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Abstract
In this present paper . we defined complex valued functions that are

univalent of the form f = h+g where h and g are analytic in the open unit disk A .
we obtain a number of enough coefficient conditions for normalized harmonic
functions that are starlike of order a . 0< a < 1. These coefficient circumstances
are also show to essential when “h™ has negative and g has positive coefficients.
Key Words: Harmonic function .univalent function sense-preserving:

starlike.convex combination

l. INTRODUCTION
A continunous function f = u+iv is a complex-valued harmonic function in a

complex domain € if both u and v are real harmonic m €. In any simply
connected domain D € € we can write = h +§ where h and g are analytic in D.
We call h the analytic part and g the co-analytic part of f. A necessary and
sufficient condition for f to be locally umivalent and sense-preserving in D is
that in ©. See Clunie and Sheil-Small [2] .

Denote by H the class of functions = h +g that are harmonic univalent and
sense-preserving in the unit disk A = { z: |z| < 1 }for which

h(0) = f(0) = £,(0) — 1 Then for =h +§ € H we may express the analytic

functions hand gas ™

hz)=z+27 ,a,z" gz)=27_ b, z" (1)
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Note that H reduces to the class of normalized analytic univalent functions if the
co-analytic part of its members i1s zero. In 1984 Clunie and Sheil-Small [2]
investigated the class H as well as its geometric subclasses and obtained some
coefficient bounds. Since then, there have been several related papers on H and its
subclasses. For more references see Duren [3] . w x In this note. we look at two
subclasses of H and provide univalence criteria. coefficient conditions. extreme

points, and distortion bounds for functions in these classes.

For 0 < a <1 we let Gx(a). a denote the subclass of H consisting of H
harmonic starlike functions of order @. A function f of the form (1) is harmonic

starlike ofordera. 0 < a <1 for|z|=r < 1if

I 2 gl r 2 gl
Re (ZLEHEI@ g 2f'@4ef" ()

Az F1(2)+(1—y)f(2) iz @ are L | ta (@)

€£A1<1.0€sa<1.=20

We further denote by Gy (a).. a the subclass of G- (a).. a such that the functions h

and g in

f=h+g are of the form
h@)=z- Xazlan 2", 2@)=Xaialb, 2" 3)

It was shown by Sheil-Small [4.] that |a, | < (n+ 1) (2n+1)/6 and |b, | < (n —
1) 2n-1)/6 if =h+F € G5°(0) .

The subclass of G;-(a). where @ = b, = 0 is denoted by G4 °(0). These bounds
are sharp and thus give necessary coefficient conditions for the class G3°(0).

Avci and Zlotkiewicz [1] proved that the coefficient condition is sufficient for

functions = h +g to be in G3?(0).Silverman proved that this coefficient

condition is also necessary if b; = 0 and a,, ifa and b in 1 are negative.

We note that both results obtained in are subject to the restriction that b; = 0. The
argument presented in this paper provides sufficient coefficient conditions for
functions Gy (a) = h +g of the form (1) to be in Gz (@) where 0< o < 1 and
b; not necessarily zero. It is shown that these conditions are also necessary when f

€ Gy ().
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Il.  MAIN RESULTS
THEOREM 1.

Let f=h +g be given by (1). Furthermore. let " Yp_;[n% (8 + 1) — (B + a)(A™ -
A+ D] lap FEZL 2B+ 1) — B+a)(A" -2+ D] by | < 1-a (2.1)

Where a; =1 and 0< a < 1 .then f1s harmonic univalent in A and f € Gy (a,)
Proof':

we have by inequality so that z; #z, then

f(z,) —f(z2)
‘h (z,) —h(zy)

g(z,)—g(z,.)
h(zy)-h(z;)

Ef:ibn(z;.l_ Z?)

(z1-22)-E0L; anlzi'— 23

-1-

E?’lozllbnl n

1-%% . lagin

1-

Eacan?(B+1)— (B+a&)(A™ - A+1)] |by

~ 1_ 2o

=1 T2 (B+1)— (f+ay(A - A+1)] lan |
22—

=0

Which proves univalence . fis sense —preserving in U this is because

()] =1 - Z la, n |z|™?
n=2

L=l
=>1— Z la, |n

n=2

_ 2o B+1)— (B+a) A" - A+ 1)] |a, |
22—«

> 1

mea[? (B +1) — (B+a)(A" - A+ 1)] b, |
2—a

oo oo
= nlbal > ) laglnlz|"?
n=1 n=1
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For proving f € G3.(a,). we must show that (2) holds true . by using :note that w
=u +iv . a are real Re(w) = Blw — 1| + @ if and only if Re {w(1+ Beie) —
— Be®} > @ and show that

z f'(2)+z*f""(2) (

Re { Az f1(z)+(1—y)f(2)

1+Be®)-Be® a (—m <0 <m)
Or equivalently

(1+Be®)z f'(2)+22f"(2) Be®Az f'(2)+(1-Y)f(2) .
Re Az f(2)+(1-y)f(2) T Az @)+ (1—y)F(z) Pa (2.2)

If we put

Alz) = (1 + Be®® )z f'(2) + 2" (2) — Be® 2z f'(2) + (1 —y)f (2) =
0,for0=sa<1

B(z) =2z f'(z) + 1 —y)f (2)

Rew)z= a [w—(1+a)l=|w+ (1 +a)l
1A4(Z) + (1 —e)B(z)| — 1A(Z) + (1 + a)B(z)]
=0 for0=a<1

SolA(Z) + (1 — a)B(z )]

=(1 + Bet? )( z+ 2% n?a,z® + 32 n?b,(2)" — B (z+3XT A, — A+
1) anzn + Z:?:Z’:ln — A+ 1) bﬂ.@n

12 — )zl + X7, [n?((1+ Be® ) — (e +a—-1) (A" - 1+

D] apz"+Xe,n?((1+ pe®® ) — (pe® + a—1) A" - 1+ 1)] b, (Z)"

[A(Z) + (1 + a)B(z )]

(1+ Be'® )( z + an a,z" —l—an b, (z)™

n—2 n=1
_BQES(Z—FZ/]n - R"‘l)anzn + Z‘Hn_ R—'—l)bnmn
n=2 n=2
— 1891.9[/1( z + Z n? apz" + Z n2b,(z)" + (1 — A)(z
n=2 n=1
+ Z n?a,z" + Z n2 b, (z)M] — (1
n=z n=1
+ )[4 (z + Z n? a,z" + Z n? bn@") + (1 =A)(z
n=2 n=1
+ Z n? a,z" + an bnGn)]
n=2 n=1
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—az +Z n?(1+pe®) —(Be®® +a+1)(1, — A+ 1)] a,z"
n=2

+ ) 0 (1+Be) = (B +a+1) (= 2+ D] b "

There fore,
|A(Z) + (1 — a)B(z)| — |A(Z) + (1 + a)B(z)|

la, |

::2{(1—&)—2[712(ﬁ+1)—(£+a)(,1n—,1+1)

— B+ -F+a)A,— A+1)]lb,l =0

By inequality (2.1) , which implies that f € Gy (a,)
The harmonic univalent function

) =2+ X g Groa, D ? . nnt nz(ﬁm—(ﬁfamn— FreT
where B2 0%, |+ Xilvn | =l

show that coefficient bound given by (2) is sharp.

The function of the form (2.3) are in the class { € Gy (a,) .because

i[mm@ +1)

- (18 + aj(';tn — A + 1)|]

|2 |
n+1)—P+a)d, — 1+1)

|Vl
n2(B+1)—- (B +a)i, — A+1)

+ Z [In2(8 + 1) — (B + a)(A, — 2+ D]

Eﬁzzlxn I + E;D:]_Iyn I =1-a

The restriction placed in Theorem (2.1) on the moduli of the coefficients of = h
+g enables us to conclude for arbitrary rotation of the coefficients of f that the

resulting functions would still be harmonic univalent and £ € Gy ( «, )

In the following theorem. it is shown that the condition (2.1) is also necessary for

functions in f € G ( @,)
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THEOREM 2.
Let=h+g withhand g be given by (1.2) .then f € G;.( @, )if and only if
n=1m? B+ 1) — (B+a)(A" -2+ D] la, [FE7[n* (B +1) — (B +a)(2"
-A+ D] |b,| <2-a (2.4)

.Where a; =1. 0< a < 1 then fis harmonic univalent in A and f € Gy (,)

3.Extreme points

In the following theorem. we obtain the extreme points of the class f €

(A, a.B)

Theorem 3.. Let be given by (3). Thenif and only if can be expressed as

f{z)= 2o, h,(2) + 6,9,(2)) (z belongs to U) whereh,(z) = z

ha(z) = z
_ o 1—¢ 2 _
h,(z) =z G- Grad 1D 2 (n=23.......))
And
h,(z) =z — 1a (Z)™(n=2.3........ )

[nZ(B+1)— (B+a)(A" - A+1)

Dt +8,) = 1,1, (2)

n=1

U, =20andé, =0

In particular . the extreme of £ € G4 (0, )are {h, }and {g,}

4. Convex combination

Now. we show f € Gsr( @, ) 1s closed under convex combination of its members.

Theorem (1) The «class fe Gy (a,) 1is closed underconvex combination.

Corollary (2).. The class fe G4 (4, @, 5 ) 1s a convex set.

5. Distortion and growth theorems We introduce the distortion theorems for the

functions in the class . fe Gy (a,)
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Theorem 1.let fE Gy ( @,) . then for [z] =1r< 1 , we have

(:1 - a‘[l - bl)) .2
1B+ ) -Brad+l)

If(2)] = (1 —by)r —
And

(1—a(1—0,)) S
1B+ D-Fra(A+ 1)

If (2]

I

(1—byr+

Theorem 2.let f€ G3-(«,) . then for |z| =r< 1, we have

2(1—a(1-Dy))

If"(z)| = (1= by)r — 4B+ 1) — (B —I—a](ﬂ—l—l)r

And

2(1—a(1 - by))

FF@l <@ =byr + B+ D-Br0@A+1)
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