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Abstract:  
In this article, a new distribution is proposed, which is obtained from the truncated Cauchy power-G family of 

distribution called truncated Cauchy power-exponential distribution (TCP-E). We have studied various 

characteristics of the proposed distribution through probability density, cumulative distribution function and 

hazard rate function. We have presented some mathematical and statistical properties; further, we performed an 

estimation of the parameters and associated confidence interval using maximum likelihood estimation (MLE) 

method of the (TCP-E) distribution. All the computations are performed in R software. The applicability of the 

proposed distribution is shown through the application to the real data set. Through application to a real 

dataset, it is demonstrated that the proposed model fits better as compared to some other competing models.  

Key Words: Truncated Cauchy power-G family, Exponential distribution, Hazard rate function, MLE. 
----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date of Submission: 10-10-2020                                                                           Date of Acceptance: 26-10-2020 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

 

I. Introduction 
Statistical models are mostly used in analyzing and predicting the real data set. Several classical 

probability distributions have been widely used over the past decades for modeling data in several areas. Recent 

trends focus on creating a new probability model, adding an extra parameter(s) to the well-known classical 

distribution and are more flexible in modeling data. Many families of distributions have been defined to develop 

new distributions in the statistical literature. The well-known general families of distributions are, 

The Exp-Generator family defined by (Gupta &Kundu, 2001), Kumaraswamy-Generator (KW-G) 

family introduced by (Cordeiro et al., 2010), the truncated inverted Kumaraswamy-Generator family proposed 

by (Bantan et al., 2019), Eugene et al. (2002) has introduced beta-Generator family, the Weibull-Generator 

developed by (Alzaatreth et al., 2013,2013a), Marshall and Olkin (1997) have defined the Marshall-Olkin-

Generator, the transmuted-G family by (Shaw & Buckley, 2009), the gamma-G family proposed by 

(Zografos&Balkrishnan, 2009), the sine-G family introduced by (Souza et al., 2019),Zografos-Balakrishnan-G 

by (Nadarajah et al., 2015). 

The cumulative density function of truncated Cauchy distribution was defined by (Johnson &Kotz, 

1970), 
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 , { , }where a b    ,   0and   . 

As compared to the Cauchy distribution, the truncated Cauchy distribution has finite moments, and it is more 

flexible for modeling real data sets which are generally defined over finite ranges of values. For the detailed 

study of truncated Cauchy distribution, readers can go through (Nadarajah&Kotz, 2006, Rohatgi, 1976).  

 Further, Aldahlan et al. (2020) has introduced the truncated Cauchy power family of distributions, 

whose cumulative density function (CDF) and probability density function (PDF) respectively defined as, 
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Where ( ; )G x   and ( ; )g x   are CDF and PDF of baseline distribution respectively and  is the parameter 

space of baseline distribution. 

The chief purpose of this study is to obtain a more flexible model by adding one extra parameter to the 

exponential distribution to achieve a better fit to the real data. We study the properties of the TCP-E distribution 

and explore its applicability. The contentsof the proposed study are organized as follows. The new truncated 

Cauchy power exponential distribution is introduced, and various distributional properties are discussed in 

Section 2. The maximum likelihood estimation procedure to estimatethe model parameters and associated 

confidence intervals using the observed informationmatrix is discussed in Section 3. In Section 4, a real data set 

has been analyzed to explore the applications and suitability of the proposed distribution. In thissection, we 

present the ML estimators of the parameters and approximate confidence intervals.Finally, Section 5 ends up 

with some general concluding remarks 
 

II. The truncated Cauchy power exponential distribution. 
To generate TCP-E distribution, we have used exponential distribution as a baseline distribution. In 

statistics and probability theory, the important probability distribution of the time between events in a Poisson 

point process is the exponential distribution, i.e., a process in which events occur independently and 

continuously at a uniform average rate. It is a specific case of the gamma distribution and also the analog of the 

geometric distribution. Exponential distribution possesses the key property that is memoryless property. It is 

being used for the analysis of Poisson point processes and various other contexts. The CDF and PDF of the 

exponential distribution is  

 

  ; 1 ;  0xG x e x     (2.1) 

and   ; ;  0xg x e x     respectively. (2.2) 

 

plugging in (2.1) and (2.2) in (1.1) and (1.2) we get the truncated Cauchy power exponential distribution as, 

 ,X TCP E    then its CDF is defined as 
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and the corresponding PDF is 
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where α and β  are shape and scale parameters, respectively. 

 

2.1 Reliability/ Survival function 

A function that determines the probability that a patient, device, or other objects of interest will survive 

beyond any specified time is the survival function. The survival function is also known as the survivor function 

or reliability function. Suppose T be a continuous random variable with cumulative distribution function F (t) on 

the interval [0, ∞). Its survival function or reliability function is:  
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2.2 Hazard rate function 

Consider that an item has survived for a given time t and we desire the probability that it will not survive for an 

additional time dt then, hazard rate function is, 
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Now the hazard function for TCP-E distribution is 
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 (2.2.1) 

 

 

2.3. Quantile function of TCP-E distribution 
The p

th
quantile can be obtained by solving the following equation, 

    1Q p F p  

and we get quantile function by inverting (2.3) as 
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For TCP-E distribution, we can generate the random numbers for this, we suppose simulating values of random 

variable X with the CDF (2.3). Let U denote a uniform random variable in (0,1), then the simulated values of X 

can be obtained by  
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2.4. Skewness and Kurtosis  

These measures are used mostly in data analysis to study the shape of the distribution or data set. The 

Bowley’sskewness based on quartiles is, 
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Coefficient of kurtosis based on octiles given by (Moors, 1988) is 
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The quantile function given in (2.7) can be used to compute these coefficients. 

In Figure 1, we have demonstrated the plots of the PDF and hazard rate function of TCPIE distribution. 

 
Figure 1. Graph of PDF (left panel) and hazard function (right panel) for different values of α and β. 
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III. Estimation of Parameters 
 

3.1. Maximum Likelihood Estimates  
Let X be a random sample of size n from a two-parameter TCP-E(α, β) (2.4) and consider fxbe the observed 

frequency in the sample corresponding to   1,2,........,X x x j   such that
1

j

x

x

f n


 , where j is the 

highest non-zero observed frequency in the sample. The likelihood function of the TCP-E distribution (2.4) is 

given by, 
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Hence log-likelihood function is obtained as, 
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(3.1.1) 

Differentiating (3.1.1) with respect to α and β we get, 
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By solving these two non-linear equations equating to zero, we get the estimated values of the parameters of the 

TCP-E distribution. Since it is challenging to solve them manually but one can use computer programming such 

as R, MatLab, Maple, Mathematica, etc. to solve them numerically. 

 

Let ( , )    denote the parameter space and the corresponding MLE of   as ˆˆ ˆ( , )   , then the 

asymptotic normality results in,     
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In practice, it is useless that the MLE has asymptotic variance   
1

I


 because we don’t know . Hence we 

approximate the asymptotic variance by substituting the estimated value of the parameters. 

The standard procedure is to use the observed Fisher information matrix  ˆO   as an estimate of the 

information matrix  I   given by 
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where H is the Hessian matrix. 

By applying the Newton-Raphson algorithm to maximize the likelihood produces the observed information 

matrix and hence the variance-covariance matrix is obtained as, 
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Hence, an approximate 100(1-α) % confidence intervals for α and β from the asymptotic normality of MLEs, 

can be constructed as, 
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ˆ ˆ( )Z SE  where /2Z is the upper percentile of standard normal variate 

 

IV. Real Data Illustration: 
In this section, we have performed the data analysis by using a life testing real data set for illustration of the 

proposed methodology. The following data represent the number of million revolutions before failing for each 

of 23 ball bearings in a life test, Lawless (2003).  

 

17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.80, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 84.12, 

93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40 

 

 
Figure 2. Contour plot (left panel) and the Quantile-Quantile(QQ) plot (right panel). 

  

By maximizing the likelihood function in (3.1.1), we have computed the maximum likelihood estimates directly 

by using R software, R Development Core Team (2015) and Rizzo (2008). We have obtained ̂ = 5.0422   and 

̂ = 0.0285, and the corresponding log-Likelihood value of (3.1.1) is -113.0117. In Table 1, we have 

demonstrated the MLE’s with their standard errors (SE) and 95% confidence interval for α and β. From Table 1, 

we observe that the MLE's of the proposed distribution exist and they are significant. In Figure 2, we have 

displayed the contour plot and fitted CDF with quantile-quantile(QQ) plot developed by (Kumar and Ligges, 

2011). The QQ plot reveals the fact that the proposed model is suitable for the given data. 
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Table 1 

MLE, SE and 95% Asymptotic Confidence Interval(ACI) 

Parameter MLE SE 95% ACI t-value Pr(>t) 

alpha 5.0422    1.8093 (1.4960, 8.5883) 2.787   0.00532 

beta 0.0285    0.00594 (0.0169, 0.0402) 4.799 1.59e-06 

 

and the variance-covariance matrix of TCP-E is obtained as 
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The profile log-likelihood functions of TCP-E(α, β) are plotted against negative log-likelihood values displayed 

in Figure 3.  

 

 
Figure 3. Profile log-likelihood functions of parameters α and β. 

 

We have taken six alternative models for comparison with the proposed model, which are as follows,  

 

I. The Exponential Extension (EE) distribution: 

The PDF of exponential extension (EE) distribution (Nadarajah and Haghighi, 2011) with parameters 

αand λis 
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II. Exponential Power (EP) distribution: 

The probability density function of EP introduced by (Smith and Bain, 1975) is 
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where αand λare the shape and scale parameters, respectively. 

 

III. Marshall-Olkin Extended Exponential (MOEE) distribution.  

Marshall &Olkin (1997) has presented MOEE distribution whose probability density function is 
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IV. The Logistic-Exponential (LE) distribution: 

The PDF of logistic-exponential (LE) distribution (Lan and Leemis, 2008) with shape parameter αand 

scale parameter λis 
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V. The Flexible Weibull Extension (FW) distribution: 

The PDF of Flexible Weibull (FW) distribution (Bebbington et al. 2007) with parameters αand βis 

2
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VI. Gamma distribution: 

The density of Gamma distribution with parameters αand  is 
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In Table 2, we have presented the estimated value of the parameter of all the distributions taken for comparison 

and their corresponding negative log-likelihood value. 

 

Table 2 

Maximum likelihood estimators(MLEs) and log-likelihood(LL) 

Model MLEs -LL 

EE (α, λ) 33.2019 0.000285 117.251 

EP (α, λ) 1.4280 0.00888 115.157 

MOEE (α, λ) 17.9214 0.04345 114.350 

LE (α, λ) 2.3675 0.01059 113.240 

FW (α, β) 0.01158 78.9303 113.117 

Gamma (α, θ) 4.0250 17.9490 113.027 

TCPE (α, β) 5.0422 0.02853 113.012 

 

We have considered six alternative models and are compared via the Akaike information criterion  (AIC), 

Bayesian information criterion (BIC), Corrected Akaike Information criterion (CAIC) and Hannan-Quinn 

information criterion (HQIC) which are used to select the best modelamong several models. The definitions of 

AIC, BIC, AICC and HQIC are given below: 
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Where, n is the sample size in the model under consideration, and p is the number of parameters. The negative 

log-likelihood value and the value of AIC, BIC, CAIC and HQIC are presented in Table 3. We conclude that the 

proposed model produces a better fit to the data taken than other models.

 
 

Table 3 

Log-likelihood(LL), AIC, BIC, CAIC and HQIC 

 

Model -LL AIC BIC CAIC HQIC 

EE 117.2509 238.5019 240.7729 239.0473 239.0730 

EP 115.1566 234.3132 236.5842 234.8586 234.8843 
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MOEE 114.3503 232.7006 234.9716 233.2461 233.2718 

LE 113.2403 230.4806 232.7516 231.0260 231.0517 

FW 113.1165 230.2330 232.5040 230.7785 230.8042 

Gamma 113.0272 230.0544 232.3254 230.5999 230.6256 

TCPE 113.0117 230.0235 232.2944 230.5689 230.5946 

 

Further, we perform goodness-of-fit tests via the Kolmogorov-Simnorov (K-S), the Anderson-Darling (A
2
) and 

the Cramer-Von Mises (W) statistics. These statistics are computed as 

  

 
1

1
max ,i i

i n

i i
KS z z

n n 

 
   

 
 

    2

1

1

1
2 1 ln ln 1

n

i n i

i

A n i z z
n

 



         

 
 

2

1

2 11

12 2

n

i

i

i
W z

n n

 
   

 
  

wherezi= CDF(xi); the xi’s being the ordered observations. 

 

The histogram and the fitted density functions are displayed in Figure 4 (left panel), which supports the results 

in Tables 3 and 4. Also, Figure 4(right panel) which compares the distribution functions for the different models 

with the empirical distribution function produces the same. Therefore, for the given data set illustrates, the 

proposed distribution gets better fit and more reliable results from other alternatives. 

 

 
Figure 4. The Histogram and the PDF of fitted distributions (left panel); Empirical CDF with estimated CDF 

(right panel). 

 

In Table 4, we have presented the value of the above test statistics and their corresponding p-value of different 

models. The result demonstrates that the proposed model has the minimum value of the test statistic and higher 

p-value; hence we conclude that the TCP-E is best in the view of goodness-of-fit. 

 

Table 4 

The goodness-of-fit statistics and their corresponding p-value 

Model KS(p-value) A
2
(p-value) W(p-value) 

EE  0.2484(0.1170)  1.6365(0.1473)  0.2970(0.1376) 

EP 0.1786(0.4551)  0.6172(0.6300)  0.1034(0.5723)  

MOEE  0.1383(0.7714)  0.3795(0.8675)  0.0589(0.8255) 
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LE  0.1100(0.9437)  0.2193(0.9843)  0.0390(0.9422)  

FW  0.1458(0.7122)  0.2796(0.9522)  0.0506(0.8771) 

Gamma  0.1232(0.8762)  0.2156(0.9856)  0.0392(0.9410)  

TCPE  0.0959(0.9841)  0.1838(0.9944)  0.0309(0.9757) 

 

 

V. Conclusion 

We have introduced a new probability model named as two-parameter truncated Cauchy power 

exponential (TCP-E) distribution in this article. We have provided the PDF, the CDF, and the shape of the 

hazard function and found that the purposed model can have a variety of shape and monotonically increasing, 

increasing-decreasing, and constant hazard rate. We have applied the method of maximum likelihood to 

estimate the parameters.  We have considered a real data set to illustrate the methodology. We have computed 

the maximum likelihood estimates. The purposed distribution provides quite better for the dataset as shown in 

the Contour plot, Profile log-likelihood and QQ plots. We have also considered six other models for 

comparison. Various information criteria such as, AIC, BIC, CAIC and HQIC, were used to make the 

comparison and found that the proposed model is best as compared to six other models. We hope that this 

probability distribution may be an alternative in the field of survival analysis and theory of statistics. 
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