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Construction of Two Infinite Classes of Strongly
Regular Graphs Using Magic Squares

MIRKO LEPOVIC

Dedicated to French mathematician Philippe de La Hire

Abstract. We say that a regular graph G of order n and degree r > 1 (which is not the complete
graph) is strongly regular if there exist non-negative integers z and @ such

that [Sj n Sj| = ¢ for any two adjacent vertices i and j and [Sj nSj| = 6 for any two distinct non-
adjacent vertices i and j, where Sk denotes the neighborhood of the vertex k. Using a method for
constructing the magic and semi-magic squares of order 2k + 1, we have created two infinite classes of
strongly regular graphs (i) strongly regular graph of order n = (2k + 1)2 and degree r = 8k with 7

= 2k + 5and 6 = 12 and (ii) strongly regular graph of order n = (2k + 1)2 and degree r = 6k with
7 =2k+1and ¢ =6 for

k > 2.
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I. Introduction
Let G be a simple graph of order n with vertex set V(G) = {1.2.....n). The spectrum
of G consists of the eigenvalues & = &y = -+ = ), of its (0,1) adjacency matrix A and

e

is denoted by o(G). We say that a regular graph G of order n and degree r = 1 (which
is

not the complete graph K, ) is strongly regular if there exist non-negative integers T and
0 such that |5; n 5;| =1 for any two adjacent vertices i and j, and |5; N §;| =0 for any

two distinct non-adjacent vertices i and j. where 5y € V(G) denotes the neighborhood
of the wvertex k. We know that a regular connected graph G is strongly regular if and
only if it has exactly three distinct eigenvalues [2]. Let &; = r,4; and A; denote the
distinct eigenvalues of a connected strongly regular graph G. Let m; = 1. m; and mgs
denote the multiplicity of r, A2 and A3. Further, I&@ r=(m — 1) — 1.4 = —2%3 — 1
and

#3 = —hz — 1 denote the distinct eigenvalues of the strongly regular graph._(l whereE
denotss the complement of G. Then 1 =n— 2r— 2+0and 6 =n— 2r+1, where 1t =1
(G)

and 8 =8#G).

Remark 1. If G is a disconnected strongly regular graph of degree r then G = mK,_.;.
where mH denotes the m-fold union of the graph H.
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Remark 2. We also know that a strongly regular graph G = mE, . ;if and only if 6 = 1.
Since hahy = — (r— 0) it follows that G =k, if and only if ; =10.

Eemark 3. (i) A stronglv regular graph G of order n =4k + 1 and degree r = 2k with
T =k —1and 8 =k is called a conference graph; (ii) a strongly regular graph is a

conference graph if and only if m; =m; and (iii) if m; =m; then G is an integral' graph.

Remark 4. 'lhe line graph of the complete bipartite graph K, is called a lattice graph
and is denoted® by L(n). It is a strongly regular graph of order n® and degree 2(n — 1)
with T =n — 2and 68 =2.

Let X = X |%;]be a square matrix of order n with all distinct xy which belong to the
set 11,2, ....n*}. Let G[X]be a graph obtained from the matrix X [%5] in the following

way: (1) the vertex set of the graph GX ] is V{(GX ] = {x{j i.j =1.,2,....n) and (ii)

= st,—j U S,,_’_. where

The neighborhood of the vertex x; is 5 ;

iy

(1) Se_ = \Kil.Xa. Kyl Kigel .o Xa )

(2) S =Jxu: % Wr o1 Wiidc: s b

for anyi.j=1.2.....n. Since |S, =18:. 1+ 18 ; ={n — 1)+ (m — 1) we note that
i L i

G[X ] is a regular graph of order n? and degree r= 2(n — 1). Let x,, be adjacent to = -
Then =x,; belongs to the ith row or to the j-th column. Without loss of generality we

may assume that x., belongs to the i-th row. In this case we have s =1 and t=3. S0 we

obtain

Ses N Syl =[Sy NS

i

We note SXL_‘_ N 8. .| =0 because xy be S,, and S N Sy _ | =0 because x; be

K—’-d
Sz - Next, we have Sx—,-.j n Sx_’_ | = 0 because t=j. In the view of this we get |5;; N
ijt =
Sx;—. N Sy_ | Since xz DE Sy, and xy O€ Sy, we find that |S;; n Sy, |=n — 2 for
any

two adjacent vertices x; and x.

Further, let us assume that x; and x,, are two distinct non-adjacent vertices of the

graph G[X]. In this case x, neither belongs to the i-th row of the matrix X nor belongs

to the j-th column of the matrix X, which provides that s =i and t=j. So we obtain

Sxij n an = Sxi,—j n Sxa—t + SXi.—j n SX—s.t + Sx—,-.j n Sxa—t + SX—,-.J' n Sx—ht

DOI: 10.9790/5728-1605054466 www.iosrjournals.org 45 | Page



Construction of Two Infinite Classesof Strongly Regular ..

We note Sxi.—i n S’h-—t = () because s =1 and Sx_i L Sx—, +| = 0 because t= j. Since
Xy £ Sxi.—i and =3 € S5, , we find that Sxi.—i n 54, . = 1. Since x;; € Sx_i_ 3
and
Xy € Sy, we find that [5;_ ;N S5;,_ | = 1. Finally, we amve at

Sxij n SX:.t = Sxi,—j n SX—; .t + Sx—i g i SX:.,—t = 1 + 1 =

which provides* that G[X]is a strongly regular graph of order n’ and degreer=2(n — 1)
with T =n — 2 and 6 = 2. Therefore, according to Remark 4 it follows that G[X]=Li{n)

forn = 2.

Il. Magic squares of order 2k +1

Let M, = M,[m;] be a square matrix of order n with all distinct m; which belong to the
set {1.2.....n’} The matrix M, is called the magic square of order n if the sum of all

elements in anv row and column and both diagonals is the same. The matrix M, is called
the semi-magic square of order n if the sum of all elements in anv row and column is the
same. We shall now demonstrate how to construct a magic square of order 5 created by
“the method of cvclic permutations™ established bwv French mathematician Philippe de La
Hire, as follows. Let (m(1), m(2). m(3), w(4). w(3)) = (2,5.4.1,3) be a fixed permutation
of the numbers 1,2 3.4, 5 and let (m(0), n(3), m({10), m(15), =(20)) = (20,0,10,5,15) be a
fixed permutation ofthe numbers 0,3, 10,15, 20. Using the method of cyclic permutations

we obtain the following two matrices

0 010 5 |1b
B 15|20 0|10
0110|565 |1b] 20
15120 0 |10] b
100 b |1b|c0| O

Ll IR I T Y N B e
Q) o= B2 | @
Ll = O Qo] =
A | s | D2
oo s N =2 N V]

E[5][6] and L[B][E]

Then the matrix Ms[my; | = Ksfk; | + Ls[5] is a2 magic square of order 5, where
Kslky | = E[2][5] and Ls['5 ] = LBIB].
We now proceed to obtain a new method for creating the semi-magic squares of order

2k+ 1 for k = 2, which is based on "the method of cvclic permutations™, as follows.
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First, let us assume that (m(l). n(2), ..., w(2k + 1)) is a fixed permutation ofthe numbers
1.2, ..2k+ 1. Let

=(1) =(2) (k) +l) | =) =2 | =21y
2Lk+l) | 2e+2) ) | =241y | =D 2(k—1) (L)
2+ | =) 2(—1) (L) 2{le+1) 2=1) | =2k
k) | metD) k-1) | w2k | m2k+D) =2 | =k-1)
=) | =2+ =2 | =1 (L) =(2=12) | =(2k—1)
k-1 | =) =(2k-2) | =(Zk-1) | =02k =k-3) | =k-2)
) w4) w42} | w3y | ntd (1) w2
2(k+3) | nl+d) (1) =(2) (3) 2k+l) | nt2)
=(2) =(3) 2+l | =+ | wkt3) =2+1) | =)
k+D) | 2e+3) =2+ | =) =(2) (L) 2{le+1)
K[Zk+1][2k + 1]
Second, let us assume that (m(0), n(2k +1), ..., n(2k(2k +1))) is a fixed permutation

ofthe numbers 0,2k+1, . .. 2k(2k +1). Let k=2k+ 1 and let

() = k) ={(-1) ) w(k k) w{(k+1) k) m((2k-1) k) w2k k)
w((ctl) B} | ={(c+2) E) w2k k) =(0) = k) w((-1) k) w(k k)
o k) 2 E) wkE) k) E) | 2{(+2) E) 2k k) (0]
w((k+2) E) | ={(k+3) E) =(0) = E) w2 E) wk E) a{(k+1) E)
w2 E) =3 E) oD B | = B | =ikt3) B) =) o )
w43} B} | i) E) = k) =2k} =3 k) w(l+1) B} | ={(+42) E)
m{(2k-1) k) w2k k) o3} B} | =2 E) |=(l-1) E) w((2k-3) ) | =((2-2) &)
w(k-1) E} mk k) w((2k-2) &) | =(2k-1) k) | =(2kE) w(k-3) E) | ={(-1) E)
w2k k) =(0] (=1 £) | =i-1) &) wlk k) w((2k-2) &) | ={(2k-1) &)
wlkk) wl{(l+1) k) m{(2:-1) k) w2k k) =) w((-2) B} | =(-1) E)

L[2k +1][2k + 1]

understanding that 0 =0-{2k+ 1) and 2k +1 =1-(2k +1). Then we can see that

the matrix My my ] = Ky [ky] + Lo [5] is 2 semi-magic square of order 2k + 1,
where Kk | = K[2k+ 1]2k + 1]and Ly [ ] = L2k + 1][2k + 1]. Indeed, since
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(kpp.kpz. - kpen) = (m(1), m(2), .. .w(Zk + 1)) and since the i-th row of the matnx
K. is a cvclic permutation of its first row, we get

w2l 21

ky = ky= =)= J=k+DZk+1)

j=1 =1 i= =1

fori= 12, . 2+ 1 According to K [2k+ 1][2k + 1], we have that
o oomk+2-1), if i=N
k= aQk+2— 1), if i=2t+ 1

fort= 1.2,... k. Sneek+2—t € k+1=k+2=< 2k+2— 1t 1t follows
that
nk+2—t)=n2k+2—t) fort= 1,2, .k Sowefindthat (ki1.kz1... . . kxn1) isa
permutation (m.(1), m.(2), ....7m.(2k + 1)) of the numbers 1.2, .., 2k+ 1. Next, the j-th
column of the matrix K [2k+ [][2k + 1]is a cvclic permutation of its first column. In the

view of this, we get

Bl gl gl 2l
kj= ka=  m@) = i=(k+D2k+1)
=1 =1 =1 =1
forj = 1.2, _2k+ 1 We note (i) since the i-th row of the matrix K;..; is a cvclic
permutation of its first row then’ anvy fixed number p € {l, 2... .2k + 1} is presented

in the ith row of the matrix Kj..; only one time and (ii) since the j-th column of
the matrix K;..; is a cyclic permutation of its first column then® any fixed number
p€ {l.2.....2k+ 1} is presented in the j-th column of the matrix K;..; only one time.

Further, since ("11.'12..... 12141) = (@(0). =2k + 1). .. .. n(2k(2k + 1))) and since

the i-th row of the matrix L.y is a cyclic permutation of its first row, we get

Pl Tl g 2kl
i= ‘y= wG-Dek+1)=Q@k+1) G- 1)=k@k+1)
j=1 j=1 j=1 j=1

fori= 1,2, . .. 2k+ 1. According to L[2k + 1][2k + 1], we have that

C
nlk + 002k + 10, if =2t
nt(k + 1), if i=2t+ 1

i1 =

fort = 1,2, .. k. Next, sincet = k= k+ 1 = k+ tit follows that n(t(2k + 1)) =
n(k+t)2k +1)) fort = 1,2, .. k. Sowefind that ('1;. 21..... 21+11)7 is a permutation
(m (), m. 2k + 1), ..., m.(2k(Zk + 1)) of the numbers 0, 2k+1,.. ., 2k(2k+ 1). Since the
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j-th column ofthe matrix L[2k+ 1][2k + 1]is a cyclic permutation ofits first column, we

obtain
kgl k71 k71 2l
= = i - D2k +1)=Qk+1) (- 1)=kQk+ 1)
=1 =1 =1 =1

forj =1,2,.. . 2k+ 1 We note (i) since the i-th row of the matrix L;. is a cvclic
pemmutation of its first row then’ anv fixed number q € {0.2k+ 1. .. 2k(2k + 1)} is

presented in the i-th row of the matrix L;,.; only one time and (ii) since the j-th column
of the matrix L;..; is a cyclic permutation of its first column then® any fixed number
g€ {0, 2k+1,...,2k(2k + 1)} is presented in the j-th column of the matrix Lj.,; only
one time. Since my = k; + '; we get

g oz

m; = m;=(k+D2k+ D+k@k+ 1 =2k + 1)

=1 j=1
fori. j = 1.2.. ... 2Zk+ 1. It remains to show that my; € {1.2.....2k+ 1} and that sty
are mutually different fori,j =1.2... 2k + 1. Indeed. since ky € {1.2....2k+ 1} and
g E {0, 2k+1, ..., 2k(2k+1)} wehavemy € {1.2..... (21{+l)2} fori,j=1.2,... . 2k+1.
Next, accurdjﬁlg to K[2k+ 1][2k + 1] we have that

ak+1—t+j), if i=2tAhk+1—t+j < 2k+1

3) kl_ﬂ ak+1-t+j— 2k+1) if i=2tAk+1—t+j=2k+1
o a2k+1—t+j), if i=2+1A2k+1—t+j < 2k+1

Ik +1—t+j— Qk+1). if i=2t+ 1A k+1—t+j>2k+1
fort=1,2,.. . kand j = 1,2....,2k+ 1. Next, according to L[2k + 1][2k + 1] we hawe
that

L
_ ik +t+j— DRk+1). if i=2tAk+t+j—1< 2%k
@ - CBa(k+t+j- 1- @k 1)K HD), if i=2AAk+t+j- 12k
Yoo a((t+i — DRk +1), if i=2%+1At+j—1%<
=

a((t+] - 1 - 2k+ 12k +1)), if i=2t+1At+]— 1=
fort=12 _ .kand j=12 . . 2k+1 Since m;=k;+ s = a(p) +n(ak +1)) and
since the numbers n(p) € {1.2.....2k+1} and n(q(2k +1)) € {0, 2k+1,. ... 2k(2k+ 1)}
it follows that k; and °

my, = k,+ ',y and my; = m, then k; = k,; and "3 = ",;. We now proceed to show
that my are mutually different fori.j =1.2... .2k+ 1. On the contrary, assume that
myz = my, for some (i.j) = (u.v). Then my = n(py) + n(gy(Zk + 1)) = m,, for some

5 are uniquely determined. In other words, if my = ky + 5.

n(p) € {1,2,... 2k + 1} and n(ge(2k + 1)) € {0, 2k + 1, ..., 2k(2k + 1)}, which
provides

that ki = ky,, and "5 = ", Without loss of generality we may assume that i =
M. Since (o (2k + 1)) is presented in the j-th column of the matrix L,c.; only one
time, we find that j = v. Since® the i-th row and the p-th row of the matrix Koyy.q iS
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a cyclic permutation of its first row and since the i-th row and the p-th row of the
matrix L, iS a cyclic permutation of its first row, we can easily see that any mjs in
the i-th row is also presented in the p-th row. Indeed, we have

Mij+1=n(Po +1) +((do + 1)(2k + 1)) =My, 41,

(i) understanding that m(py +1) = n(1) if po+ 1 = 2k + 2 and n((qo + 1)(2k + 1)) = =(0)
if o+ 1= 2k + 1and (ii) understanding that m;;.; = m;;ifj+1=2k+2and m,, +; =
myif v+ 1 = 2k + 2. In the view of this, we can assume that j = 1. Since j = v
we have

that v € {2,3,...,2k + 1}. Finally, in order to prove that Moy+1 is a semi-magic
square

we shall consider the following four cases:

Case 1. (i = 2tand p = 2s). Consider the case when k + 1 —s+v < 2k+ 1
and k+s+v—1< 2k. Using (3) and (4) we obtain that t(k + 2—t) =n(k + 1 —s+
v) and n((k +t)(2k +1)) = n((k +s+v —1)(2k +1)), which provides that (i) k+2—t=k
+1l—s+vand (i) K+t =k+ s+ v — 1 Using (i) and (ii) we obtain v = 1, a
contradiction because v > 1. Consider the case when k+ 1 —s+ v < 2k+ land k +
s+ v —1> 2k. Using (3) and (4) we obtain that i(k + 2 —t) = a(k + 1 — s+ v)
and n((k + )(2k + 1)) = n((k + s+ v — 1 — (2k + 1))(2k + 1)), which provides that

(i) k+2—-t=k+1—-s+vand (iv) k+t=k+s+v—1—(2k + 1). Using (iii)
and (iv) we obtain 2v = 2k + 3, a contradiction because 2 - 2k + 3. Consider the case
when k+1—-s+v>2k+ 1land k+s+v—1< 2k. Using (3) and (4) we obtain that

nk+2—t)=n(k+1-s+v—(2k+1))and n((k + t)(2k + 1)) = n((k + s+ v — 1)(2k +
1)), which provides that (v) k+ 2 —t = k+1—s+v—(2k+1) and (vi) k+t = k+s+v—
1. Using (v) and (vi) we obtain 2v = 2k +3, a contradiction because 2 - 2k + 3.
Consider the case when k+ 1 —-s+ v > 2k+ 1land k+s+v —1> 2k. Using (3) and

(4) we obtain that t(k +2 —t) = n(k +1—-s+v—(2k+1)) and n((k + t)(2k + 1)) = n((k
+s+v—1-—(2k + 1))(2k + 1)), which provides that (vi)k+2—-t=k+1—-s+v —
(2k + 1) and (viii) k+ t=k+s+ v —1—(2k + 1). Using (vii) and (viii) we obtain v
= 2k + 2, a contradiction because v € {2, 3,...,2k + 1}.

Case 2. (i=2tand p = 2s + 1). Consider the case when 2k + 1 — s+ v < 2k + 1

and
s+ v —1< 2k. Using (3) and (4) we obtain that a(k + 2 —t) = n(2k + 1 — s+ v)
—and

n((k +t)(2k+1)) = n((s +v —1)(2k +1)), which provides that (i) k+2—-t=2k+1—-s+v
and (ii) k+t = s+ v —1. Using (i) and (ii) we obtain v = 1, a contradiction because v >
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1.

Consider the case when 2k+1—s+v < 2k+1 and s+v —1 > 2k. Using (3) and (4) we
obtain

that m(k +2—1t)= n(2k +1—s+v) and n((k +t)(2k+1)) = n((s +v—1—(2k+1))(2k +1)),
which provides that (i) k+2—-t=2k+1—-s+vand (iVyVk+t=s+v—-1—(2k+
1).

Using (iii) and (iv) we obtain 2v = 2k + 3, a contradiction because 2 - 2k + 3.
Consider the case when 2k +1—s+v > 2k+1and s+v —1 < 2k. Using (3) and (4) we

obtain that n(k +2—1t) = n(2k +1—s+v —(2k+1)) and n((k +t)(2k+1)) = n((s+v—1)(2k
+1)), which provides that (v) k+2—t=2k+1—s+v—(2k+1)and (vi) k+t=s+v
—1. Using (v)

and (vi) we obtain 2v = 2k + 3, a contradiction because 2 - 2k + 3. Consider the case
when

2k+1—s+v>2k+1land s+v— 1> 2k. Using (3) and (4) we obtain that n(k +2 — t)
=n2k+1—-s+v—(2k+1)) and n((k +t)(2k +1)) = n((s +v — 1 — (2k + 1))(2k + 1)),
which provides that (vii) k+2—-t=2k+1—-s+v—(2k+1)and (vii) k+t=s+v—1—
(2k + 1). Using (vii) and (viii) we obtain v = 2k + 2, a contradiction because v € {2,3,...
2k + 1},

Case 3. (i=2t+ 1and p = 2s). Consider the case when k + 1 —s+v <2k + 1
andk+s+v—1<2k. Using (3) and (4) we obtain that t(2k +2—t) =n(k+1—s+v
) and w(t(2k + 1)) = n((k +s +v — 1)(2k + 1)), which provides that (i) 2k+2—-t=k+1
—s+vand (i)t = k+s+v—1. Using (i) and (ii) we obtain v = 1, a contradiction
because v > 1. Consider the case when k+1—-s+v < 2k+land k+s+v—1> 2k.
Using (3) and (4) we obtain that n(2k +2—t) = n(k +1—s+v) and n(t(2k +1)) = =n((k
+s+v—1—(2k+1))(2k+

1)), which provides that (iii) 2k +2—t=k+1—-s+vand (iv)t=k+s+v—-1—(2k+
1).

Using (iii) and (iv) we obtain 2v = 2k + 3, a contradiction because 2 - 2k + 3.
Consider the case when k+1—s+v >2k+1and k+ s+ v —1 < 2k. Using (3) and (4)

we obtain that 12k +2—t) = a(k +1—s+v— (2k+1)) and n(t(2k+1)) = n((k +s+v—
1)(2k + 1)), which provides that (v) 2k +2—t=k+1—-s+v—(2k+ 1) and (vi) t =k
+s+v—1

Using (v) and (vi) we obtain 2v = 2k + 3, a contradiction because 2 - 2k + 3. Consider
the case when k+1—s+v > 2k+1and k+s+v— 1> 2k. Using (3) and (4) we obtain
that n(2k+2 —-t) = n(k+1—s+v — (2k+1)) and =(t(2k+1)) = =w((k+s+v —1—
(2k+1))(2k+1)), which provides that (vii) 2k+2—t = k+1—s+v —(2k+1) and (viii) t =
k+s+v —1—(2k+1). Using (vii) and (viii) we obtain v = 2k + 2, a contradiction because
v e{23,...,2k+1}.
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Case 4. (i=2t+ land p= 2s+ 1). Consider the case when 2k + 1 —s+v < 2k+ 1
ands+ v — 1< 2k. Using (3) and (4) we obtain that n(2k +2—t) = n(2k + 1 — s+ v)
and n(t(2k+1)) = n((s+v —1)(2k+1)), which provides that (i) 2k+2—t = 2k+1—s+v
and (ii) t = s+ v — 1. Using (i) and (ii) we obtain v = 1, a contradiction because v > 1.

Consider the case when 2k + 1 —s+v < 2k+1and s+ v — 1> 2k. Using (3) and (4)
we obtain

that n(2k +2—t) = n(2k +1—s+v) and n(t(2k +1)) = n((s +v —1—(2k +1))(2k + 1)),
which provides that (iii) 2k +2—t=2k+1—s+vand (iv) t=s+v —1—(2k + 1).

Using (iii) and (iv) we obtain 2v = 2k + 3, a contradiction because 2 - 2k + 3. Consider the
case when 2k + 1 —s+v>2k+ land s + v —1 < 2k. Using (3) and (4) we obtain that n(2k

+2—-t)=n(k+1—-s+v—(2k+1)) and n(t(2k + 1)) = n((s +v — 1)(2k + 1)), which provides
that (v) 2k+2—t=2k+1—-s+v—(2k+1) and (vi) t=s+v —1. Using

(v) and (vi) we obtain 2v = 2k + 3, a contradiction because 2 - 2k + 3. Consider the case when 2k + 1
—s+v>2k+1and s+ v —1> 2k. Using (3) and (4) we obtain that n(2k +2—1t) = n(2k +1—

s+v—(2k+1)) and n(t(2k +1)) = n((s+v —1—(2k +1))(2k +1)), which provides that (vii) 2k+2—t = 2k
+1—-s+v —(2k +1) and (viii) t = s+v —1—(2k +1). Using (vii) and (viii) we obtain v = 2k + 2, a
contradiction because v € {2, 3,...,2k+1}.

Theorem 1. Let Mak+1[mij] = Kok+1[Kijl+Lak+1["ij] where Kok+1[kij] = K[2k+1][2k+1]
and L2k+1[‘ij] = L[2k+1][2k+1]. Then M2k+1[mjj] is a semi-magic square of order 2k+1
for k > 2.

Theorem 2. Let Mak+1 [mjj] = Kok+1 [Kijl+L2k+1 [\ij] where K2k +1 [kij] = K[2k+1][2k +1] and
Lok+1[ij] = L[2k + 1][2k +1]. Then0 M2k+1[mij] is a magic square of order 2k +1if 3 - 2k + 1.
Proof. In order to prove that Mok+1 is a magic square it is sufficient to show that the all elements

in both diagonals of the matrix Kok+1 and the matrix Lok+1 are mutually different. First,
according to K[2k+ 1][2k + 1] we have that

L
mk+t+ 10 if 1=t
ky = . .
a(t+ 1), if i= 2t+ 1
fort = 1,2,.. k. Sincet+ 1 <= k+ t+ 1 it follows that k; are mutuallv different for
i=12 .. . 2k—+ 1 Next, according to K [2k + 1][2k + 1] we have that
LI
O mlk +2—3t), if i=ZtAk+2—3t=20
. Brgk+2—3t+2k+ 1), if i=2tAk+2—3t=0
T
ol n a@k+1— 30, if i=2t+ 1A 2k+1— 3t =
E 22k +1)— 3t), if i=2t+ 1A 2k+1— 3t<
n

fort = 1.2, . k. Since 3 - 2k+ 1 and k+2 = 3(k + 1) — (Z2k + 1) it follows that
k+2—3t=0and 2k+1— 3t=0 Let 2Zk+ 1= = mod 3 where e € {—1, 1}. Then
we

have (i) k+2— 3t = —=z mod 3 and (ii) k+2— 3t+ 2k+ 1= 0 mod 3. which
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that k3 7p.7 5 are mutually different fort=1.2, .. k. Since (jii) 2k+1—- 3t = £ mod
3

and (iv) 2(Zk + 1) — 3t = —& mod 3, we find that ko 2xs2-21+1) are mutually
different

fort= 1,2, .. k. Of course, since 3 - 2k +1 we have k311 = m(2k+1) = ko 200002041y
tort=1.2 .. k. On the contrary, assume that k;j..; ;= Kkj+7 tor somei = j. lhen

according to (1), (i), (i) and (iv) it must be w(k + 2 — 3t) = w{2(2k + 1) — 3s), which
provides that k+2— 3t=2(2k+1)— 3s forsome t=1,2, .. kand s =12, k. Then
k+2— 3£ k— 1=k+1="2(2k+1)— 3s, a contradiction.

Next, we shall now demonstrate that the all elements in both diagonals of the matrix
L2k + 1][2k + 1] are mutually different. Indeed, according to L[2k + 1][2k + 1] we hawve
that

ik — 1+30Qk + 1), if i=2tAk— 1+ 3t < 2k+
2k — 1+3t— Qk+ )2k + 1), if 1

Btk + 1)), if i=2t+ 1A 3t <€ 2k+ 1
nBt— 2k + D)2k + 1) 4f = 2e+ 1A 3> 2k+ 1

ii

mre me e

fort=12,.. k. Since3-2k+land k— 1=3k— 2k +1)it followsthat k— 1+ 3t =
2k+1and 3t = 2k+ 1. Let 2k+1 = = mod 3 where = € {—1,1}. Then we have

ik—1+3 = —egmod3and (i) k— 1+ 3t— (Zk+ 1) = £ mod 3, which
provides

that “2¢2¢ are mutually different fort = 1.2... . k. Since (iii) 3t = 0 mod 3 and (iv)
t—(2k+1) = —& mod 3. wefind that "3¢41 2441 are mutually differentfort= 1.2.. . .k.
Of course, since 3 - 2k + 1 wehave "] = m(0) = "241 241 fort = 1,2,k On the
contrary, assume that "y = 'j; for some i = j. Then according to (i), (i), (iii) and

(iv) it must be w((k — 1+ 30)2k + 1)) = n((3s — 2k + 1))(2k + 1)). which provides
that Kk — 1+ 3t = 35 — 2k + 1) forsome t = 1,2, ...k and s = 1,2... k. Then
k—1+3t = k+2>=k=3s— (Zk+1), a contradiction. Next, according to L[2k +1][2k + 1]
we have that

L
. _omltk — 0Ok + 1N if i=0t
R @k - D@k + 1), if Q= 2t+ ]

fort = 1,2,.. k. Since k — t = 2k — t it follows that *; are mutually different for
i=12 ... k+1

Corollary 1. Let My[m; | = Kk |+ L[5 ] form € 2N+ 1, where K, [k; | = K [0][n]
and L,[;; | = Lin]n]. Then
O the magic square, if n =6k — 1

Mp[my | = the magic square, if n=6k+1
the semi— magic square, if n=~6k+3

fork € N.
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Remark 5. In case that k = 2 the applied method of cyclic permutations for creating the magic
squares is reduced to the method of cyclic permutations for creating the magic squares of order 5
established by French mathematician Philippe de La Hire.

I11. Two infinite classes of strongly regular graphs

Let My [my] = Koy [k ]+ Logs [] be a semi-magic square of order 2k +1 for k 2 2.
Let G[M;jp41] be a graph obtained from the matrix My [my; ] in the following way: (i)
the vertex set of the graph G[Mzp+1] is V (GMan41 J) = {m{j i.j=1.2,...2k+ 1} and
(i) the neighborhood of the vertex my = ky + 'y is Sg; = Sg; - Y Sm—; Y Kj U Lj
where

(3) Ky = {mg |k =ky and .0 =G j)}.

(6) Ly ={ms| s= "5 and (s.0) = (1 j)}.

fors,t=1.2....2k+ 1. Wenote that K; nL; = @ fori,g = 1.2... .2k + 1. Indeed,
on the contrary, assume that m,; € Kj N Ly. Then m,, =k, + s =k + 5 =my.a
contradiction. Namely, it is easy to see that 5, - =Sm—,-.j .K; .L; are mutually disjoint.

For the sake of an example, let us show that Sm&.—i n K-lj = 0. On the contrary, assume
that mg € Smi._j n Ky . Using (1) it follows that s =i and t = j. Since my € Kj
and

ky = ky we find that kj; is presented in the i-th row of the matrix Ky [k;] two times,
a contradiction. Since ky € Kgpy = Ky [k ] is presented in the ith row and the j-th
column only one time and m; 0 K, we obtain |K;| = (2k + 1) — 1. Similarly,
since

"5 € Ly = Lyt [ 5] is presented in the i-th row and the j-th column only one time
and m; D€ L;. we obtain |L;| = (2k + 1) — 1. Therefore, we have

Smy | = Sm&.—j +18p ;1 + Ky |+ Lyl = 2k + 2k + 2k + 2k,
which provides that G[M;y..;] is a regular graph of order n = (2k+ 1)? and degree r = 8k.

Theorem 3. Let My, my; | = Kopa (ki | + Lagsa [5 ] be a2 semi-magic square of order
2k+1 fork = 2. Then G[My..; ] is a strongly regular graph of order n = (2k + 1) and
degree r = 8k with t = 2k + 5 and 6= 1.

Proof. First, assume that my; and m,, are two distinct non-adjacent vertices of the
graph G[M;.; ]. In this case we have u =1 and v = j. On the contrary, assume that
u =1 or+v = j. Without loss of generality we can assume that p =i and v = j.
Then m,;, € Sm&.—j . which means that m;, and mj are adjacent, a contradiction. Since
m,, =k, +7,, it is easy to seek,, = k; and ', ="j. Indeed, if we assume k,, =k;

then m,, € K;. which means that m,, and mjy are adjacent., a contradiction. We shall
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now (1) prove that |Sy & N Sm, _ | = 3. Since ky is presented in the p-th row of the matrix
Kip4 it followsthat there exist s =v so that ky. = k; . which provides that my; € Sy,
andm,. € Ky € Smﬁ . Similarly. since "y is presented in the p-th row ofthe matrix Law+
it follows that there exist t= v so that 'y = "5, which provides that my € S5, and
my € Lyj € Spy. Since Sy, NSy, =0 and since Sp, | N Sp ; = {my; } € Sm; .

we

obtain!! that |S ns = 3. Next, let my, € ,_ andlet m, 6¢ {mm- .My, . m
Sm 2

which provides that x b€ {j.s. E} It remains to demonstrate that my; 0€ Sp,. On

the
contrary. assume that myx =kyx + 'uix € Smy - Then according to (1). (2). (5) and (6) we

m i my,—y ut

find that m,, € Ky or my; € Ly . Without loss of generality we may assume my,, € Ky .
In this case wehave k,; = k;; . Since k,, = k; we find that k; is presented in the p-th row

ofthe matrix Kj..; two times. a contradiction. This completes the assertion (1%). Using

the same arguments as in the proof of (1Y), we can (2°) prove that |S, I

We shall now (3) prove that |Sy s N Ky | = 3. Since ky, is presented in the i-th row

of the matrix Kjp, it follows that there exist t =) so that ky = k,, . which provides
tl?t my € K, and m; € Sm&1_1_ < Smj. Since k,, is presented in the j-th column
0

the matrix K., it follows that there exist s =i so that k; =k, . which provides that
m; € K;, and m; € Sm_’_ ; & Sm;. We shall now demonstrate that K n K, =@
On the contrary, assume that m,, € K;n K, . Then k,, = k; and k,, =k,,. which
provides that k, = k;. a contradiction. Further, let Py = {p+ 1P E {1.2....2k+1}

r{l{-q- 1} and let Q; = {lc-q- +qlq€ {1}:21{+1=___=21{(21{+1}}r{‘ij}} forij =12 ..
L2k+ 1

Due to the fact that lky is presented in the i-th row and the j-th column of the matrix

Kjp41 only one time, we easily see Py = Ly fori,j = 1.2,.. .2k +1. Due to the fact that

"5 15 presented in the i-th row and the j-th column of the matrix Ljp, only one time,
we easily see Q=K fori.j =12, . 2k +1 Let py € {1.2,...,2k+1} r{l{ij} such
that py =k, and let qp € {0,2k+ 1, ....2k(2k + 1)} r{‘m.} such that qp ="5. Then
pot+ 5 € Ly & Sy, and k, +qp € K, . So we obtain py + 5 =pg +qo = ki + .
which

provides'? that [LynK,, | 2 land |S,. nK,,| = 3. Sincepy € {1. 2,.. .. 2k+1}x{k;; } and

H

Qo€ {0, Xk+1,. ... 2k(2k+ 1)} {" | are uniquely determined weobtain Ly n K, | = 1,

which completes the assertion (3°). Using the same arguments as in the proof of (3°). we

can (4%) prove that |Sm, N L, | = 3. Finally. using (1%). (2°). (3") and (4°) we obtain
that

NS, | +|8

v mij n Kl-l"' + Sm"l.i nL

pv | =
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from which we obtain |Sp; N S5, | = 12 for any two distinct non-adjacent vertices my
and m, . Next, let m;; and m,, be two adjacent vertices of the graph G[Mj.; ] We shall

now consider the following two cases:

Case 1. (m, € SmL_‘_ or m,, € Sm_’_d.)_ Without loss of generality we can assume
that m,, € Sm’_ _ . In this case wehave p =1 and v = j. We shall now (1%) prove that
Smg M Sm—, | = 2k— L Sincemy 6€ S,,_ andm, 6€ S,,_ wehave S, N Sy
= (2k + 1) — 2, which provides that [Sp;, N Sy, _ | 2 2k — 1. Since my b=
Sp; and

Smi - =Sm—,-.j Ky and Ly are mutually disjoint it followsthat Sy, _ .Sy — Ky and Ly

are also mutually disjoint, which completes the assertion (1°). We shall now (2%) prove

that |Sp; N S, | = 2. Since m, be Sm_,, We have that Sma,—j NSy ., = @
and
Sm—’. i N Sp ., = @. Since ky is presented in the v-th column of the matrix K it

follows that there exist s = p so that k., = ky. which provides that m., € Sm_’_ . and
m,, € Ky & Sy;. Similarly. since '
Lo+ it follows that there exist t = p so that 'y, = 3. which provides that my, € Sm_’_ N

is presented in the v-th column of the matrix

and my, € Ly & Spy; . This completes the assertion (2 ). We shall now (3 ) prove that
Sm; N Ky | =2. Since my, 6€ Ky and Sy, 1 Ky =7 it follows that Smi_j n Ky =
@.

Since k;, is presented in the j-th column of the matrix Ki;p.; it follows that there exist
s =1 so that k; = k;,. which provides that m; € K, and m; € Sm_’_d. c 85
. We shall now demonstrate that K; n K;, = 0. On the contrary, assume that m,
€ Ezn K, . Then k,; = k; and k,; = k, which wvields k; = k. a contradiction.
Next,since K, =Q, and Q,, =1k, +qlge {0.2k+1... . 2kQ2k+ 1)} x{ . }} there

existqp € {0.2k+1,.. .. 2k(?k + 1)} ¥ { ;. } such that q; = "4- In the view of this, we

havek, +qp € K;, and k;, +q9 € Ly © S, . which completes the assertion (3%). We
shall "

now (4") prove that |S, .« NL,| =2 Sincem, b€ L;, and ,_ nL; =7 it follows
Sm

that SmL_‘_ n Ly = @. Since ", is presented in the j-th column of the matrix Lip+

it follows that there exist s = i so that "5 = " . which provides that m,; &€ L; and

m;; € Sm_’_ ; c Smﬁ. . We shall now demonstrate that Ly n Ly, = @. On the contrary,
assume that m, € Ly n L. Then ", = "y and ", = ", which yields 3 = "5, . a
contradiction. Next, since Lyy = Py and Py, = {p+ 'w lp € {L. 2.....2k+ 1} v {ko }

there exist pg € {1. 2.....2k+ 1} = {ks } such that pg= ki . In the view of this., we have

pot w € Li and po+ 'w € Kij & Sy . which completes the assertion (4%). Finally,
using (1%), (2%). (3°) and (4°) we obtain that

Sm'ij n Smn = Smij n Smuﬂ + Sm&j i SJZIZL—,- w + Sm&j n K-'w + Sm.ij n Liv
from which we obtain |Sp; N S5g, | = 2k — 1)+ 2+ 2+ 2 for any two adjacent vertices
m;; and my, .
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Case 2. (m, € K; or m,, € L;;). Without loss of generality we can assume that
my, € Kj. Since Sm&.—j =Sm_’_ 3 and Ky are mutually disjoint it followsthat p =1 and
v =j. Since m,, =k, +°,, and m,, € K; weobtain m,, = k; + ', . from which we
obtain k,, = ky and ', = 5. We shall now (1°) prove that [S, s N Sm,
u=1iand v =j wehave Sy - N Sm.—, = ¢ and Sm_, ;N Sm,_, = {my } € Smy - We shall
now demonstrate that ¥y n S, _ = . On the contrary, assume that m, € K; n Sm,—, -
Then my =ky+ ' € Sp,—, and my = ky + 'w € Ky which yields kyy = k; . Since
ky, = ky and ky = k; we.have k,, = k. Finally, since k,, is presented in the p-th

row of the matrix Kj..; onlv one time we obtain t = v. In the view ofthis, we find that

= 2. Since

m,, € Sp,_ . a contradiction. Next, since 'y is presented in the p-th row of the matrix
Lik+ it followsthat there exist t = v so that "y = ", which provides that my € S5p,_
and my € Ly € Sgp; . This completes the assertion (1 ). We shall now (2 ) prove that
Smj N Sm_ /=2 Sinceu =1iand v =) we have Sm&.—j NSy , = {m;, } € Smj and
Sm—; N Sy, =0. We shall now demonstrate that K; n S, =7. On the contrary,
assume that m;, € K5 NS, . Then m,, =k, +';, € S5 andm,, = ky +;, € Kj
which vields k., =k; . Since k,, = k; and k,, = k; wehave k,, =k, . Finally, since k,
is presented in the v-th column of the matrix K., only one time we obtain s = pu. In

the view of this, we find that m,, € 5, . a contradiction. Next, since ' is presented

u o

in the v-th column of the matrix Lj.,; it followsthat there exist t= p so that 'y, = ;.
which provides that my, € S5, and my, € Ly & Sp;. This completes the
assertion

(2°). We shall now (3") prove that [S, . n K, |= 2k — 1. Since k,, = k; wehave that
K = {ma ka=ky and (s.t)= (i, j)} € Sm; and K,y = {ms |k = ki and (s, t) =
(u.v)}. Since my 6€ K; and m,, 6€ K, we find that K3 n K| = 2k + 1) —
2.

Since m; 06€ Smj and Sm&.—j =Sm_’_ d=KiJ' Ly € Smj are mutually disjoint it follows
that

Sm; - =Sm_’_ ;-Li and K, are also mutually disjoint, which completes the assertion (3 -).
We shall now (4°) prove that |S_ & MLyl =2 Since ", is presented in the i-th row of
the matrix Ly, it follows that there exist t =j so that "3 = ', . which provides that
mg = kg + ' € L and my = ke + '8 € Sm&.—j c Smj. Since 'y, 1s presented in
the

j-th column of the matrix Ljp4; it follows that there exist s =i so that " =", . which
provides that m; = k;+ ", € L, and my; =k;+ " E Sm—,-d C Sp;- We shall
now demonstrate that ¥; n L,, =. On the contrary, assume that m, = k,+ ', € K;
N L, .

lhen k,;=k; and = ', . Smnce k,, = k; we obtain k, = k,, . which provides that
m,, =k, + ', € L, .a contradiction. We shall now demonstrate that L; n L, = 2.
On the contrary, assume that m, =k, + ' € Ly n L, . Then ", = "5 and ", = ", .
which provides that "y, =, a contradiction. This completes the assertion (4%). Finally,
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using (1°). (2%, (3%) and (4°) we obtain that

Sm; N Sm,, | =[Sm; NS +8my N S, T 18my N Ky [+ 18z N Ly,

my,—y
from which we obtain [Sm; N Sm,, |=2+ 2+ (Zk — 1) +2 forany two adjacent vertices

my and m, . which!® completes the* proof.

Let G~ [Mj,; | be a graph obtained from the matrix My, [m;; | in the following way-
(i) the vertex set of the graph G~ M4y is V(G My D=1{my 1.j=1.2,.. . 2k+1}
and (i) the neighborhood!® of the vertex my; = ky + 7y is Sy 8= Smi.—j v Sm—,-.j UK.
Using the same'®

result.

arguments as in the proof of Theorem 3, we can prove the following

Theorem 4. Let My [my; | = Ko [k | + Lagsr [ ] be a semi-magic square of order
2k+1fork = 2. Then G~ [My..; ] is a strongly regular graph of order n = (2k + 1) and
degree r = 6k witht =2k + 1 and 6 = 6.
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4. Appendix

Using the applied method of cyclic permutations for creating the magic and semi-magic

squares, in this section with a minor modification of “the first permutation™ we create the

magic squares of order 6k +3 fork = 1. First, let us assume that (m{1). ={2). ... =35£E§+3))
is a fixed permutation of the numbers 1.2, 6k+ 3 Let
=(1) =(2) 3+ | 73k+2) | m3k+3) | ey | miR+)
2(3+2) | 2{3k+3) | wlBE+y | w3y (1) =3k | =(3k+1)
(6l+3) (1) o3k | w(3k+1) | w3k | wBe+1y | gDy
T3k+D) | =342 | nBEr)y | mEk) | B3 o e | =own
o(6k+2) | ml{6k+3) w1 | =R | =Bk o6k) | w(6k+1)
3k | 2(3k+1) 6k | w641} | mBk+2) - = | o
=(3) =(4) o | =B | 2B | 2GS (1) =(2)
23k+4) | m{3k+5) (1) =2 =3 | =Ry | =33y
2] 3 SR [ SR, L Qs Y S e LY | By (1)
23+3) | w{3kd) | wlEE+3) =1 =2) | =Ry | =D

K [6k+3][6k + 3]
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Second, let us assume that (m(0), w6k + 1), . ... w6k + 2)(6k + 3))) is a fixed per-

mutation of the numbers 0,6k + 3, .. (6k + 2)(6k + 3). Let n.(p) = n(p (6k + 3)) for
p=0,1,....6k+ 2 and let

== (D) m= (1) =038 | m= (kD) | m= 32y | o | m(Bktl) | me(6k+2)
m=(3k+2) | m (3L+3) | m (BRtD) w+{0) z= (1) m=(3k) | m=(3H1)
== (1) m= (2 e | m Bk | 2= (kD) | w33 | o | m=(6k4D) == (D)
w (3+3) | e (k) = (1) m= (1) z=(2 e | =Bk} [ = (32))
m= (2 m=(3) e | w0k | 2= 33 | m=OH) | w={0) m= (1)
m=(3e+d) | e (3k+5) m= (1) m= (2 m3) e | = B2) | == (3k43)
m= (Bl+1)) | m=(6L+2) | T (3e-D) | m(3k1) | m=(3K) e | m(61) | = ()
= (3k) | m= (31 w=(Bk) | m=(Bl+]) | w6ty | . | ==k | z-(3k-1)
n= (Bl+7) m=(0) | TGk | r=(3K) | me (3D | w=(6k) | m=(Bl+1)
m= (1) | = (3k42) oo | T (B | m (642 | w=(0) o | = (31) | m=(3K)

L[6k +3][6k + 3]

understanding that 0 = 0-(6k + 3) and 6k+ 3 = 1- (6k + 3). Let us define X =
{k+2.k+4,.. . k+202k+ D} € {1 2,....6k+3} and let Y ?{1: 2,....6k+3trX.

Let us define X: = {(k + Dk, (k +3)k, .. ..k +4k+1Dk } € {0.k,....(6k +2)k } and
let
Y. ={0k,.... (6k+2)k }ax. . where k = 6k+3. Let n(X ) be the set of all permutations

of the set X and let m(Y) be the set of all permutations of the set Y. Of course, since
X =2k+1land || =4+ 2wehave m(X) = 2k + 1) and |n(¥ ) = (dk + 2! .
Similarly, let m({X.) be the set of all permutations of the set X, and let wn(Y.) be the
set of all permutations of the set Y.. Of course, since X, =2k—+ 1l and Y.|=4k+2
we have [n(X,)l = (Zk + 1)! and |n(Y,)| = (4k +2)!. Let sumn(x) be the sum of all
elements in a fixed permutation n(x) € n(X ). Then we have

2kl
)] sum m(x) = k+ 2t)= 2k+ D(3k+ 2).

=1
Let sum n; (x) be the sum of all elements in a fixed permutation m; (x) € n(X+ ). Then
we have

21

(8) sum . (x) = (6k +3)  (k+ (2t — 1)) = 2k + D3k + 1)(6k + 3).

=1
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The first row of the matrix Kg4s contains the numbers of a fixed permutation w(x) €
m(X ) and the numbers of a fixed permutation n(y) € w({ ) obtained in the following wav:
(i) on the position 6k+ 3_6k.....3 set up the numbers of n(x) and (ii) on the position
t 6 {6k +3,6k.....3} set up the numbers of n(y). According to K[6k+ 3][6k + 3]
we

note that the numbers of the permutation m(x) are presented 3 times in the non-main
diagonal of the matrix Kg .5, understanding that ¥ .5 = K [6k+ 3][8k + 3]

The first row of the matrix Lgp+3 contains the numbers ofa fixed permutation m: (x) €
m(X+) and the numbers of a fixed permutation m+ (v) € w(Y+ ) obtained in the following
way: (1) on the position 1.4, ..,6k + 1 set up the numbers of m. (x) and (ii) on the
position t € {1, 4, ...,6k+ 1} set up the numbers of m. (v). According to L[6k + 3][6k +
vle note that the numbers of the permutation . (x) are presented 3 times in the main
diagonal of the matrix Lg..3. understanding that Lg..; = L[6k+ 3][6k + 3]. Using (7)
and (8) we obtain!”

3sum a(x) +3sum m (x) = (6k + 3) ok +!

which provides that Mg..3 m;; | = Kgpes [k |+ Lgpss['5 | is a magic square of order 6k+ 3
for k = 1.

Remark 6. In this section we present a source program magic.cpp which has been writ-
ten by the author in the programming language Horland C++ Builder 5.5 for creating

the magic squares'® of order 3,5.....999 The algorithm described in this section is also
valid for k = 0, a case that is related to the magic square of order 3.
i -

#include <stdlib h=
#include <string h>
#include <stdio.h>
#include <math.h>
#include <time.h>

#define CR 13
#idefine LF 10

char *_Strine (int n, int Size);
vold CreateMaszicSquare (int Menu).
vold CreateRandomPermutation (int #FirstRow, int Menu).

void main (void)

{

randomize ()

CreateMagicSquare (5):
CreateMagicSquare (7):
CreateMagicSquare (9);
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¥
/

CreateMagicSquare  (B01):
CreateMagicSquare (B03) .
CreateMagicSquare (BOB)

/

void CreateMasicSquare (int Henu)

{

int i, i, k., m, n, One, Two, Size, _Size, _Menu,

int *xz, *¥, #*p, *g, *_p, *_q, *Flag, *a[933];

char #*z, *t.;
EILE +FF:

static char *MagicFile = "Magic$$$. Lap™;

new int [Menu]:
new int [Menu]:
new int [Menu]:
nev int [Menul:

[l R B I

for (1 =0, 1 < Menu: i++) ali]l = new int [Menu]:

for (i =0; i < Henu, i+H) 1
plil =1 + 1;
ali]l =1 * Menu;
¥
if (Menu & 3) _Menu =1, else _Menu = 2;
svitch (_Menu) {
case 1.
CreateRandomPermutation  (p,Menu) ;
CreateRandomPermutation (g, Menu)
break.
case 2.

_F
|

nev int [Menu]:
nev int [Menu]:

Diagonal = new int [Menu]:
_Diagonal = new int [Menul:

Flag = nev int [Henul:

for (1 =0, 1 < Menu; 1++) 1
Diagonal [i] = 0;
_Diagonal [1] = 0;
Flagl[i] = 0;

tDiagonal ,

*_Diagonal .
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Henu / 3.

s S e
o
0o
= +
el

n. 1 < Menu. i++) {
= plm];

(i =0; i < Menu; i+8) {

f (Flag[i]) continue:
_pln] = plil;

[n] = qli]:

+
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CreateBandomPermutation (_p,n);
CreateRandomPermutation (_q,n);

CreateRandomPermutation (p + n,j).
CreateRandomPermutation (_aq + n,j):

n = Menu - 1:
m= 0
for (1 =0; i <j; i+ {

Diagonal [m] = 1.
_Diagonal [n] = 1;
n=n- 3
m=m+ 3;

I

n=:2%j;

for (1 =0, 1 < Henu. i++) {
if (! _Diagonallil) continue;

rlil = _plnl;
ntt:

I

n =0

for (1 =0, 1 < Henu. i++) {
if (_Diagonallil) continue;

pli] = _plnl;
ntt:

I

n=2 % j;

for (1 =0, 1 < Menu, i++) {
if (!Diagonalli]) continue;
ali]l = _aln]:
n++.
¥
n= 0
for (i =0, 1 < Henu: i+H) {
if (Diagonallil) continue:

qli]l = _aln]:
ntt.
¥
delete [] _p:
delete [] _a.

delete [] Flae:

delete [] Diasonal;
delete [] _Diasonal;
hreak.

One = Menu / 2
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Two = Henu - 1

z[0] = 0;
k=1
vhile (k < Menuw) {
z[k] = One;
k++;
z[k] = Two;
k++;
One——;
Two—:
¥
One = 1 + Menu / 2,
Two = 1.
y[0] =0
E=1;
vhile (k < Menu) 1
v[k] = One;
k++;
v[k] = Two!
k++;
Onett+
Twott
¥
for (i =0, 1 < Menu; i+t {
n = x[i].
= y[i].
for (j =0, § < Menu; j++) {
alilli] = pln] + qlm];
ntt.
mtt:

if (n == Menu) n
if (m == Henu) m

b

=0
=

¥

_Menu = Menu * Menu.

_String ( Menu,3):
_String (_Menu.6);

movien (t,MazicFile + 5,3).
delete [] t:
t =g,

FP = fopen (MagicFile, "wb™):
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Size = B
while {(*s++ == "0 ) Size—;
delete [] t:

_Size = Menu * (Size + 1) + 1;
g = ney char [_Size].

for (i = 0. 1 < _Size; i+t s[i] ="
[ _Size - 2] = CR:
s[_Size - 1] LF;

for (1 =0; i < Menu; i+ {
for (j =0, j < Menu; j+t) 1
t = String (alillil. Size):
k= (Sige + 1) * j;
movien (t, s + k, Size).
delete [] t:
T
fwrite (s, 1, _Size, FP).
ki
focloge (FP):

[ R —

[
[
[
[

'
»
»
»

'
»

[Loe B

delete [] s

for (i =0, 1 < Menu, i++) delete [] alil:
¥
Fé -
vold CreateRandomPermutation (int #*FirstRow, int Menu)

{

int 1, J, #*p, *Flas:

p = nev int [Menul:
Flag = nev int [Menu]:

for (i =0, 1 < Menu; i++) Flagli] = 0;
for (i =0, 1 < Menu)) 1

i = random (Henu) ;

if (Flag[j]) continue;

pli] = FirstRowl[jl;

Flag[i] = 1.

i++;
¥

for (1 =0, 1 < Menu, i++) FirstRowl[i] = pli]:
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delete [] p;
delete [] Flag:
I}
P -
t-:[har #_String (int n, int Size)
char *p = new char [Size + 1];
int 1, J.
plSize] =0
J = Size - 1.
for (1 =0, i < Size; i+ {
plil =n 210+ "0
n=n/ 10;
i—
¥
return p.
¥
£ -
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