑚  ,the solution matrix is 𝑋𝐵
(𝑠)

=  𝑥𝐽1
= 𝑏1

(𝑠)
  𝑥𝐽2

= 𝑏2
(𝑠)
… 𝑥𝐽𝑚 = 𝑏𝑚

(𝑠)
 
𝑡
, the matrices of each 

column of the table are 

𝐴𝑗
 𝑠 =  𝑎1𝑗

 𝑠 𝑎2𝑗
 𝑠 … 𝑎𝑚𝑗

 𝑠  
𝑡
,   𝐵𝐵

−1(𝑠)
=  𝐴𝑛+1

(𝑠)
𝐴𝑛+2

(𝑠)
 … 𝐴𝑛+𝑚

(𝑠)
 , =  𝑎𝑖𝑗

(𝑠)
 1≤𝑖≤𝑚
𝑛+1≤𝑗≤𝑛+𝑚

and the opportunity and 

marginal costs of each activity  𝑍𝑗
(𝑠)

= 𝐶𝐵
(𝑠)
𝐴𝑗

(𝑠)
 and  ∆𝑗

(𝑠)
= 𝑍𝑗

(𝑠)
− 𝑐𝑗  The values of the functions 𝐹 is: 

𝑍 𝑥 = 𝐶𝐵
(𝑠)
𝑋𝐵

(𝑠)
. Moreover 𝐴𝑗

(𝑠)
= 𝐵𝐵

−1(𝑠)
𝐴𝑗  and   𝑋𝐵

(𝑠)
= 𝐵𝐵

−1(𝑠)
𝑏. 

Simplex table  𝑻(𝒔): 
Basic 
variables 

𝑥𝐵
(𝑠)

 

Coefficients 
of basis in  
𝑍 𝑥 : 

𝐶𝐵
(𝑠)

 

𝑐1 𝑐2 .                    .                  . 𝑐𝑛+𝑚  Current values 

𝑋𝐵
(𝑠)

 

𝐴1
(𝑠)

 𝐴2
(𝑠)

 .              .             . 𝐴𝑛+𝑚
(𝑠)

 

𝑥𝐽1
 𝑐𝐽1

 𝑎11
(𝑠)

 𝑎12
(𝑠)

 .                     .                 . 𝑎1(𝑛+𝑚)
(𝑠)

 𝑥𝐽1
= 𝑏1

(𝑠)
 

𝑥𝐽2
 𝑐𝐽2

 𝑎21
(𝑠)

 𝑎22
(𝑠)

 .                     .                 . 𝑎2(𝑛+𝑚)
(𝑠)

 𝑥𝐽2
= 𝑏2

(𝑠)
 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

.                     .                 . 

.                     .                 . 

.                     .                 .   

. 

. 

. 

. 

. 

. 

𝑥𝐽𝑚  𝑐𝐽𝑚  𝑎𝑚1
(𝑠)

 𝑎𝑚2
(𝑠)

 .                    .                 . 𝑎𝑚(𝑛+𝑚)
(𝑠)

 𝑥𝐽𝑚 = 𝑏𝑚
(𝑠)

 

𝑍𝑗
(𝑠)

= 𝐶𝐵
(𝑠)
𝐴𝑗

(𝑠)
 𝑍1

(𝑠)
 𝑍2

(𝑠)
 .              .             . 𝑍𝑛+𝑚

(𝑠)
 𝑍 𝑥 

= 𝐶𝐵
(𝑠)
𝑋𝐵

(𝑠)
 ∆𝑗

(𝑠)
= 𝑍𝑗

(𝑠)
− 𝑐𝑗  ∆1

(𝑠)
 ∆2

(𝑠)
 .                    .                 . ∆𝑛+𝑚

(𝑠)
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Optimal solution: 

If 𝑻(𝒔) is optimal, then the current basis is 𝑥𝐵
(𝑠)

=  𝑥𝐽1
, 𝑥𝐽2

, … , 𝑥𝐽𝑚  and the corresponding solution is 

𝑥𝐵
∗ =  𝑥𝐽1

= 𝑏1
(𝑠)

, 𝑥𝐽2
= 𝑏2

(𝑠)
, … , 𝑥𝐽𝑚 = 𝑏𝑚

(𝑠)
 . Moreover, the current nonbasic variables is𝑥𝑁

(𝑠)
=  𝑥𝑑 ,   𝑥𝑑 ∉ 𝑥𝐵

(𝑠)
  

and the corresponding solution is 𝑥𝑁
∗ =  𝑥𝑑 = 0,   𝑥𝑑 ∈ 𝑥𝑁

(𝑠)
  . Hence the optimal solution to the problem can be 

written as 𝑥∗ =  𝑥1𝑥2  … 𝑥𝑛  … 𝑥𝑛+𝑚  
𝑡with the associated value of the objective function  𝐹 𝑥∗ = 𝑐𝑥∗.

 

3.3. Iteration procedure 

It is an iterative algebraic method which allows to find the exact solution of a linear programming problem in a 

finite number of steps. 

 

Algorithm 1: Maximization Form 

STEP (0) The problem is initially in canonical form with𝑚 = 𝑟 in (CF) and construct the initial table of the 

simplex 𝑻(𝟎) 

STEP (1) If ∆𝑗
(𝑠)
≥ 0for 𝑗 = 1,2, … , 𝑛 then stop; we are optimal 𝑻(𝒔). 

 If we continue thenthere exists some ∆𝑗
(𝑠)

< 0. 

STEP (2) Choose the column 𝑘 to pivot in (i.e., the variable 𝑥𝑘  to introduce into the basis) by 

∆𝑘
(𝑠)

= min
𝑑∈𝑥𝑁

(𝑠) ∆𝑑
(𝑠)
 .If 𝑎𝑖𝑘

(𝑠)
≤ 0for 𝑖 = 1,2, … ,𝑚 then stop; the primal problem is unbounded. 

If we continue, then 𝑎𝑖𝑘
(𝑠)

> 0for some 𝑖 = 1,2, … ,𝑚. 

STEP (3) Choose row ℓto pivot in (i.e., the variable 𝑥ℓ to drop from the basis) by the ratio test: 

𝑏ℓ
(𝑠)

𝑎ℓ𝑘
𝑠 = min1≤𝑖≤𝑚  

𝑏𝑖
(𝑠)

𝑎
𝑖𝑘
(𝑠) , 𝑎𝑖𝑘

(𝑠)
> 0 . 

STEP (4) Replace the basic variable in row ℓ with variable 𝑘and re-establish the 

canonical form (i.e., pivot on the coefficient 𝑎ℓ𝑘
(𝑠)

). 

STEP (5)      do                                          
𝐿ℓ

(𝑠+1)
=

𝐿ℓ
(𝑠)

𝑎ℓ𝑘
(𝑠)

𝐿𝑟
(𝑠+1)

= 𝐿𝑟
(𝑠)

− 𝑎𝑟𝑘
(𝑠)
𝐿ℓ

(𝑠+1)

  with 1 ≤ 𝑟 ≠ ℓ ≤ 𝑚 

STEP (6) Go to step (1). 

 

Algorithm 2: Minimization Form 

STEP (0) The problem is initially in canonical form with 𝑚 = 𝑟 in (CF) and construct the initial table of the 

simplex 𝑻(𝟎) 

STEP (1) If ∆𝑗
(𝑠)
≤ 0for 𝑗 = 1,2, … , 𝑛 then stop; we are optimal 𝑻(𝒔). If we continue then 

there exists some ∆𝑗
(𝑠)

> 0. 

STEP (2) Choose the column 𝑘 to pivot in (i.e., the variable 𝑥𝑘  to introduce into the basis) by 

∆𝑘
(𝑠)

= max
𝑑∈𝑥𝑁

(𝑠) ∆𝑑
(𝑠)
 .If 𝑎𝑖𝑘

(𝑠)
≤ 0for 𝑖 = 1,2, … ,𝑚 then stop; the primal problem is unbounded. 

If we continue, then 𝑎𝑖𝑘
(𝑠)

> 0for some 𝑖 = 1,2, … ,𝑚. 

STEP (3) Choose row ℓto pivot in (i.e., the variable 𝑥ℓ to drop from the basis) by the ratio test: 

𝑏ℓ
(𝑠)

𝑎ℓ𝑘
𝑠 = min1≤𝑖≤𝑚  

𝑏𝑖
(𝑠)

𝑎
𝑖𝑘
(𝑠) , 𝑎𝑖𝑘

(𝑠)
> 0 . 

STEP (4) Replace the basic variable in row ℓ with variable 𝑘and re-establish the 

canonical form (i.e., pivot on the coefficient 𝑎ℓ𝑘
(𝑠)

). 

STEP (5)      do                                          
𝐿ℓ

(𝑠+1)
=

𝐿ℓ
(𝑠)

𝑎ℓ𝑘
(𝑠)

𝐿𝑟
(𝑠+1)

= 𝐿𝑟
(𝑠)

− 𝑎𝑟𝑘
(𝑠)
𝐿ℓ

(𝑠+1)

  with1 ≤ 𝑟 ≠ ℓ ≤ 𝑚 

STEP (6) Go to step (1). 

 

Algorithm 3: Maximization Form 

STEP (0) The problem is initially in canonical form (CF) and construct the initial table of the simplex 𝑻(𝟎) 

STEP (1) If ∆𝑗
(𝑠)
≥ 0for 𝑗 = 1,2, … , 𝑛 and  𝑏𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑚then stop; we are optimal 𝑻(𝒔). If we continue 

thenthere exists some 𝑏𝑖
(𝑠)

< 0, 1 ≤ 𝑖 ≤ 𝑚. 

STEP (2) Choose row ℓto pivot in (i.e., the variable 𝑥ℓ to drop from the basis) by 
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𝑏ℓ
(𝑠)

= min
1≤𝑖≤𝑚

 𝑏𝑖
(𝑠)
  

STEP (3) Choose the column 𝑘 to pivot in (i.e., the variable 𝑥𝑘  to introduce into the basis) by the ratio test: 

∆𝑘
(𝑠)

𝑎ℓ𝑘
(𝑠)

= max
𝑑∈𝑥𝑁

(𝑠)
 
∆𝑑

(𝑠)

𝑎ℓ𝑑
(𝑠)

, 𝑎ℓ𝑑
(𝑠)

< 0  

If 𝑎ℓ𝑑
(𝑠)

≥ 0for 𝑑 ∈ 𝑥𝑁
(𝑠)

 then stop; the primal problem is unbounded. 

If we continue, then 𝑎ℓ𝑑
(𝑠)

< 0for some 𝑑 ∈ 𝑥𝑁
(𝑠)

. 

STEP (4) Replace the basic variable in row ℓ with variable 𝑘and re-establish the 

canonical form (i.e., pivot on the coefficient 𝑎ℓ𝑘
(𝑠)

). 

STEP (5)      do                                          
𝐿ℓ

(𝑠+1)
=

𝐿ℓ
(𝑠)

𝑎ℓ𝑘
(𝑠)

𝐿𝑟
(𝑠+1)

= 𝐿𝑟
(𝑠)

− 𝑎𝑟𝑘
(𝑠)
𝐿ℓ

(𝑠+1)

  with 1 ≤ 𝑟 ≠ ℓ ≤ 𝑚 

STEP (6) Go to step (1). 

STEP (7) For some ∆𝑗
(𝑠)

< 0and  𝑏𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑚 then Go to Algorithm 1. 

 

Algorithm 4: Minimization Form 

STEP (0) The problem is initially in canonical form (CF) and construct the initial table of the simplex 𝑻(𝟎) 

STEP (1) If ∆𝑗
(𝑠)
≤ 0for 𝑗 = 1,2, … , 𝑛 and  𝑏𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑚 then stop; we are optimal 𝑻(𝒔). If we continue then 

there exists some𝑏𝑖
(𝑠)

< 0, 1 ≤ 𝑖 ≤ 𝑚.                

STEP (2) Choose row ℓto pivot in (i.e., the variable 𝑥ℓ to drop from the basis) by 

𝑏ℓ
(𝑠)

= min
1≤𝑖≤𝑚

 𝑏𝑖
(𝑠)
  

STEP (3) Choose the column 𝑘 to pivot in (i.e., the variable 𝑥𝑘  to introduce into the basis) by the ratio test: 

∆𝑘
(𝑠)

𝑎ℓ𝑘
(𝑠)

= min
𝑑∈𝑥𝑁

(𝑠)
 
∆𝑑

(𝑠)

𝑎ℓ𝑑
(𝑠)

, 𝑎ℓ𝑑
(𝑠)

< 0  

If 𝑎ℓ𝑑
(𝑠)

≥ 0for 𝑑 ∈ 𝑥𝑁
(𝑠)

 then stop; the primal problem is unbounded. 

If we continue, then 𝑎ℓ𝑑
(𝑠)

< 0for some 𝑑 ∈ 𝑥𝑁
(𝑠)

. 

STEP (4) Replace the basic variable in row ℓ with variable 𝑘and re-establish the 

canonical form (i.e., pivot on the coefficient 𝑎ℓ𝑘
(𝑠)

). 

STEP (5)      do                                          
𝐿ℓ

(𝑠+1)
=

𝐿ℓ
(𝑠)

𝑎ℓ𝑘
(𝑠)

𝐿𝑟
(𝑠+1)

= 𝐿𝑟
(𝑠)

− 𝑎𝑟𝑘
(𝑠)
𝐿ℓ

(𝑠+1)

  with 1 ≤ 𝑟 ≠ ℓ ≤ 𝑚 

STEP (6) Go to step (1). 

STEP (7) For some ∆𝑗
(𝑠)

> 0and  𝑏𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑚 then Go to Algorithm 2. 

 

IV. Main Results 
Now we are in a position to prove interval analogue of some important relationships between the primal and 

dual linear programming problems. We consider the primal and dual linear programming problems involving 

interval numbers as follows: 

4.1. Mathematical Formulation of LPproblem involving interval numbers 

4.1.1. The primal LP problem involving interval numbers 

Standard Form 

Consider the following linear programming problem involving interval numbers 

𝑍  𝑥1   , … , 𝑥𝑛    ≈ 𝑐1 𝑥1   + ⋯+ 𝑐𝑛 𝑥𝑛   ⟶ 𝑀𝑎𝑥 

(SFI)  Subject to 

 
 
 

 
 𝑎𝑟1    𝑥1   + 𝑎𝑟2    𝑥2   + .  .  . + 𝑎𝑟𝑛     𝑥𝑛   ≼ 𝑏𝑟  , 1 ≤ 𝑟 ≤ 𝑝

𝑎𝑠1    𝑥1   + 𝑎𝑠2    𝑥2   + .  .  . + 𝑎𝑠𝑛    𝑥𝑛   ≽ 𝑏𝑠  , 𝑝 + 1 ≤ 𝑠 ≤ 𝑚
𝑥𝑗 ≽ 0, 1 ≤ 𝑗 ≤ 𝑛

𝑏𝑖 ≽ 0, 1 ≤ 𝑖 ≤ 𝑚

  

in an equivalent way 

𝑍  𝑥1   , … , 𝑥𝑛    ≈ 𝑐1 𝑥1   + ⋯+ 𝑐𝑛 𝑥𝑛   ⟶ 𝑀𝑎𝑥 
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(SFI)  Subject to 

 
 
 

 
 𝑎𝑟1    𝑥1   + 𝑎𝑟2    𝑥2   + .  .  . + 𝑎𝑟𝑛     𝑥𝑛   ≼ 𝑏𝑟  , 1 ≤ 𝑟 ≤ 𝑝

−  𝑎𝑠1     𝑥1   − 𝑎𝑠2    𝑥2   − .  .  . − 𝑎𝑠𝑛    𝑥𝑛   ≼ −𝑏𝑠  , 𝑝 + 1 ≤ 𝑠 ≤ 𝑚
𝑥𝑗 ≽ 0, 1 ≤ 𝑗 ≤ 𝑛

𝑏𝑖 ≽ 0, 1 ≤ 𝑖 ≤ 𝑚

  

where 𝑎𝑖𝑗    , 𝑐𝑗 , 𝑏𝑖 , 𝑥𝑗 ∈ ℝ, 𝑖 = 1,2, … ,𝑚 and 𝑗 = 1,2, … , 𝑛. 

We call the above problem (SFI)  as the primal interval linear programming problem, and it can be rewritten as 

(SFI): 𝑀𝑎𝑥 𝑍 ≈ 𝑐 𝑥 subject to 𝐴 𝑥  ≼ 𝑏  and 𝑥  ≽ 0, where 𝐴  , 𝑏  , 𝑐   , 𝑥  are (𝑚 × 𝑛), (𝑚 × 1),(1 × 𝑛), (𝑛 × 1) 

matrices involving interval numbers. 

Canonical Form  

We introduce a slack variable 𝑥𝑛+𝑖      ≥ 0 (slack variable for i-th contraint) and write the canonical form: 

 

𝑍  𝑥1   , … , 𝑥𝑛    ≈ 𝑐1 𝑥1   + ⋯+ 𝑐𝑛 𝑥𝑛   + 0 𝑥𝑛+1      + ⋯+ 0 𝑥𝑛+𝑚       ⟶ 𝑀𝑎𝑥 

(CFI)  Subject to 

 
 
 

 
 𝑎𝑟1    𝑥1   + 𝑎𝑟2    𝑥2   + .  .  . + 𝑎𝑟𝑛     𝑥𝑛   + 𝑥𝑛+𝑟      ≈ 𝑏𝑟  , 1 ≤ 𝑟 ≤ 𝑝

−  𝑎𝑠1     𝑥1   − 𝑎𝑠2    𝑥2   − .  .  . − 𝑎𝑠𝑛    𝑥𝑛   + 𝑥𝑛+𝑠      ≈ −𝑏𝑠  , 𝑝 + 1 ≤ 𝑠 ≤ 𝑚
𝑥𝑗 ≽ 0, 1 ≤ 𝑗 ≤ 𝑛

𝑏𝑖 ≽ 0, 1 ≤ 𝑖 ≤ 𝑚

  

4.1.2. The dual LP problem involving interval numbers 

In accordance with the duality theory of linear programming the dual problem involving interval numbers 

for(SFI)is as follows: 

𝑊  𝑦1   , … , 𝑦𝑚     ≈ 𝑏1
 𝑦1   + ⋯+ 𝑏𝑝   𝑦𝑝   − 𝑏𝑝+1

      𝑦𝑝+1      − ⋯− 𝑏𝑚    𝑦𝑚    ⟶ 𝑀𝑖𝑛 

(DLPI)  Subject to  

𝑎1𝑗    𝑦1   + ⋯+ 𝑎𝑝𝑗    𝑦𝑝   − 𝑎 𝑝+1 𝑗         𝑦𝑝+1      − .  .  . − 𝑎𝑚𝑗     𝑦𝑚    ≽ 𝑐𝑗 

𝑦𝑖 ≽ 0
 1 ≤ 𝑖 ≤ 𝑚
1 ≤ 𝑗 ≤ 𝑛

  

We call the above problem (DLPI)  as the dual interval linear programming problem of the primal problem 

(SFI) , and it can be rewritten as (DLPI): 𝑀𝑖𝑛 𝑊 ≈ 𝑏 𝑦 subject to 𝐴 𝑦  ≽ 𝑐  and 𝑦  ≽ 0, where 𝐴  , 𝑏  , 𝑐   , 𝑦  are 

(𝑚 × 𝑛), (1 × 𝑚), (𝑛 × 1), (𝑚 × 1) matrices involving interval numbers. 

Theorem 1. Consider 𝐴 𝑥  ≈ 𝑏 , where 𝐴 =  𝑎 𝑖𝑗  𝑚×𝑛
, 𝑎 𝑖𝑗 ∈ ℝ. Then 𝑋 𝐵

(𝑠)
= 𝐵 𝐵

−1(𝑠)
𝑏  is a solution of  𝐴 𝑥  ≈ 𝑏 . 

Theorem 2. (Weak duality theorem)If 𝑥 =  𝑥1    , 𝑥2    , … , 𝑥𝑛    
𝑡  is any feasible solution to the primal interval 

linear programming problem (SFI) and 𝑦 =  𝑦1    , 𝑦2    , … , 𝑦𝑚      is any feasible solution to the dual interval linear 

programming problem (DLPI), then 𝑐 𝑥  ≼ 𝑏 𝑦  or  𝑐𝑗 𝑥𝑗 
𝑛
𝑗=1 ≼  𝑏𝑖 𝑦𝑖 

𝑚
𝑖=1 . 

Theorem 3. (Strong duality theorem)  If 𝑥 =  𝑥1    , 𝑥2    , … , 𝑥𝑛    
𝑡  is an optimal solution to the primal problem 

(SFI), then there exit a feasible solution 𝑦 =  𝑦1    , 𝑦2    , … , 𝑦𝑚      to the dual problem (DLPI) such that  𝑐 𝑥  ≈ 𝑏 𝑦  or 

 𝑐𝑗 𝑥𝑗 
𝑛
𝑗=1 ≈  𝑏𝑖 𝑦𝑖 

𝑚
𝑖=1 . 

Theorem 4. (Complementary Slackness theorem) )  If 𝑥∗   =  𝑥1    , 𝑥2    , … , 𝑥𝑛    
𝑡  is a feasible solution to the 

primal problem (SFI) and𝑦∗   =  𝑦1    , 𝑦2    , … , 𝑦𝑚     is a feasible solution to the dual problem (DLPI), then they must 

satisfy the so-called complementary slackness conditions: 

(i) If𝑦𝑖
∗     ≻ 0 , then 𝑎𝑖𝑗    𝑥

∗
𝑗

    𝑛
𝑗=1 ≈ 𝑏𝑖        (ii)  If  𝑎𝑖𝑗    𝑥

∗
𝑗

    𝑛
𝑗=1 ≺ 𝑏𝑖  , then 𝑦𝑖

∗     ≈ 𝑂 . 

(iii) If 𝑥𝑗
∗     ≻ 0  , then  𝑎𝑖𝑗    𝑦

∗
𝑖

    𝑚
𝑖=1 ≈ 𝑐𝑗         (iv) If   𝑎𝑖𝑗    𝑦

∗
𝑖

    𝑚
𝑖=1 ≺ 𝑐𝑗  , then 𝑥𝑗

∗     ≈ 𝑂 . 

 

4.1.3. Table𝑻 ∗ optimal for linear programming problem involving interval numbers 

If 𝑻 ∗ is optimal, then the current basis is 𝑥 𝐵
(𝑠)

=  𝑥 𝐽1
, 𝑥 𝐽2

, … , 𝑥 𝐽𝑚  and the corresponding solution is 

𝑥 𝐵
∗ =  𝑥 𝐽1

𝑥 𝐽2
 … 𝑥 𝐽𝑚  

𝑡
= 𝐵 𝐵

−1(𝑠)
𝑏  and 𝑋 𝐵

(𝑠)
= 𝐵 𝐵

−1(𝑠)
𝑏  with 𝐵 𝐵

−1(𝑠)
=  𝑎 𝑖𝑗

(𝑠) 1≤𝑖≤𝑚
𝑛+1≤𝑗≤𝑛+𝑚

 

Moreover, the current nonbasic variables is𝑥 𝑁
(𝑠)

=  𝑥 𝑑 ,   𝑥 𝑑 ∉ 𝑥 𝐵
(𝑠)
 and the corresponding solution is 

𝑥 𝑁
∗ =  𝑥 𝑑 ≈ 0 ,   𝑥𝑑 ∈ 𝑥𝑁

(𝑠)
  . Hence the optimal solution to the problem can be written as 

𝑥∗ =  𝑥 1𝑥 2  … 𝑥 𝑛  … 𝑥 𝑛+𝑚  
𝑡with the associated value of the objective function𝑍  𝑥 ∗ ≈ 𝑐 𝑥 ∗. 

Maximization form:𝑦𝑖
∗    ≈ ∆𝑛+𝑖

       ,  𝑦𝑚+𝑗
∗        ≈ ∆𝑗     , 𝑖 = 1,2, … ,𝑚 and 𝑗 = 1,2, … , 𝑛. 

Minimization form:  𝑦𝑖
∗    ≈   ∆𝑈𝑛+𝑖

         ,  ∆𝐿𝑛+𝑖
          , 𝑦𝑚+𝑗

∗        ≈   ∆𝑈𝑗       ,  ∆𝐿𝑗      . 
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4.2. Numerical Examples 

Example 1. Consider the following interval number linear programming problem: 

𝑍  𝑥1   , 𝑥2   , 𝑥3    ≈  29, 31 𝑥1   +  22, 24 𝑥2   +  28, 30 𝑥3   ⟶ 𝑀𝑎𝑥 

(P)  Subject to 

6 𝑥1   + 5 𝑥2   +  3 𝑥3   ≼  25, 27 

4 𝑥1   + 2 𝑥2   +  5 𝑥3   ≼  6, 8 

𝑥1   , 𝑥2   , 𝑥3   ≽ 0

  

We call the above problem as the primal problem. Then the corresponding dual problem is given by 

𝑊  𝑦1   , 𝑦2    ≈  25, 27 𝑦1   +  6, 8 𝑦2   ⟶ 𝑀𝑖𝑛 

(D)  Subject to 

 
 

 
6 𝑦1   + 4 𝑦2   ≽  29, 31 

5 𝑦1   + 2 𝑦2   ≽  22, 24 

3 𝑦1   + 5 𝑦2   ≽  28, 30 

𝑦1   , 𝑦2   ≽ 0

  

Resolution 1: Optimal solution to the primal interval number linear programming problem 

Let us apply the interval version of simplex algorithm and the interval arithmetic to solve the primal problem. 

We convert the primal problem (P)to its canonical form by adding slack variables𝑥𝑛+𝑖      ≽ 0  as follows: 

𝑍  𝑥1   , 𝑥2   , 𝑥3    ≈  29, 31 𝑥1   +  22, 24 𝑥2   +  28, 30 𝑥3   + 0𝑥4   + 0𝑥5   ⟶ 𝑀𝑎𝑥 

(P)  Subject to  

6 𝑥1   + 5 𝑥2   +  3 𝑥3   + 𝑥4   + 0𝑥5   ≈  25, 27 

4 𝑥1   + 2 𝑥2   +  5 𝑥3   + 0𝑥4   + 𝑥5   ≈  6, 8 

𝑥1   , 𝑥2   , 𝑥3   , 𝑥4   , 𝑥5   ≽ 0

  

Initial iteration (Algorithm 1, 𝑻(𝒔=𝟎)): Initial basic feasible solution 

Basic 

variables 

𝑥 𝐵
(0)

 

Coefficients 

of basis in  
𝑍  𝑥  : 

𝐶 𝐵
(0)

 

 29, 31   22, 24   28, 30  0 0 Current 

values 

𝑋 𝐵
(0)

 𝐴 1
(0)

 𝐴 2
(0)

 𝐴 3
(0)

 𝐴 4
(0)

 𝐴 5
(0)

 

𝑥 4 0 6 5 3 1 0  25, 27  
𝑥 5  0 4 2 5 0 1  6, 8  

𝑍 𝑗
(0)

= 𝐶 𝐵
(0)
𝐴 𝑗

(0)
 0 0 0 0 0 𝑍  𝑥  =

𝐶 𝐵
(0)
𝑋 𝐵

(0)
=0 ∆ 𝑗

(0)
= 𝑍 𝑗

(0)
− 𝑐 𝑗   −31,−29   −24,−22   −30,−28  0 0 

 

First iteration (Algorithm 1, 𝑻(𝒔=𝟏)): Here 𝑥5    leaves the basis and 𝑥1   enters in to the basis 

Basic 

variables 

𝑥 𝐵
(1)

 

Coefficients 

of basis in  
𝑍  𝑥  : 

𝐶 𝐵
(1)

 

 29, 31   22, 24   28, 30  0 0 Current 

values 

𝑋 𝐵
(1)

 𝐴 1
(1)

 𝐴 2
(1)

 𝐴 3
(1)

 𝐴 4
(1)

 𝐴 5
(1)

 

𝑥 4 0 0 2 −9

2
 

1 −3

2
 

 13, 18  

𝑥 1   29, 31  1 1

2
 

5

4
 

0 1

4
  

3

2
, 2  

𝑍 𝑗
(1)

= 𝐶 𝐵
(1)
𝐴 𝑗

(1)
  29, 31  

 
29

2
,
31

2
   

145

4
,
155

4
  

0 
 
29

4
,
31

4
  

𝑍  𝑥  

= 𝐶 𝐵
(1)
𝑋 𝐵

(1)
 

∆ 𝑗
(1)

= 𝑍 𝑗
(1)

− 𝑐 𝑗   −31,−29  
 
−19

2
,
−13

2
   

25

4
,
34

4
  

0 
 
29

4
,
31

4
  

 

Second iteration (Algorithm 1, 𝑻(𝒔=𝟐)): Here𝑥1   leaves the basis and𝑥2   enters in to the basis 

Basic 

variables 

𝑥 𝐵
(2)

 

Coefficients 

of basis in  
𝑍  𝑥  : 

𝐶 𝐵
(2)

 

 29, 31   22, 24   28, 30  0 0 Current 

values 

𝑋 𝐵
(2)

 𝐴 1
(2)

 𝐴 2
(2)

 𝐴 3
(2)

 𝐴 4
(2)

 𝐴 5
(2)

 

𝑥 4 0 -4 0 −19

2
 

1 −5

2
 

 5, 12  

𝑥 2   22, 24  2 1 5

2
 

0 1

2
 

 3, 4  

𝑍 𝑗
(2)

= 𝐶 𝐵
(2)
𝐴 𝑗

(2)
  44, 48   22, 24   55, 60  0  11, 12  𝑍  𝑥  

= 𝐶 𝐵
(2)
𝑋 𝐵

(2)

=  66, 96  
∆ 𝑗

(0)
= 𝑍 𝑗

(0)
− 𝑐 𝑗   13, 19  0  25, 32  0  11, 12  
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If 𝑻 ∗ = 𝑻(𝒔=𝟐) is optimal, then the current basis is 𝑥 𝐵
(2)

=  𝑥 5 , 𝑥 2 and the corresponding solution is 

𝑥 𝐵
∗ =  

𝑥 5
𝑥 2
 = 𝐵 𝐵

−1(2)
𝑏 =  𝑎 𝑖𝑗

(2) 1≤𝑖≤2
4≤𝑗≤5

𝑏 =  
1

−5

2

0
1

2

  
 25, 27 

 6, 8 
 =  

 5, 12 

 3, 4 
  

Moreover, the current nonbasic variables is𝑥 𝑁
(2)

=  𝑥 1 , 𝑥 3 , 𝑥 4  and the corresponding solution is 

𝑥 𝑁
∗ =  𝑥 1 ≈ 0 , 𝑥 3 ≈ 0 , 𝑥 4 ≈ 0   . Hence the optimal solution to the problem can be written as 

𝑥∗ =  𝑥 1 ≈ 0 𝑥 2 ≈  5, 12 𝑥 3 ≈ 0 𝑥 4 ≈ 0 𝑥 5 ≈  3, 4  𝑡with the associated value of the objective function 

𝑍  𝑥 ∗ ≈ 𝑐 𝑥 ∗ ≈  66, 96 . 
Optimal solution of (D):Maximization form:  𝑦𝑖

∗    ≈ ∆3+𝑖
       ,  𝑦2+𝑗

∗       ≈ ∆𝑗     , 𝑖 = 1,2 and 𝑗 = 1,2,3. 

𝑦1
∗    ≈ ∆4

    ≈ 0 , 𝑦2
∗    ≈ ∆2

    ≈  11, 12 , 𝑦3
∗    ≈ ∆1

   ≈  13, 19 ,𝑦4
∗    ≈ ∆2

    ≈ 0  and 𝑦5
∗    ≈ ∆3

   ≈  25, 32 . 
𝑀𝑖𝑛 𝑊  𝑦1

∗    , 𝑦2
∗     ≈  25, 27 × 0 +  6, 8 ×  11, 12 =  66, 96 ≈ 𝑀𝑎𝑥 𝑍  𝑥 ∗ . 

 

Resolution 2: Optimal solution to the dual interval number linear programming problem 

We convert the primal problem (D)to its canonical form by adding slack variables 𝑦𝑛+𝑖      ≽ 0  as follows: 

𝑊  𝑦1   , 𝑦2    ≈  25, 27 𝑦1   +  6, 8 𝑦2   + 0𝑦3   + 0𝑦4 + 0𝑦5   ⟶ 𝑀𝑖𝑛 

(D)  Subject to 

 
 

 
−6 𝑦1   − 4 𝑦2   + 𝑦3   + 0𝑦4 + 0𝑦5   ≈  −31,−29 

−5 𝑦1   − 2 𝑦2   + 0𝑦3   + 𝑦4 + 0𝑦5   ≈  − 24, −22 

−3 𝑦1   − 5 𝑦2   + 0𝑦3   + 0𝑦4 + 𝑦5   ≈  −30,−28 

𝑦1   , 𝑦2   , 𝑦3   , 𝑦4 , 𝑦5   ≽ 0

  

Initial iteration (Algorithm 4, 𝑻(𝒔=𝟎)): Initial basic feasible solution 

Basic 

variables 

𝑦 𝐵
(0)

 

Coefficients 

of basis in  
𝑊  𝑦  : 

𝐶 𝐵
(0)

 

 25, 27   6, 8  0 0 0 Current values 

𝑌 𝐵
(0)

 

𝐴 1
(0)

 𝐴 2
(0)

 𝐴 3
(0)

 𝐴 4
(0)

 𝐴 5
(0)

 

𝑦 3 0 -6 -4 1 0 0  −31,−29  
𝑦 4 0 -5 -2 0 1 0  − 24, −22  

𝑦 5 0 -3 -5 0 0 1  −30,−28  

𝑍 𝑗
(0)

= 𝐶 𝐵
(0)
𝐴 𝑗

(0)
 0 0 0 0 0 𝑍  𝑦  =

𝐶 𝐵
(0)
𝑌 𝐵

(0)
=0 ∆ 𝑗

(0)
= 𝑍 𝑗

(0)
− 𝑐 𝑗   −27,−25   −8,−6  0 0 0 

First iteration (Algorithm 4, 𝑻(𝒔=𝟏)): Here 𝑦3    leaves the basis and 𝑦2   enters in to the basis 

Basic 

variables 

𝑦 𝐵
(1)

 

Coefficients 

of basis in  
𝑊  𝑦  : 

𝐶 𝐵
(1)

 

 25, 27   6, 8  0 0 0 Current values 

𝑌 𝐵
(1)

 

𝐴 1
(1)

 𝐴 2
(1)

 𝐴 3
(1)

 𝐴 4
(1)

 𝐴 5
(1)

 

𝑦 2  6, 8  3

2
 

1 −1

4
 

0 0 
 
29

4
,
31

4
  

𝑦 4 0 -2 0 −1

2
 

1 0 
 
−19

4
,
−13

4
  

𝑦 5 0 9

2
 

0 −5

4
 

0 1 
 
25

4
,
43

4
  

𝑍 𝑗
(1)

= 𝐶 𝐵
(1)
𝐴 𝑗

(1)
  9, 12   6, 8  

 −2,
−3

2
  

0 0 𝑍  𝑦  

= 𝐶 𝐵
(1)
𝑌 𝐵
 1 

 

∆ 𝑗
(1)

= 𝑍 𝑗
(1)

− 𝑐 𝑗   −18,−13  0 
 −2,

−3

2
  

0 0 

Second iteration (Algorithm 4, 𝑻(𝒔=𝟐)): Here 𝑦4 leaves the basis and 𝑦3   enters in to the basis 

Basic 

variables 

𝑦 𝐵
(2)

 

Coefficients 

of basis in  
𝑊  𝑦  : 

𝐶 𝐵
(2)

 

 25, 27   6, 8  0 0 0 Current 

values 

𝑌 𝐵
(2)

 𝐴 1
(2)

 𝐴 2
(2)

 𝐴 3
(2)

 𝐴 4
(2)

 𝐴 5
(2)

 

𝑦 2  6, 8  5

2
 

1 0 −1

2
 

0  11,12  

𝑦 3 0 4 0 1 -2 0  13, 19  
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𝑦 5 0 19

2
 

0 0 −5

2
 

1  25,32  

𝑍 𝑗
(2)

= 𝐶 𝐵
(2)
𝐴 𝑗

(2)
  15, 20   6, 8  0  −4,−3  0 𝑍  𝑦  

= 𝐶 𝐵
(2)
𝑌 𝐵

(2)

=  66, 96  
∆ 𝑗

(2)
= 𝑍 𝑗

(2)
− 𝑐 𝑗   −12,−5  0 0  −4,−3  0 

 

If 𝑻 ∗ = 𝑻(𝒔=𝟐) is optimal, then the current basis is 𝑦 𝐵
(2)

=  𝑦 2 , 𝑦 3, 𝑦 5 and the corresponding solution is 

𝑦 𝐵
∗ =  

𝑦 2

𝑦 3

𝑦 5

 = 𝐵 𝐵
−1(2)

𝑏 =  𝑎 𝑖𝑗
(2) 1≤𝑖≤3

3≤𝑗≤5
𝑏 =

 

 
 

0
−1

2
0

1 −2 0

0
−5

2
1
 

 
 
 

 −31,−29 

 − 24, −22 

 −30,−28 
 =  

 11,12 

 13,19 

 25,32 
  

Moreover, the current nonbasic variables is𝑦 𝑁
(2)

=  𝑦 1 , 𝑦 4  and the corresponding solution is 

𝑦 𝑁
∗ =  𝑦 1 ≈ 0 , 𝑦 4 ≈ 0   . Hence the optimal solution to the problem can be written as 

𝑦∗ =  𝑦 1 ≈ 0 𝑦 2 ≈  11, 12 𝑦 3 ≈  13,19 𝑦 4 ≈ 0 𝑦 5 ≈  25, 32  𝑡with the associated value of the objective 

function 𝑊  𝑦 ∗ ≈ 𝑏 𝑦 ∗ ≈  66, 96 . 
Optimal solution of (P): Maximization form: 

𝑥𝑖
∗    ≈   ∆𝑈2+𝑖

         ,  ∆𝐿2+𝑖
          , 𝑥3+𝑗

∗       ≈   ∆𝑈𝑗       ,  ∆𝐿𝑗      , 𝑖 = 1,2,3 and 𝑗 = 1,2.  

𝑥1
∗    ≈ ∆3

    ≈ 0 , 𝑥2
∗    ≈ ∆4

    ≈  3, 4 , 𝑥3
∗    ≈ ∆5

   ≈ 0 ,𝑥4
∗    ≈ ∆1

    ≈  5, 12  and 𝑥5
∗    ≈ ∆2

   ≈ 0 . 

𝑀𝑎𝑥 𝑍  𝑥1   , 𝑥2   , 𝑥3    ≈ 0𝑥1   +  22, 24  3, 4 + 0 𝑥3   ≈  66, 96 ≈ 𝑀𝑖𝑛 𝑊  𝑦 ∗ . 
 

V. Conclusions 
We introduced the notation of linear programming problems involving interval numbers as the way of 

traditional linear programming problems. The solution concepts of linear programming problems involving 

interval numbers without converting them to classical linear programming problems is proposed. Under 

arithmetic operations between interval numbers. These results will be useful for post optimality analysis. A 

numerical example is provided to show that the problems have optimal solutions. 
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