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Abstract: 
In this article, a new distribution is introduced, which is generated from the truncated Cauchy power-G family 

of distribution named as truncated Cauchy power- inverse exponential distribution (TCP-IE). We have explored 

various statistical and mathematical properties, shapes and behavior of the proposed distribution through 

probability density function (PDF) plot, cumulative distribution function (CDF) plot, and hazard rate function. 

We illustrated the estimation of the parameters and their corresponding confidence interval using the maximum 

likelihood estimation (MLE) method for the (TCP-IE) distribution. Two real data sets are taken to assess the 

suitability and applicability of purposed distribution. It is observed that it can be used quite effectively to 

analyze lifetime data and performs betteras compared to theother three distributions namelyexponential power, 

Marshall-Olkin Extended Exponential (MOEE) distribution and generalized Rayleigh distributions. 

Keywords: Truncated Cauchy power-G family, Inverse Exponential distribution, Hazard function,Maximum 
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I. Introduction 
Statistical models are very useful in analyzing and predicting real-world phenomena. Several classical 

probability distributions have been widely used over the past decades for modeling data in several areas. 

Recently, authors focused on introducing a new probability model adding an extra parameter(s) to the well-

known classical distributions, which are found more flexible in modeling data. Many recent generators of 

distributions have been defined to develop new distributions in the statistical literature.  

Some of the well-known general families of distributions are,the Marshall-Olkin-Generator introduced 

by (Marshall and Olkin, 1997), Eugene et al. (2002) has introduced lambda-Generator family, the transmuted-G 

family by (Shaw & Buckley, 2009),Kumaraswamy-Generator (KW-G) family introduced by (Cordeiro et al., 

2010), the Weibull-Generator developed by (Alzaatreth et al., 2013),exponentiated extended-G (Elgarhy et al. 

(2017), power Lindley-G (Hassan and Nassr (2018) and the truncated inverted Kumaraswamy-Generator family 

proposed by (Bantan et al., 2019), 

The Cauchy distribution is often used in statistics as the counter-example of a "pathological" 

distribution since both its expected value and its variance are undefined. The Cauchy distribution does not have 

finite moments of order greater than or equal to one and does not exist moment generating function, but only 

fractional absolute moments exist. To overcome these drawbacks Johnson &Kotz (1970) has defined the 

truncated Cauchy distribution having the cumulative distribution function (CDF), 
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 , { , }where a b    ,   0and   . 

 

The truncated Cauchy distribution has finite moments, and it is more flexible for modeling real data 

sets which are generally defined over finite ranges of values. A truncated version of the Cauchy distribution was 

introduced by (Nadarajah&Kotz, 2006) and they had calculated thefinite moments of all ordersand proved that it 

isa better model for certain practical situations such asfinance, economics, medicine etc.Alzaatreh et al. (2016) 

has introduced the gamma half-Cauchy distribution, Ashani&Bakar (2016) has presented a skewed truncated 

Cauchy logistic distribution and its Moments,Cordeiro et al. (2017) has developed the generalized odd half-
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Cauchy family of distributions, Tahir et al. (2017) has introduced the Weibull-power Cauchy distribution. 

Similarly,Alizadeh et al. (2018) has studied the odd power Cauchy family of distributions.  

Recently, Aldahlan et al. (2020) has introduced the truncated Cauchy power family of distributions, whose 

cumulative distribution function (CDF) and probability density function (PDF) respectively defined as, 

    0,1

4
; , ( ; ) arctan ( ; ) ;   , 0F t F G t G t t  


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where ( ; )G t  ( ; )g t  and are CDF and PDF of baseline distribution respectively and  is the parameter 

space of baseline distribution. 

This article aims to provide a gentle introduction of the truncated Cauchy power inverse exponential 

distribution and discuss some of its recent developments. This new distribution has several advantages, and it 

will give the practitioner one more option for analyzing real lifetime data. We hope this article will help the 

practitioner to get the necessary background and the relevant references for this distribution. 

The contentsof the proposed study are organized as follows. The truncated Cauchy powerinverse 

exponential (TCPIE) distribution is introduced and explored various distributional properties in Section 2. The 

maximum likelihood estimation procedure to estimatethe model parameters and associated confidence intervals 

using the observed informationmatrix is discussed in Section 3. In Section 4, two real data setshave been 

analyzed to explore the applications and appropriateness of the proposed distribution. In thissection, we 

performed some statistical tests for goodness of fit and compared the proposed distribution with some other 

distributions. Finally, Section 5 ends up with some general concluding remarks. 

 

II. Truncated Cauchy Power Inverse Exponential (TCPIE) Distribution 
The Inverse Exponential distribution was introduced by (Keller &Kamath, 1982), and it has been studied and 

discussed as a lifetime model. If a random variable X has anexponential distribution, the variable 
1

W
X

 will 

have an Inverse exponential distribution. A random variable X is said to have an Inverse Exponential 

distribution withparameter λ if its PDF and CDF are given respectively by; 
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By using (1.1) and (1.2) the CDF and PDF of truncated Cauchy power family can be written as 
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After substituting (2.1) and (2.2) in (2.3) and (2.4), we obtained the CDF and PDF of truncated Cauchy power 

inverse exponential (TCPIE) distribution with parameters α and λ respectively are 
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Reliability/Survival function 
The reliability/survival function of truncated Cauchy power inverse exponential (TCPIE) distribution is 

 ( ) 1 ( )R x F x   /4
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Hazard function 
Suppose that T is a random variable with a continuous distribution on [0, ∞). Suppose we interpret T as the 

lifetime of a device. In that case, the right tail distribution function G is called the reliability function: G(t) is the 

probability that the device lasts at least t time units. Moreover, the function h defined below is called the failure 

rate function: 
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 (2.8) 

In Figure 1, we have displayed the plots of the PDF and hazard rate function of TCPIE distribution for different 

values of α and λ. 

 

 

Figure 1. Graph of PDF (left panel) and hazard function (right panel) for different values of α and λ. 

 

The quantile function  

The quantile function for a probability distribution has many uses in both the theory and application of 

probability. If F is a probability distribution function, the quantile function may be used to constructa random 

variable having F as its distributions function.It is also called the inverse cumulative distribution function. 
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Let V denote a uniform random variable in (0,1), then the simulated values of X can be generated by setting, 
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Skewness and Kurtosis: 

Skewness is a measure of the asymmetry of a univariate distribution.Bowley’sskewnessis a way to figure out if 

we have a positively-skewed or negatively skewed distribution.These measures are used mostly in data analysis 

to study the shape of the distribution or data set. Skewness and Kurtosis based on quantile function are 
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The skewness and kurtosis can easily be calculated using (2.9),whereQ(.) represents the quantile function. When 

the distribution is symmetric, skewness= 0 and when the distribution is right (or left) skewed, skewness>0 (or S 

<0). As KMincreases, the tail of the distribution becomes heavier. These measures are less sensitive to outliers 

and they exist even for distributions without moments. 

 

Table 1.Skewness and Kurtosis of the TCPIE distribution for different values of parameter α 

lambda alpha Skewness Kurtosis 

1.00 0.25 0.9086 16.5970 

1.00 0.50 0.6861 4.0860 

1.00 0.75 0.5495 2.6096 

1.00 1.00 0.4651 2.1108 

1.00 1.25 0.4081 1.8700 

1.00 1.50 0.3668 1.7306 

1.00 2.00 0.3101 1.5777 

1.00 3.00 0.2452 1.4464 

1.00 5.00 0.1825 1.3556 

1.00 10.00 0.1210 1.2955 

 

We have presented the skewness and kurtosis of the TCPIE distribution for different values of parameter α 

keeping λ = 1 in Table 1. It is observed that as α increase, the value of both skewness and kurtosis are decreased, 

and there is no effect of λ on skewness and kurtosis. 

 

III. Maximum Likelihood Estimates 

In this section the maximum likelihood estimators for  ,TCPIE    are considered, where  ,  are 

unknown. If 1 2, ,...... nx x x is a random sample from  ,TCPIE    then the likelihood function,  ,L    is 

given by, 
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Now log-likelihood density is 
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Differentiating (3.1) with respect to α and λ we get, 
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Equating (3.2) and (3.3) to zero and solving them for α and λ, we get the maximum likelihood estimate 

ˆˆ   and  of the parameters α and λ. Maximization of (3.1) can be obtained by using computer software like R, 

Matlab etc. For the interval estimation of α and λ and testing of the hypothesis, we have to calculate the 

observed information matrix. The observed information matrix for α and λ can be obtained as 
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Let ( , )    denote the parameter space and the corresponding MLE of   as ˆˆ ˆ( , )   , then the 

asymptotic normality results in,     
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 where  O   is the Fisher’s information 

matrix. By applying the Newton-Raphson algorithm to maximize the likelihood produces the observed 

information matrix and hence the variance-covariance matrix is obtained as, 
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Hence from the asymptotic normality of MLEs, approximate 100(1-α) % confidence intervals for α and λ can be 

constructed as, 

 /2
ˆ ˆ( )z SE  and  (3.5) 
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where /2z is the upper percentile of standard normal variate. 

 

IV. Real Data Analysis 
In this section, we illustrate the applicability of TCPIE distribution by considering two different data sets used 

by earlier researchers. We also fit exponential power, Marshall-Olkin Extended Exponential (MOEE) 

distribution and generalized Rayleigh distribution. 

I. Exponential Power (EP) distribution: 

The probability density function of EP introduced by (Smith and Bain, 1975) is 

   1( ) exp 1 ; ( , ) 0, 0
x x

EPf x x e e x
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where αand λare the shape and scale parameters, respectively. 
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II. Marshall-Olkin Extended Exponential (MOEE) distribution. 

 

Marshall &Olkin (1997) has presented MOEE distribution whose probability density function is 
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III. Generalized Rayleigh (GR) distribution. 

 

The generalized Rayleigh distribution was introduced by (Kundu&Raqab, 2005).The PDF of GR distribution is 
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The parameter of each of these distributions is estimated by using the MLE method. For the comparison purpose 

we use negative log-likelihood (-LL), Akaike information criterion (AIC), Bayesian information criterion (BIC), 

Corrected Akaike Information criterion (CAIC) and Hannan-Quinn information criterion (HQIC), which are 

used to select the best modelamong several models. The expressions to compute AIC, BIC, CAIC and HQIC are 

given below: 
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wherekis the number of parameters, and n is the size of the sample in the model under consideration. The 

negative log-likelihood value and the value of AIC, BIC, CAIC and HQIC are displayed in Table 5 and Table 6. 

We conclude that the proposed model produces a better fit than other models. 

 

Further, to compare the fits of the TCPIE distribution with other competing distributions, we consider the 

Kolmogorov-Simnorov (KS), the Anderson-Darling (AD) and the Cramer-Von Mises (CVM) statistics. These 

three statistics are widely used to compare non-nested models and to illustrate how closely a specific CDF fits 

the empirical distribution of a given data set.  These statistics are computed as 
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where  i i  ;z CDF x  the xi’s being the ordered observations. 

 

Data Set: 1 

The data below are from an accelerated life test of 59 conductors, Lawless(2003). The failures can occur in 

microcircuits because of the movement of atoms in the conductors in the circuit; this is referred to as electro-

migration. Thefailure times are in hours,and there are no censored observations.  

6.545, 9.289, 7.543, 6.956, 6.492, 5.459, 8.120, 4.706, 8.687, 2.997, 8.591,6.129, 11.038, 5.381, 6.958, 4.288, 

6.522, 4.137, 7.459, 7.495, 6.573, 6.538, 5.589, 6.087, 5.807, 6.725, 8.532, 9.663, 6.369, 7.024, 8.336, 9.218, 

7.945, 6.869, 6.352, 4.700, 6.948, 9.254, 5.009, 7.489, 7.398, 6.033, 10.092, 7.496, 4.531, 7.974, 8.799, 7.683, 

7.224, 7.365, 6.923, 5.640, 5.434, 7.937, 6.515, 6.476, 6.071, 10.491, 5.923. 
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Data Set 2 

The data given here arose in tests on the endurance of deep groove ball bearings. The data are the 

number of million revolutions before failure for each of the 23 ball bearings in the life test (Lawless, 2003).  

17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.80, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 

84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40 

By maximizing the likelihood function in (3.1), we have computed the maximum likelihood estimates 

directly using optim(. ) inR software(R Development Core Team, 2020) and Rizzo (2008). The MLE’s with 

their standard errors (SE) and 95% asymptotic confidence interval (ACI) for α and λ are presented in Table 2, 

and Table 3 for the data sets 1 and 2 respectively. 

 

Table 2 

MLE, SE and 95% confidence interval (Data Set-1) 

Parameter MLE SE 95% ACI t-value Pr(>t) 

alpha 68.9168 3.1946 (62.6554,75.1782) 21.57   <2e-16 

lambda 30.1073    0.9114 (28.3210,31.8936) 33.03 <2e-16 

 

Table 3 

MLE, SE and 95% confidence interval (Data Set-2) 

Parameter MLE SE 95%ACI t-value Pr(>t) 

alpha 5.0144      0.9686    (3.1159,6.9129) 5.177  2.26e-07  

lambda 114.3167      4.3047  (105.8795,122.7539) 26.556   < 2e-16  

 

 
Figure 2. Contour plot for the parameters (α, λ) for the Data Set-1 and Data Set-2 respectively. 

 



Truncated Cauchy Power–Inverse Exponential Distribution: Theory and Applications 

DOI: 10.9790/5728-1604051223                                       www.iosrjournals.org                                      19 | Page 

 
Figure 3.Quantile-Quantile (Q-Q) plot for the Data Set-1 and Data Set-2, respectively. 

 

In Table 4 and Table 5, we have displayed the maximum likelihood estimators of all the models taken for 

comparison and their corresponding negative Log-likelihood value for the Data Set-1and Data Set-2, 

respectively. 

 

Table 4 

Maximum likelihood estimators and Log-likelihood (Data Set-1) 

Model MLEs -LL 

EP (α, λ) 3.1404 0.1138 116.5015 

MOEE (α, λ) 305.0868 0.8422 114.4841 

GR (α, λ) 6.406 0.2206 111.8717 

TCPIE (α, λ) 68.9168 30.1073 111.3997 

 

 

Table 5 

Maximum likelihood estimators and Log-likelihood (Data Set-2) 

Model MLEs -LL 

EP (α, λ) 17.9214 0.04345 114.3503 

MOEE (α, λ) 1.428 0.00888 115.1566 
GR (α, λ) 1.199 0.0131 113.5442 

TCPIE (α, λ) 5.0144 114.3167 113.3936 

 

In Figure 3, we have plotted the graph of profile log-likelihood functions of α and λ. It is verified that the 

maximum likelihood estimators are unique. 
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Figure 4. Profile log-likelihood functions of parameters α and λ (first row, Data Set-1) and (second row, Data 

Set-2). 

 

Further, in Table 6 and Table 7, we have introduced (-LL) and the value of AIC, BIC, CAIC and HQIC for the 

Data Set-1 and Data Set-2. We conclude that the proposed modelTCPIE produces a better fit to the data taken 

than other competing models. 

 

Table 6 

Log-likelihood, AIC, BIC, CAIC and HQIC (Data Set-1) 

 

 

 

 

 

 

 

 

Table 7 

Log-likelihood, AIC, BIC, CAIC and HQIC (Data Set-2) 

 

 

 

 

 

 

 

Model -LL AIC BIC CAIC HQIC 

EP 116.5015 237.0030 241.1581 237.2099 238.6250 

MOEE 114.4841 232.9682 237.1232 233.1750 234.5901 

GR 111.8717 227.7434 231.8984 227.9576 229.3653 

TCPIE 111.3997 226.7995 230.9545 227.0138 228.4214 

Model -LL AIC BIC CAIC HQIC 

EP 115.1566 234.3132 236.5842 234.8586 234.8843 

MOEE 114.3503 232.7006 234.9716 233.2461 233.2718 

GR 113.5442 231.0884 233.3594 231.6338 231.6595 

TCPIE 113.3936 230.7873 233.0583 231.3327 231.3584 
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The histogram and the fitted density functions are displayed in Figure 5 (first row), which supports the 

results in Tables 8 and 9. Also, Figure 5 (second row), which compares the distribution functions for the 

different models with the empirical distribution function produces the same. Therefore, for the given data sets 

illustrates, the proposed distribution gets better fit and more reliable results from other alternatives. 

 

 

 
Figure 5.The Histogram and the PDF of fitted distributions and Empirical CDF with estimated CDF (first row, 

Data Set-1) and (second row, Data Set-2). 

. 

In Table 8 and Table 9, we have displayed the test statistics and their corresponding p-value of competing 

models for both the data sets. The outcome shows that the proposed model has the minimum value of the test 

statistic and higher p-value; hence we conclude that the TCPIE is best in the analysis of goodness-of-fit. 

 

Table 8 

The goodness-of-fit statistics and their corresponding p-value (Data Set-1) 

Model KS(p-value) AD(p-value) CVM(p-value) 

Data Set 1    

EP  0.1362(0.2042)  1.3699(0.2180)    0.2388(0.2035) 

MOEE  0.1129(0.4091)  1.0667(0.3238)  0.1660(0.3449) 

GR  0.0741(0.8785)  0.2555(0.9673)    0.0433(0.9169) 

TCPIE  0.0585(0.9805)  0.1838(0.9943)   0.0307(0.9749) 

 

 

 

 



Truncated Cauchy Power–Inverse Exponential Distribution: Theory and Applications 

DOI: 10.9790/5728-1604051223                                       www.iosrjournals.org                                      22 | Page 

Table 9 

The goodness-of-fit statistics and their corresponding p-value (Data Set-2) 

Model KS(p-value) AD(p-value) CVM(p-value) 

EP 0.1786(0.4551)  0.6172(0.6300)  0.1034(0.5723)  

MOEE  0.1383(0.7714)  0.3795(0.8675)  0.0589(0.8255) 

GR  0.1573(0.6199)  0.3428(0.9020)  0.0649(0.7882) 

TCPIE  0.0840(0.9969)  0.2164(0.9853)   0.0312(0.9748) 

 

V. Conclusion 
In this study, we have introduced a new probability distribution named as two-parameter truncated 

Cauchy power inverse exponential (TCPIE) distribution. Some statistical and mathematical properties of the 

derived distribution are investigated. We have presented the PDF, the CDF, and the shape of the failure rate 

function and observed that the derived distribution could bear varieties of shapes. The parameters of the 

proposed distribution are estimated by using the maximum likelihood method.  We have takentwo real data sets 

to demonstrate the methodology. We have computed the maximum likelihood estimates. The purposed 

distribution provides quite better for the dataset, as shown in the contour plots, profile log-likelihood plots, and 

Q-Q plots. We have also considered three other distributions for comparison. The comparison is done based on 

various information criteria such as AIC, BIC, CAIC, HQIC, and Kolmogorov-Simnorov (KS), the Anderson-

Darling (AD) and the Cramer-Von Mises (CVM) statistics, and found that the proposed model is best as 

compared to three other distributions. We hope that this probability distribution may be an alternative in the 

field of probability distribution and applied statistics. 

 

References 
 

[1]. Aldahlan, M. A., Jamal, F., Chesneau, C., Elgarhy, M., &Elbatal, I. (2020). The truncated Cauchy power family of distributions 

with inference and applications. Entropy, 22(3), 346. 

[2]. Alzaatreh, A., Famoye, F., & Lee, C. (2013).Weibull-Pareto distribution and its applications. Commun. Stat. Theory Methods. 42, 

1673–1691. 

[3]. Alzaatreh, A., Mansoor, M., Tahir, M.H., Zubair, M., Ghazali, S.A. (2016). The gamma half-Cauchy distribution:Properties and 

applications. Hacet. J. Math. Stat. 45, 1143–1159. 

[4]. Alizadeh, M., Altun, E., Cordeiro, G. M., &Rasekhi, M. (2018). The odd power Cauchy family of distributions: properties, 

regression models and applications. Journal of statistical computation and simulation, 88(4), 785-807. 

[5]. Ashani, Z. N. &Bakar, M. R. A. (2016). A Skewed Truncated Cauchy Logistic Distribution and its Moments. In International 

Mathematical Forum (Vol. 11, No. 20, pp. 975-988). 

[6]. Bantan, R. A., Jamal, F., Chesneau, C., &Elgarhy, M. (2019). Truncated inverted Kumaraswamy generated a family of distributions 

with applications. Entropy, 21(11), 1089. 

[7]. Cordeiro, G. M., Ortega, E. M., &Nadarajah, S. (2010). The KumaraswamyWeibull distribution with application to failure data. 
Journal of the Franklin Institute, 347(8), 1399-1429. 

[8]. Cordeiro, G. M., Alizadeh, M., Ramires, T. G., & Ortega, E. M. (2017). The generalized odd half-Cauchy family of distributions: 

properties and applications. Communications in Statistics-Theory and Methods, 46(11), 5685-5705. 

[9]. Elgarhy, M., Haq, M., Ozel, G. and Arslan, M. (2017). A new exponentiated extended family of distributions with Applications. 

Gazi University Journal of Science, 30(3), 101-115.  

[10]. Johnson, N.L. &Kotz, S. (1970). Continuous Univariate Distributions; John Wiley and Sons: New York, NY, USA, Volume 1. 

[11]. Killer, A.Z. and Kamath, A.R.(1982). Reliability analysis of CNC Machine Tools, Reliability Engineering, 3, 449-473. 

[12]. Kumar, V. and Ligges, U. (2011).  reliaR : A package for some probability distributions, http://cran.r-

project.org/web/packages/reliaR/index.html. 

[13]. Kundu, D., &Raqab, M. Z. (2005). Generalized Rayleigh distribution: different methods of estimations. Computational statistics & 

data analysis, 49(1), 187-200. 

[14]. Hassan, A.S. and Nassr, S.G. (2018). Power Lindley-G family of distributions. Annals of Data Science, 6(2), 189-210.  

[15]. Lawless, J. F. (2003). Statistical Models and Methods for Lifetime Data, 2nd ed., John Wiley and Sons, New Jersey. 

[16]. Marshall, A. W., &Olkin, I. (1997). A new method for adding a parameter to a family of distributions with application to the 

exponential and Weibull families. Biometrika, 84(3), 641-652. 

[17]. Moors, J. J. A. (1988). A quantile alternative for kurtosis. Journal of the Royal Statistical Society: Series D (The Statistician), 37(1), 

25-32. 

[18]. Nadarajah, S., &Kotz, S. (2006). A truncated Cauchy distribution.Int. J. Math. Educ. Sci. Technol. 37, 605–608. 

[19]. Nelson, W., &Doganaksoy, N. (1995). Statistical analysis of life or strength data from specimens of various sizes using the power-

(log) normal model. Recent Advances in Life-Testing and Reliability, 377-408. 

http://cran.r-project.org/web/packages/reliaR/index.html
http://cran.r-project.org/web/packages/reliaR/index.html


Truncated Cauchy Power–Inverse Exponential Distribution: Theory and Applications 

DOI: 10.9790/5728-1604051223                                       www.iosrjournals.org                                      23 | Page 

[20]. R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, 

Austria. URL https://www.R-project.org/. 

[21]. Tahir, M. H., Zubair, M., Cordeiro, G. M., Alzaatreh, A., &Mansoor, M. (2017). The Weibull-Power Cauchy distribution: model, 

properties and applications. Hacet. J. Math. Stat, 46, 767-789. 

 
 

 

Arun Kumar Chaudhary, et. al. " Truncated Cauchy Power–Inverse Exponential Distribution: 

Theory and Applications." IOSR Journal of Mathematics (IOSR-JM), 16(4), (2020): pp. 12-23. 


