Generalized a New Class of Harmonic Univalent Functions

Nagalaxmi Nakeertha

Dr. B.R. Ambedkar Open University, Hyderabad

Abstract

In this present paper , we defined complex valued functions that are univalent of the form $f = h + \overline{g}$ where h and g are analytic in the open unit disk Δ . we obtain a number of enough coefficient conditions for normalized harmonic functions that are starlike of order α , $0 \le \alpha \le 1$. These coefficient circumstances are also show to essential when "h" has negative and g has positive coefficients.

Key Words: Harmonic function ,univalent function sense-preserving; starlike.convex combination

I. INTRODUCTION

A continuous function f = u+iv is a complex-valued harmonic function in a complex domain \mathfrak{C} if both u and v are real harmonic in \mathfrak{C} . In any simply connected domain $\mathfrak{D} \in \mathfrak{C}$ we can write $f = h + \bar{g}$ where h and g are analytic in \mathfrak{D} . We call h the analytic part and g the co-analytic part of f. A necessary and sufficient condition for f to be locally univalent and sense-preserving in \mathfrak{D} is that in \mathfrak{D} . See Clunie and Sheil-Small [2].

Denote by \mathcal{H} the class of functions $f=h+\bar{g}$ that are harmonic univalent and sense-preserving in the unit disk $\Delta=\{z:|z|<1\}$ for which

 $h(0) = f(0) = f_z(0) - 1$ Then for $f = h + \bar{g} \in \mathcal{H}$ we may express the analytic functions h and g as ``

$$h(z) = z + \sum_{n=2}^{\infty} a_n z^n$$
 $g(z) = \sum_{n=1}^{\infty} b_n z^n$ (1)

Note that \mathcal{H} reduces to the class of normalized analytic univalent functions if the co-analytic part of its members is zero. In 1984 Clunie and Sheil-Small [2] investigated the class \mathcal{H} as well as its geometric subclasses and obtained some coefficient bounds. Since then, there have been several related papers on \mathcal{H} and its subclasses. For more references see Duren [3] . w x In this note, we look at two subclasses of \mathcal{H} and provide univalence criteria, coefficient conditions, extreme points, and distortion bounds for functions in these classes.

For $0 \le \alpha < 1$ we let $\mathcal{G}_{\mathcal{H}}(\alpha)$, a denote the subclass of \mathcal{H} consisting of \mathcal{H} harmonic starlike functions of order α . A function f of the form (1) is harmonic starlike of order α , $0 \le \alpha < 1$ for |z| = r < 1 if

$$\operatorname{Re}\left\{\frac{z\,f'(z)+z^2f''(z)}{\lambda z\,f'(z)+(1-\gamma)f(z)}\right\} > \beta \left|\frac{z\,f'(z)+z^2f''(z)}{\lambda z\,f'(z)+(1-\gamma)f(z)}-1\right| + \alpha \qquad (2)$$

$$0 \le \lambda < 1, 0 \le \alpha < 1, \beta \ge 0$$

We further denote by $\mathcal{G}_{\mathcal{H}}(\alpha)$.. a the subclass of $\mathcal{G}_{\mathcal{H}}(\alpha)$.. a such that the functions h and g in

 $f = h + \bar{g}$ are of the form

$$h(z) = z - \sum_{n=2}^{\infty} |a_n| z^n$$
 , $g(z) = \sum_{n=1}^{\infty} |b_n| z^n$ (3)

It was shown by Sheil-Small [4,] that $|a_n| \le (n+1)$ (2n+1)/6 and $|b_n| \le (n-1)$ (2n-1)/6 if $f = h + \bar{g} \in \mathcal{G}_{\mathcal{H}}^{\ 0}(0)$.

The subclass of $\mathcal{G}_{\mathcal{H}}(\alpha)$, where $\alpha = b_1 = 0$ is denoted by $\mathcal{G}_{\mathcal{H}}^{0}(0)$. These bounds are sharp and thus give necessary coefficient conditions for the class $\mathcal{G}_{\mathcal{H}}^{0}(0)$.

Avci and Zlotkiewicz [1] proved that the coefficient condition is sufficient for functions $f = h + \bar{g}$ to be in $\mathcal{G}_{\mathcal{H}}{}^{0}(0)$. Silverman proved that this coefficient condition is also necessary if $b_1 = 0$ and a_n if a and b in 1 are negative.

We note that both results obtained in are subject to the restriction that $b_1 = 0$. The argument presented in this paper provides sufficient coefficient conditions for functions $\mathcal{G}_{\mathcal{H}}(\alpha)$ f= h + \bar{g} of the form (1) to be in $\mathcal{G}_{\mathcal{H}}(\alpha)$ where $0 \le \alpha < 1$ and b_1 not necessarily zero. It is shown that these conditions are also necessary when f $\in \mathcal{G}_{\mathcal{H}}(\alpha)$.

II. MAIN RESULTS

THEOREM 1.

Let f= h +
$$\bar{g}$$
 be given by (1). Furthermore, let $\sum_{n=1}^{\infty} [n^2 (\beta + 1) - (\beta + \alpha)(\lambda^n - \lambda + 1)] |a_n| + \sum_{n=1}^{\infty} [n^2 (\beta + 1) - (\beta + \alpha)(\lambda^n - \lambda + 1)] |b_n| \le 1-\alpha$ (2.1)

Where $a_1 = 1$ and $0 \le \alpha < 1$, then f is harmonic univalent in Δ and $f \in \mathcal{G}_{\mathcal{H}}(\alpha,)$

Proof:

we have by inequality so that $z_1 \neq z_2$, then

$$\left| \frac{f\left(z_{1}\right) - f\left(z_{2}\right)}{h\left(z_{1}\right) - h\left(z_{2}\right)} \right|$$

$$\geq 1 - \left| \frac{g(z_1) - g(z_2)}{h(z_1) - h(z_2)} \right|$$

$$=1 - \ \left| \frac{\sum_{n=1}^{\infty} b_n(z_1^n - z_2^n)}{(z_1 - z_2) - \sum_{n=2}^{\infty} a_n(z_1^n - z_2^n)} \right|$$

1-
$$\left| \frac{\sum_{n=1}^{\infty} |b_n| \, n}{1 - \sum_{n=2}^{\infty} |a_n| n} \right|$$

$$\geq 1^{-\frac{\sum_{n=1}^{\infty}[n^2(\beta+1)-(\beta+\alpha)(\lambda^n-\lambda+1)]\,|b_n\,|}{\sum_{n=1}^{\infty}[n^2(\beta+1)-(\beta+\alpha)(\lambda^n-\lambda+1)]\,|a_n\,|}}$$

 ≥ 0

Which proves univalence . f is sense -preserving in U this is because

$$|h'(z)| \ge 1 - \sum_{n=2}^{\infty} |a_n| n |z|^{n-1}$$

$$> 1 - \sum_{n=2}^{\infty} |a_n| n$$

$$\geq 1 - \frac{\sum_{n=2}^{\infty} [n^2 (\beta + 1) - (\beta + \alpha)(\lambda^n - \lambda + 1)] |a_n|}{2 - \alpha}$$

$$\geq \frac{\sum_{n=1}^{\infty} [n^2 (\beta + 1) - (\beta + \alpha)(\lambda^n - \lambda + 1)] |b_n|}{2 - \alpha}$$

$$\geq \sum_{n=1}^{\infty} n |b_n| > \sum_{n=1}^{\infty} |a_n| n \, |z|^{n-1}$$

For proving $f \in \mathcal{G}_{\mathcal{H}}(\alpha,)$, we must show that (2) holds true . by using ;note that $w = u + iv \beta$, α are real $Re(w) \ge \beta |w - 1| + \alpha$ if and only if $Re\{w(1 + \beta e^{i\theta}) - \beta e^{i\theta}\} > \alpha$ and show that

$$\text{Re } \{ \quad \frac{z\,f'(z) + z^2f''(z)}{\lambda z\,f'(z) + (1-\gamma)f(z)} \, \left(1 + \beta\,e^{\,i\,\theta}\,\right) - \beta\,e^{\,i\,\theta} \ \} > \alpha \, \left(-\pi \le \theta \le \pi\right)$$

Or equivalently

$$\text{Re } \left\{ \begin{array}{cc} \frac{(1+\beta e^{i\theta})z\,f'(z)+z^2f''(z)}{\lambda z\,f'(z)+(1-\gamma)f(z)} & -\frac{\beta e^{i\theta}\lambda z\,f'(z)+(1-\gamma)f(z)}{\lambda zf'(z)+(1-\gamma)f(z)} \end{array} \right\} > \alpha \ \left\{ 2.2 \right\}$$

If we put

$$A(z) = (1 + \beta e^{i\theta}) z f'(z) + z^2 f''(z) - \beta e^{i\theta} \lambda z f'(z) + (1 - \gamma) f(z) \ge 0 \text{ for } 0 \le \alpha < 1$$

$$B(z) = \lambda z f'(z) + (1 - \gamma)f(z)$$

$$Re(w) \ge \alpha |w - (1 + \alpha)| \le |w + (1 + \alpha)|$$

$$|A(Z) + (1 - \alpha)B(z)| - |A(Z) + (1 + \alpha)B(z)|$$

$$\geq 0$$
 for $0 \leq \alpha \leq 1$

So
$$|A(Z) + (1 - \alpha)B(z)|$$

$$= \left(1 + \beta e^{i\theta}\right) \left(z + \sum_{n=2}^{\infty} n^2 \, a_n z^n + \sum_{n=1}^{\infty} n^2 \, b_n \overline{(z)}^n - \beta e^{i\theta} \left(z + \sum_{n=2}^{\infty} \lambda_n - \lambda + \sum_{n=2}^{\infty} \lambda_n - \lambda + \sum_{n=2}^{\infty} \lambda_n \right) \left(z + \sum_{n=2}^{\infty} n^2 \, a_n z^n + \sum_{n=2}^{\infty} n^2 \, b_n \overline{(z)}^n - \beta e^{i\theta} \left(z + \sum_{n=2}^{\infty} \lambda_n - \lambda + \sum_{n=2}^{\infty} \lambda_n - \lambda + \sum_{n=2}^{\infty} \lambda_n \right) \left(z + \sum_{n=2}^{\infty} n^2 \, a_n z^n + \sum_{n=2}^{\infty} n^2 \, b_n \overline{(z)}^n - \beta e^{i\theta} \left(z + \sum_{n=2}^{\infty} \lambda_n - \lambda + \sum_{$$

1)
$$a_n z^n + \sum_{n=2}^{\infty} \lambda_n - \lambda + 1$$
 $b_n \overline{(z)}^n$

$$|(2-\alpha)z|+\sum_{n=2}^{\infty}[n^2((1+\beta e^{i\theta})-(\beta e^{i\theta}+\alpha-1)(\lambda^n-\lambda+\beta)]$$

$$1)]\;a_nz^n+\textstyle\sum_{n=2}^{\infty}[n^2(\left(1+\beta e^{i\theta}\;\right)-\left(\;\beta e^{i\theta}+\alpha-1\right)\left(\lambda^n-\lambda+1\right)]\;b_n\overline{(z)}^n]$$

$$|A(Z) + (1+\alpha)B(z)|$$

$$= \left| \left(1 + \beta e^{i\theta} \right) \left(z + \sum_{n=2}^{\infty} n^2 a_n z^n + \sum_{n=1}^{\infty} n^2 b_n \overline{(z)}^n \right) \right|$$

$$- \beta e^{i\theta} \left(z + \sum_{n=2}^{\infty} \lambda_n - \lambda + 1 \right) a_n z^n + \sum_{n=2}^{\infty} \lambda_n - \lambda + 1 \right) b_n \overline{(z)}^n$$

$$- \beta e^{i\theta} \left[\lambda \left(z + \sum_{n=2}^{\infty} n^2 a_n z^n + \sum_{n=1}^{\infty} n^2 b_n \overline{(z)}^n + (1 - \lambda) (z + \sum_{n=2}^{\infty} n^2 a_n z^n + \sum_{n=1}^{\infty} n^2 b_n \overline{(z)}^n \right) \right] - (1$$

$$+ \alpha \left[\lambda \left(z + \sum_{n=2}^{\infty} n^2 a_n z^n + \sum_{n=1}^{\infty} n^2 b_n \overline{(z)}^n \right) \right]$$

$$+ \sum_{n=2}^{\infty} n^2 a_n z^n + \sum_{n=2}^{\infty} n^2 b_n \overline{(z)}^n \right]$$

$$\begin{vmatrix} -\alpha z + \sum_{n=2}^{\infty} n^2 \left(1 + \beta e^{i\theta} \right) - \left(\beta e^{i\theta} + \alpha + 1 \right) \left(\lambda_n - \lambda + 1 \right) \right] a_n z^n$$

$$+ \sum_{n=1}^{\infty} n^2 \left(1 + \beta e^{i\theta} \right) - \left(\beta e^{i\theta} + \alpha + 1 \right) \left(\lambda_n - \lambda + 1 \right) \right] b_n \overline{(z)}^n$$

There fore,

$$|A(Z) + (1 - \alpha)B(z)| - |A(Z) + (1 + \alpha)B(z)|$$

$$\ge 2\left\{ (1 - \alpha) - \sum_{n=2}^{\infty} [n^2 (\beta + 1) - (\beta + \alpha)(\lambda_n - \lambda + 1)] |a_n| - \{n^2 (\beta + 1) - (\beta + \alpha)(\lambda_n - \lambda + 1)] |b_n| \ge 0 \right\}$$

By inequality (2.1), which implies that $f \in \mathcal{G}_{\mathcal{H}}(\alpha,)$

The harmonic univalent function

$$f(z) = z + \sum_{n=2}^{\infty} \frac{x_n}{n^2(\beta+1) - (\beta+\alpha)(\lambda_n - \lambda + 1)} z^n + \sum_{n=1}^{\infty} \frac{\overline{y_n}}{n^2(\beta+1) - (\beta+\alpha)(\lambda_n - \lambda + 1)} \overline{z^n}$$
where $\sum_{n=2}^{\infty} |x_n| + \sum_{n=1}^{\infty} |y_n| = 1 - \alpha$

show that coefficient bound given by (2) is sharp.

The function of the form (2.3) are in the class $f \in \mathcal{G}_{\mathcal{H}}(\alpha,)$, because

$$\begin{split} &\sum_{n=2}^{\infty} [|n^{2}(\beta+1)| \\ &- (\beta+\alpha)(\lambda_{n}-\lambda+1)|] \quad \frac{|x_{n}|}{n^{2}(\beta+1)-(\beta+\alpha)(\lambda_{n}-\lambda+1)} \\ &+ \sum_{n=1}^{\infty} [|n^{2}(\beta+1)-(\beta+\alpha)(\lambda_{n}-\lambda+1)|] \quad \frac{|y_{n}|}{n^{2}(\beta+1)-(\beta+\alpha)(\lambda_{n}-\lambda+1)} \\ &\sum_{n=2}^{\infty} |x_{n}| \quad + \sum_{n=1}^{\infty} |y_{n}| \quad = 1-\alpha \end{split}$$

The restriction placed in Theorem (2.1) on the moduli of the coefficients of $f=h+\bar{g}$ enables us to conclude for arbitrary rotation of the coefficients of f that the resulting functions would still be harmonic univalent and $f \in \mathcal{G}_{\mathcal{H}}(\alpha, f)$

In the following theorem, it is shown that the condition (2.1) is also necessary for functions in $f \in \mathcal{G}_{\mathcal{H}}(\alpha_r)$

THEOREM 2.

Let $f=h+\bar{g}$ with h and g be given by (1.2) .then $f\in\mathcal{G}_{\mathcal{H}}(\alpha,)$ if and only if $\sum_{n=1}^{\infty}[n^2\ (\beta+1)-\ (\beta+\alpha)(\lambda^n-\lambda+1)]\ |a_n|+\sum_{n=1}^{\infty}[n^2\ (\beta+1)-\ (\beta+\alpha)(\lambda^n-\lambda+1)]\ |b_n|\leq 2\text{-}\alpha \quad (2.4)$

. Where $a_1 = 1$, $0 \le \alpha < 1$ then f is harmonic univalent in Δ and $f \in \mathcal{G}_{\mathcal{H}}(\alpha,)$

3.Extreme points

In the following theorem, we obtain the extreme points of the class $f \in \mathcal{G}_{\mathcal{H}}(\lambda, \alpha, \beta)$

Theorem 3.. Let be given by (3). Thenif and only if can be expressed as

$$f(z) = \sum_{n=1}^{\infty} (\mu_n \, h_n(z) + \, \delta_n g_n(z)) \, (z \, belongs \, to \, U) \, \text{where} h_1(z) = z$$

$$h_n(z) = z$$

$$h_n(z) = z - \frac{1-\alpha}{[n^2(\beta+1)-(\beta+\alpha)(\lambda^n-\lambda+1)]} z^2$$
(n=2,3,.....)

And

$$h_n(z) = z - \frac{1-\alpha}{[n^2(\beta+1)-(\beta+\alpha)(\lambda^n-\lambda+1)]} \overline{(z)}^n (n=2,3,....)$$

$$\sum_{n=1}^{\infty} (\mu_n + \delta_n) = 1, h_n(z)$$

 $\mu_n \geq 0$ and $\delta_n \geq 0$

In particular, the extreme of $f \in \mathcal{G}_{\mathcal{H}}(\alpha)$ are $\{h_n\}$ and $\{g_n\}$

4. Convex combination

Now, we show $f \in \mathcal{G}_{\mathcal{H}}(\alpha_r)$ is closed under convex combination of its members.

Theorem (1) The class $f \in \mathcal{G}_{\mathcal{H}}(\alpha,)$ is closed underconvex combination. Corollary (2).. The class $f \in \mathcal{G}_{\mathcal{H}}(\lambda, \alpha, \beta)$ is a convex set.

5. Distortion and growth theorems We introduce the distortion theorems for the functions in the class $f \in \mathcal{G}_{\mathcal{H}}(\alpha_{f})$

Theorem 1.let $f \in \mathcal{G}_{\mathcal{H}}(\alpha, \beta)$ then for |z| = r < 1, we have

$$|f(z)| \ge (1 - b_1)r - \frac{(1 - \alpha(1 - b_1))}{4(\beta + 1) - (\beta + \alpha)(\lambda + 1)}r^2$$

And

$$|f(z)| \le (1 - b_1)r + \frac{\left(1 - \alpha(1 - b_1)\right)}{4(\beta + 1) - (\beta + \alpha)(\lambda + 1)}r^2$$

Theorem 2. let $f \in \mathcal{G}_{\mathcal{H}}(\alpha_r)$. then for |z| = r < 1, we have

$$|f'(z)| \ge (1 - b_1)r - \frac{2(1 - \alpha(1 - b_1))}{4(\beta + 1) - (\beta + \alpha)(\lambda + 1)}r$$

And

$$|f'(z)| \le (1 - b_1)r + \frac{2(1 - \alpha(1 - b_1))}{4(\beta + 1) - (\beta + \alpha)(\lambda + 1)}r$$

REFERENCES

- [1]. Y. Avci and E. Zlotkiewicz, On harmonic univalent mappings, Ann. Uni". Mariae CurieSklodowska Sect. A
- [2]. J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Aci. Fenn. Ser. A I Math.
- [3]. P. L. Duren, A survey of harmonic mappings in the plane, Texas Tech. Uni. Math. Ser. 18 Ž. 1992
- [4]. T. Sheil-Small, Constants for planar harmonic mappings, J. London Math. Soc.
- [5]. H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51
- [6]. H. Silverman, Harmonic univalent functions with negative coefficients, J. Math. Anal.
- J. Clunie, T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Aci. Fenn. Ser. A. I. Math., 9, 3-25, (1984).
 R. Bharati, R. Parvatham and A. Swaminathan, On subclasses of uniformly convex functions and corresponded
- [8]. R. Bharati, R. Parvatham and A. Swaminathan, On subclasses of uniformly convex functions and corresponding class of starlike functions, TamkangJ. Math., 26(1), 17-32, (1997).
- [9]. A. Y. Lashin, On a certain subclass of star like functions with negative coefficients, J. Ineq. Pure Appl. Math., 10(2), 1-8, (2009).
- [10]. W.G. Atshan and A. K. Wanas, On a new class of harmonic univalent functions, J. of Matematicki Vesink, 65(4), 555-564, (2013).
- [11]. R. M. El-Ashwah and W. Y. Kota, Some Properties of a subclass of harmonic univalent functions defined by salagean operator, Int. J. Open Problems Complex Analysis, 8(2), 21-40, (2016).
- [12]. R. Ezhilarasi and T. V. Sudharsan, A subclass of harmonic univalent functions defined by an integral operator, Asia Pacific J. of Math., 1(2), 225-236, (2014).
- [13]. E. S. Aqlan, Some problems connected with geometric function theory, Ph. D. Thesis, Pune University, Pune, (2004). S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135, 429-446,(1969).