
IOSR Journal of Mathematics (IOSR-JM) 

e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 16, Issue 6 Ser. III (Nov. – Dec. 2020), PP 01-07 

www.iosrjournals.org 

DOI: 10.9790/5728-1606030107                               www.iosrjournals.org                                                1 | Page 

 

Mathematical Study on Co-infection of Diabetes Mellitus and 

HIV 
 

Faizunnesa Khondaker*
1
, Jannatun Nayeem

2
andChandra N. Podder

3 

1
Department of Mathematics, Jagannath University,Dhaka,Bangladesh 

2
Department of Arts and Sciences, AUST, Dhaka, Bangladesh 

3
Department of Mathematics, Dhaka University,Dhaka, Bangladesh 

 

Abstract:In this paper we formulate a mathematical modelbased on the dynamics of Diabetes Mellitus and 

HIV(AIDS). The co-infection model has a locally asymptotically stable disease-free equilibrium (DFE) 

whenever, the basic reproduction number (ℛ0) that is a certain epidemiological threshold, is less than unity. It 

is also shown, using a Lyapunov function and Lasalle Invariance Principle, that the DFE of the co-infection 

model is globally –asymptotically stable (GAS) whenever ℛ0 < 1. If ℛ0 > 1  then the model has locally-

asymptotically stable endemic equilibrium point (EEP). Numerical simulation suggest that the reduction of the 

effective contact rate of HIV and increase in the treatment rate can reduce the disease burden of co-infection. 
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I. Introduction 
Diabetes mellitus (DM) which is commonly known as diabetes and is a group of metabolic diseases in 

which there are high blood sugar levels over a prolonged period. If it is left untreated then many complications 

can arise for diabetes. Such acute complications are diabetic ketoacidosis and nonketotic hyperosmolar coma. 

Cardiovascular disease, chronic kidney disease, stroke, foot ulcers and eye damages are serious long-term 

complications
2
. Diabetes is causedwhenever the cells of the body do not respond properly to the insulin 

produced orwhenever the pancreasdoes not produce enough insulin.  

The human immunodeficiency virus (HIV) is a lentivirus which causes HIV infection and over time 

acquired immunodeficiency syndrome (AIDS)
1
. Mostly, HIV is a sexually transmitted infection and this 

infection is occurred by contact with or transfer of blood,semen, pre-ejaculate, and vaginal fluids. HIV can 

transmit from an infected mother to her infant during pregnancy, during childbirth by exposure to hervaginal 

fluid orblood, and through breast milk
4
. In the human immune system, helper T cells (specifically CD4

+
T cells), 

dendrite cells and macrophages are infected by HIV. HIV infection can lessen the number of CD4
+
T cells 

through pyroptosis of abortively infected T cells, apoptosis of uninfected bystander cells, viral killing of infected 

cells, and killing of infected CD4
+
T cells by CD8

+
 cytotoxic lymphocytes that identify infected cells. When 

CD4
+
T cell numbers decrease below a critical level, cell-mediated immunity is lost, and the body becomes more 

susceptible to opportunistic infections, leading to the development of AIDS
4
. 

The combination of Diabetes Mellitus and HIV infection creates a collision of two chronic conditions. 

HIV infected patients are twice as likely to develop diabetes mellitus compared with HIV uninfected 

individuals.The study of co-infection of HIV and diabetes mellitus has been of great interest due to its universal 

threat to humanity, which drives to use mathematical modelling to acquire knowledge about their transmission 

dynamics and from which we can identify effective control strategies.By studying some model
8,10,11

, a 

mathematical model is formulated based on co-infection of HIV and diabetes mellitus. In section II the model is 

formulated and analyzed (for the stability of the disease-free equilibrium and endemic equilibrium) in section 

III,IV,V and VI and in section VIInumerical simulations are carried out  

 

II. Formulation of Model 
The total sexually-active population at time t, denoted by 𝑁(𝑡) , is subdivided into ten mutually-

exclusive compartments, namely susceptible (𝑆(𝑡)), individuals who are HIV positive(𝐻(𝑡)), individuals 

having AIDS (𝐴(𝑡)), individuals having diabetes mellitus without complications (𝐷(𝑡)), individuals having 

diabetes mellitus with complications (𝐶(𝑡)), individuals having diabetes mellitus with and without 

complications, who are taking treatments (𝐴(𝑡)), individuals who are HIV positive and having diabetes mellitus 

without complications (𝐷𝐻(𝑡)), individuals who are HIV positive and having diabetes mellitus with 

complications (𝐶𝐻(𝑡)), individuals who are HIV positive and having diabetes mellitus with and without 

https://en.wikipedia.org/wiki/Blood
https://en.wikipedia.org/wiki/Semen
https://en.wikipedia.org/wiki/Pre-ejaculate
https://en.wikipedia.org/wiki/Vaginal_lubrication
https://en.wikipedia.org/wiki/Childbirth
https://en.wikipedia.org/wiki/Breast_milk
https://en.wikipedia.org/wiki/T_helper_cell
https://en.wikipedia.org/wiki/Dendritic_cell
https://en.wikipedia.org/wiki/Macrophage
https://en.wikipedia.org/wiki/Pyroptosis
https://en.wikipedia.org/wiki/Apoptosis
https://en.wikipedia.org/wiki/CD8_cytotoxic_lymphocyte
https://en.wikipedia.org/wiki/Cell-mediated_immunity
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complications and are taking treatments (𝑇𝐻(𝑡)), individuals in the AIDS class having diabetes (𝐴𝐷(𝑡)). So that 

the total population at time t is denoted by, N(t), where,  

𝑁 𝑡 = 𝑆 𝑡 + 𝐻 𝑡 + 𝐴 𝑡 + 𝐷 𝑡 + 𝐶 𝑡 + 𝑇 𝑡 + 𝐷𝐻 𝑡 + 𝐶𝐻 𝑡 + 𝑇𝐻 𝑡 + 𝐴𝐷 𝑡 . 

The susceptible population is increased by the recruitment of individuals (assumed susceptible)at a rate  𝜋,  into 

the population. Let 𝛾 denote the incidence of diabetes mellitus. Susceptible individuals acquire HIV at a rate𝜆𝐻  , 

where, 𝜆𝐻 =
𝛽(𝐻+𝜂𝐴)

𝑁
;  𝜂 > 1. Where 𝜆𝐻is the force of infection for HIV, 𝛽 is the transmission rate for HIV and 

the parameter 𝜂(𝜂 > 1) indicates that an individuals with AIDS is more infectious than an individual having 

HIV positive. 

Combining all the assumptions mentioned above, the model becomes: 
𝑑𝑆

𝑑𝑡
= 𝜋 −  𝜆𝐻 + 𝜇 + 𝛾 𝑆, 

𝑑𝐻

𝑑𝑡
= 𝜆𝐻𝑆 −  𝜇 + 𝜔 𝐻, 

𝑑𝐴

𝑑𝑡
= 𝜔𝐻 −  𝜇 + 𝛿3 𝐴, 

𝑑𝐷

𝑑𝑡
= 𝛾𝑆 −  𝜇 + 𝜍 + 𝜏𝐷 𝐷 − 𝜆𝐻𝐷, 

𝑑𝐶

𝑑𝑡
= 𝜍𝐷 −  𝜈 + 𝜇 + 𝛿1 + 𝜏𝐶 𝐶 − 𝜆𝐻𝐶, 

𝑑𝑇

𝑑𝑡
= 𝜏𝐷𝐷 + 𝜏𝐶𝐶 −  𝜇 + 𝜆𝐻 𝑇,(1) 

𝑑𝐷𝐻

𝑑𝑡
= 𝜆𝐻𝐷 −  𝜇 + 𝜍𝐻 + 𝜏𝐷𝐻 + 𝜍𝐷 𝐷𝐻, 

𝑑𝑇𝐻

𝑑𝑡
= 𝜏𝐷𝐻𝐷𝐻 + 𝜆𝐻𝑇 + 𝜏𝐶𝐻𝐶𝐻 −  𝜇 + 𝜍𝑇 𝑇𝐻, 

𝑑𝐶𝐻

𝑑𝑡
= 𝜆𝐻𝐶 + 𝜍𝐻𝐷𝐻 −  𝜈𝐻 + 𝜇 + 𝛿2 + 𝜏𝐶𝐻 + 𝜍𝐶 𝐶𝐻, 

𝑑𝐴𝐷

𝑑𝑡
= 𝜍𝐷𝐷𝐻 + 𝜍𝑇𝑇𝐻 + 𝜍𝐶𝐶𝐻 − (𝜇 + 𝛿4)𝐴𝐷. 

Parameters of the above  model are mentioned in table 1. 

 

III. Disease-Free Equilibrium Points 
For a disease model, in the absence of infection or disease, its steady-state solutions are called disease-free 

equilibrium (DFE) point, 𝐸0. The model (1) has a DFE,which is given by 

𝐸0 =  𝑆, 𝐻, 𝐴, 𝐷, 𝐶, 𝑇, 𝐷𝐻 , 𝐶𝐻 , 𝑇𝐻 , 𝐴𝐷 =  
𝜋

𝜇
, 0, 0, 0, 0, 0, 0, 0, 0, 0  

 

IV. Local Stability of the Disease-free equilibrium 
To establish the local stability ofdisease-free equilibrium, we first calculate the basic reproduction 

number that depends on the associated non-negative matrix F, for the new infection terms, and the non-singular 

M-matrix, V, for the remaining transfer terms, are givenby, 

 

𝐹 =

 
 
 
 
 
 
 
 
 
 
 
 
 

𝛽𝑆

𝑁

𝛽𝜂𝑆

𝑁
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
−𝛽𝐷

𝑁

−𝛽𝜂𝐷

𝑁
0 0 0 0 0 0 0

−𝛽𝐶

𝑁

−𝛽𝜂𝐶

𝑁
0 0 0 0 0 0 0

−𝛽𝑇

𝑁

−𝛽𝜂𝑇

𝑁
0 0 0 0 0 0 0

𝛽𝐷

𝑁

𝛽𝜂𝐷

𝑁
0 0 0 0 0 0 0

𝛽𝑇

𝑁

𝛽𝜂𝑇

𝑁
0 0 0 0 0 0 0

𝛽𝐶

𝑁

𝛽𝜂𝐶

𝑁
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 
 
 
 
 
 
 
 
 
 
 
 
 

,𝑉 =

 
 
 
 
 
 
 
 
 
 
𝑘1 0 0 0 0 0 0 0 0
−𝜔 𝑘2 0 0 0 0 0 0 0

0 0 𝑘3 0 0 0 0 0 0
0 0 −𝜍 𝑘4 0 0 0 0 0
0 0 −𝜏𝐷 −𝜏𝐶 𝜇 0 0 0 0
0 0 0 0 0 𝑘5 0 0 0
0 0 0 0 0 −𝜏𝐷𝐻 𝑘6 −𝜏𝐶𝐻 0
0 0 0 0 0 −𝜍𝐻 0 𝑘7 0
0 0 0 0 0 −𝜍𝐷 −𝜍𝑇 −𝜍𝐶 𝑘8 

 
 
 
 
 
 
 
 
 

 

where , 𝑘1 = 𝜇 + 𝜔, 𝑘2 = 𝜇 + 𝛿3, 𝑘3 = 𝜇 + 𝜍 + 𝜏𝐷 , 𝑘4 = 𝜇 + 𝜐 + 𝛿1 + 𝜏𝐶 , 
𝑘5 =  𝜇 + 𝜍𝐻 + 𝜏𝐷𝐻 + 𝜍𝐷 , 𝑘6 =  𝜇 + 𝜍𝑇 , 𝑘7 = 𝜈𝐻 + 𝜇 + 𝛿2 + 𝜏𝐶𝐻 + 𝜍𝐶 , 𝑘8 = 𝜇 + 𝛿4 
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The associated basic reproduction number, 𝑅0 = 𝜌(  𝐹𝑉−1). Here 𝜌 is the spectral radius of the matrix 

𝐹𝑉−1.We get𝑅0 =
𝛽𝑆(𝜂𝜔 +𝑘2)

𝑁𝑘1𝑘2
. In a completely susceptible human population, the average number of secondary 

cases which is generated by a single infected individual, is measured bythe threshold quantity 𝑅0
5
. 

Lemma 1
3
: The Disease-free equilibrium (DFE), 𝐸0 of the model (1), is Locally-asymptotically stable (LAS) if 

𝑅0 < 1 and unstable if 𝑅0 > 1. 

 

V. Global  Stability of the Disease-free equilibrium 
Before to prove the global stability of  DFE, we consider the region, 

𝜓 = {(𝑆, 𝐻, 𝐴, 𝐷, 𝐶, 𝑇, 𝐷𝐻 , 𝐶𝐻 , 𝑇𝐻 , 𝐴𝐷) ∈ ℝ+
10 : 𝑆 + 𝐻 + 𝐴 + 𝐷 + 𝐶 + 𝑇 + 𝐷𝐻 + 𝐶𝐻 + 𝑇𝐻 + 𝐴𝐷 ≤

𝜋

𝜇
} 

Theorem 1:If 𝑅0 < 1 then the DFE, 𝐸0, of the model (1), is globally asymptotically stable (GAS) in 𝜓. 

Proof: Consider the Lyapunov function, ℱ = 𝑓1𝐻 + 𝑓2𝐴, where 𝑓1 =
𝜂𝜔 +𝑘2

𝜂𝑘1
, 𝑓2 = 1, with Lyapunov derivative 

(where dot represents differentiation with respect to t ) , 

ℱ = 𝑓1𝐻 + 𝑓2𝐴 =
𝜂𝜔 + 𝑘2

𝜂𝑘1

 
𝛽𝑆(𝐻 + 𝜂𝐴)

𝑁
− 𝐻𝑘1 + 𝜔𝐻 − 𝐴𝑘2 =

𝐻𝑘2

𝜂
 𝑅0 − 1 + 𝐴𝑘2 𝑅0 − 1  

As  all the model parameters are nonnegative, it follows that ℱ < 0 𝑖𝑓 𝑅0 < 1  with ℱ = 0 if and only if H=A=0 

and 𝑅0 = 1.It follows from the LaSalle’s Invariance Principle
6
,that, whenever 𝑅0 < 1 , every solution to the 

equations of the model (1), with initial conditions in 𝜓 approaches 𝐸0 as 𝑡 → ∞,  

 

VI. Existence and Local Stability of Endemic Equilibrium point: 
To determine the conditions for the existence of the endemic equilibria of the model (1), denoted by 𝐸1 =
(𝑆∗∗, 𝐻∗∗, 𝐴∗∗, 𝐷∗∗, 𝐶∗∗, 𝑇∗∗,  𝐷𝐻

∗∗, 𝑇𝐻
∗∗, 𝐶𝐻

∗∗, 𝐴𝐷
∗∗),the equations in the model (1) are solved in terms of the 

associated forces of infection at steady-state, namely 

𝜆𝐻
∗∗ =

𝛽(𝐻∗∗+𝜂𝐴∗∗)

𝑁∗∗  (2)     

We get the following expressions of the modelfor the state variables: 

𝐻∗∗ =
𝜆𝐻

∗∗ 𝑆∗∗

𝑘1

, 

𝐴∗∗ =
𝜆𝐻

∗∗𝑆∗∗𝜔

𝑘1𝑘2

, 

𝐷∗∗ =
𝛾𝑆∗∗

𝜆𝐻
∗∗ + 𝑘3

, 

𝐶∗∗ =
𝜍𝛾𝑆∗∗

(𝜆𝐻
∗∗ + 𝑘3)(𝜆𝐻

∗∗ + 𝑘4)
, 

𝑇∗∗ =
𝛾𝑆∗∗ 𝜏𝐷(𝜆𝐻

∗∗ + 𝑘4 + 𝜍𝜏𝐶]

(𝜆𝐻
∗∗ + 𝑘3)(𝜆𝐻

∗∗ + 𝑘4)(𝜇 + 𝜆𝐻
∗∗)

, 

𝐷𝐻
∗∗ =

𝛾𝑆∗∗𝜆𝐻
∗∗

(𝜆𝐻
∗∗+𝑘3)𝑘5

,(3) 

𝐶𝐻
∗∗ =

𝛾𝑆∗∗𝜆𝐻
∗∗[𝜍𝑘5 + 𝜍𝐻(𝜆𝐻

∗∗ + 𝑘4)]

(𝜆𝐻
∗∗ + 𝑘4)(𝜆𝐻

∗∗ + 𝑘3)𝑘5𝑘7

, 

𝑇𝐻
∗∗ =

𝛾𝑆∗∗𝜆𝐻
∗∗

𝑘5𝑘6𝑘7(𝜆𝐻
∗∗ + 𝑘3)(𝜆𝐻

∗∗ + 𝑘4)(𝜇 + 𝜆𝐻
∗∗)

[𝑘7(𝜆𝐻
∗∗ 

        +𝑘4) 𝜇 + 𝜆𝐻
∗∗ 𝜏𝐷𝐻 + 𝑘5𝑘7(𝜏𝐷(𝜆𝐻

∗∗ + 𝑘4)𝑘5𝑘7 + 𝜍𝜏𝐶) 
       +𝜏𝐶𝐻 𝜇 + 𝜆𝐻

∗∗ (𝜍𝑘5 + 𝜍𝐻(𝜆𝐻
∗∗ + 𝑘4))], 

𝐴𝐷
∗∗ =

𝛾𝑆∗∗𝜆𝐻
∗∗

𝑘5𝑘6𝑘7𝑘8(𝜆𝐻
∗∗ + 𝑘3)(𝜆𝐻

∗∗ + 𝑘4)(𝜇 + 𝜆𝐻
∗∗)

[(𝜆𝐻
∗∗ 

        +𝑘4) 𝜇 + 𝜆𝐻
∗∗ (𝑘6𝜍𝐶𝜍𝐻 + 𝜍𝑇𝑘7𝜏𝐷𝐻 + 𝑘6𝑘7𝜍𝐷 + 𝜍𝑇𝜍𝐻𝜏𝐶𝐻) 

         +(𝜆𝐻
∗∗ + 𝑘4)𝜍𝑇𝜏𝐷𝑘5𝑘7 + 𝜍𝑘5 𝜇 + 𝜆𝐻

∗∗ (𝑘6𝜍𝐶 + 𝜍𝑇𝜏𝐶𝐻)]. 
Thus using (3) in (2) we get:𝑎(𝜆𝐻

∗∗)4 + 𝑏(𝜆𝐻
∗∗)3 + 𝑐(𝜆𝐻

∗∗)2 + 𝑑𝜆𝐻
∗∗ + 𝑒 = 0                       (4) 

where, a=𝜔𝑘5𝑘6𝑘7𝑘8+𝑘2𝑘5𝑘6𝑘7𝑘8, (5) 

𝑏 = 𝛾𝑘1𝑘2𝑘6𝑘7𝑘8 + 𝑘2𝑘4𝑘5𝑘6𝑘7𝑘8 + 𝛾𝑘1𝑘2𝑘7𝑘8𝜏𝐷𝐻 + 𝛾𝑘1𝑘2𝑘6𝜍C𝜍H + 𝜇𝜔𝑘5𝑘6𝑘7𝑘8+𝜇𝑘2𝑘5𝑘6𝑘7𝑘8 +
𝛾𝑘1𝑘2𝑘6𝑘7𝜍D + 𝑘1𝑘2𝑘5𝑘6𝑘7𝑘8 + 𝜔𝑘4𝑘5𝑘6𝑘7𝑘8 + 𝛾𝑘1𝑘2𝑘6𝑘8𝜍H + 𝛾𝑘1𝑘2𝑘8𝜍H𝜏𝐶𝐻 + 𝛾𝑘1𝑘2𝜍H𝜍T𝜏𝐶𝐻 +
𝜔𝑘3𝑘5𝑘6𝑘7𝑘8+𝑘2𝑘3𝑘5𝑘6𝑘7𝑘8 + 𝛾𝑘1𝑘2𝑘7𝜍T𝜏𝐷𝐻 − 𝑘5𝑘6𝑘7𝑘8𝛽 𝜂𝜔 + 𝑘2  
𝑐 =
𝛾𝜍𝑘1𝑘2𝑘5𝑘6𝑘8 + 𝛾𝜇𝑘1𝑘2𝑘7𝑘8 + 𝛾𝑘1𝑘2𝑘4𝑘6𝑘7𝑘8 + 𝛾𝑘1𝑘2𝑘5𝑘6𝑘7𝑘8 + 𝜇𝑘1𝑘2𝑘5𝑘6𝑘7𝑘8 + 𝜇𝜔𝑘3𝑘5𝑘6𝑘7𝑘8 +
𝜇𝑘2𝑘3𝑘5𝑘6𝑘7𝑘8 + 𝑘2𝑘3𝑘1𝑘5𝑘6𝑘7𝑘8 + 𝜇𝜔𝑘4𝑘5𝑘6𝑘7𝑘8 + 𝜇𝑘2𝑘4𝑘5𝑘6𝑘7𝑘8 + 𝑘1𝑘2𝑘4𝑘5𝑘6𝑘7𝑘8 +
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𝜔𝑘3𝑘4𝑘5𝑘6𝑘7𝑘8 + 𝑘2𝑘3𝑘4𝑘5𝑘6𝑘7𝑘8 + 𝛾𝜍𝜍𝐶𝑘1𝑘2𝑘5𝑘6+𝛾𝑘1𝑘2𝑘6𝑘7𝜇𝜍𝐷 + 𝛾𝑘1𝑘2𝑘4𝑘6𝑘7𝜍𝐷 +
𝛾𝑘1𝑘2𝑘4𝑘6𝑘8𝜍𝐻 + 𝛾𝜇𝑘1𝑘2𝑘6𝑘8𝜍𝐻+𝛾𝜇𝑘1𝑘2𝑘6𝜍𝐶𝜍𝐻 + 𝛾𝑘1𝑘2𝑘4𝑘6𝜍𝐶𝜍𝐻 + 𝛾𝜇𝑘1𝑘2𝑘7𝑘8𝜏𝐷 + 𝛾𝑘4𝑘1𝑘2𝑘7𝑘8𝜏𝐷 +
𝛾𝜇𝑘1𝑘2𝑘7𝜍𝑇𝜏𝐷 + 𝛾𝑘4𝑘1𝑘2𝑘7𝜍𝑇𝜏𝐷 + 𝛾𝜍𝑘1𝑘2𝑘5𝜏𝐶𝑘8 + 𝛾𝜍𝐻𝜇𝑘1𝑘2𝑘8𝜏𝐶 + 𝛾𝜍𝐻𝑘4𝑘1𝑘2𝑘8𝜏𝐶 + 𝛾𝜍𝑘1𝑘2𝑘5𝜏𝐶𝜍𝑇 +
𝛾𝑘1𝑘2𝜏𝐶𝜍𝑇𝜍𝐻 𝜇 + 𝑘4 + 𝛾𝑘1𝑘2𝑘5𝑘7𝜏𝐷 𝜍𝑇 + 𝑘8 −𝑘5𝑘6𝑘7𝑘8𝛽 𝜂𝜔 + 𝑘2 (𝜇 + 𝑘3𝑘4 

𝑑 = 𝛾𝜇𝑘1𝑘2𝑘6𝑘8 𝜍𝑘5 + 𝑘4𝑘7 + 𝑘5𝑘7 + 𝑘1𝑘2𝑘5𝑘6𝑘7𝑘8 𝛾𝜍 + 𝜇𝑘3 + 𝛾𝑘4 + 𝜇𝑘4 + 
𝑘3𝑘4𝑘5𝑘6𝑘7𝑘8 𝜇𝜔 + 𝜇𝑘2 + 𝑘1𝑘2 + 𝛾𝜇𝑘1𝑘2𝑘6 𝜍𝑘5𝜍𝐶 + 𝑘4𝑘7𝜍𝐷 + 𝑘4𝑘8𝜍𝐻 + 𝑘4𝜍𝐶𝜍𝐻 

+ 𝛾𝜇𝑘1𝑘2𝑘8 𝑘4𝑘7𝜏𝐷 + 𝜏𝐶𝜍𝐻 + 𝑘4𝜏𝐶𝜍𝐻 + 𝛾𝜇𝑘1𝑘2𝜏𝐶𝜍𝑇 𝑘5𝜍 + 𝑘4𝜍𝐻 
+ 𝛾𝑘1𝑘2𝑘5𝑘7 𝜍𝑘8𝜏𝐶 + 𝜍𝜍𝑇𝜏𝐶 + 𝑘4𝑘8𝜏𝐷 + 𝑘6𝑘8𝜏𝐷 + 𝑘4𝜍𝑇𝜏𝐷 − 𝑘5𝑘6𝑘7𝑘8𝛽 𝜂𝜔 + 𝑘2 (𝜇𝑘3

+ 𝜇𝑘4 + 𝑘3𝑘4) 

e=𝑘1𝑘2𝑘5𝑘6𝑘7𝑘8(𝛾𝜇𝜍 + 𝛾𝜇𝑘4 + 𝜇𝑘3𝑘4 + 𝛾𝜍𝜏𝐶 + 𝛾𝑘4𝜏𝐷)-𝜇𝑘3𝑘4𝑘5𝑘6𝑘7𝑘8𝛽(𝜂𝜔 + 𝑘2) 
From (5) it follows that a>0 (since all the model parameters are non-negative).By applying the Descartes rule of 

signs
12

 on the equation (4), we get the following result. 

Theorem 2:The model (1) has:(i)a unique endemic equilibrium if b,c,d>0 and e<0, (ii) a unique endemic 

equilibrium if b,c >0 and d, e<0, (iii) a unique endemic equilibrium if b>0 and c,d,e<0, (iv) a unique endemic 

equilibrium if b,c,d,e<0, (v)two endemic equilibrium if b,c,e>0 and d<0, (vi) two endemic equilibrium if b,d,e>0 

and c<0, (vii) two endemic equilibrium if b,e>0 and c,d<0, (viii) two endemic equilibrium if b<0 and c,d,e>0, 

(ix) two endemic equilibrium if b,c<0 and d,e>0, (x) two endemic equilibrium if b,c,d<0 and e>0, (xi) three 

endemic equilibrium if b,d>0 and c,e<0, (xii) three endemic equilibrium if c,d>0 and b,e<0, (xiii) three endemic 

equilibrium if b,c,e<0 and d>0, (xvi) three endemic equilibrium if b,d,e<0 and c>0, (xv) four endemic 

equilibrium if b,d<0 and c,e>0. 

The local stability of endemic equilibrium point, 𝐸1, of the model (1) is consider for the special case where we 

use 𝑁 = 𝑁∗∗, and 𝑆 = 𝑁∗∗ − 𝐻 − 𝐴 − 𝐷 − 𝐶 − 𝑇 − 𝐷𝐻 − 𝑇𝐻 − 𝐶𝐻 − 𝐴𝐷 in (2). 

Theorem 3:Whenever 𝑅0 > 1 ,the endemic equilibrium, 𝐸1, of the reduced basic model (6) is Locally-

asymptotically stable. 

Proof: The proof of theorem is based on using a Krasnoselskii sub-linearity trick
7
.  Using 𝑁 = 𝑁∗∗, and 

𝑆 = 𝑁∗∗ − 𝐻 − 𝐴 − 𝐷 − 𝐶 − 𝑇 − 𝐷𝐻 − 𝑇𝐻 − 𝐶𝐻 − 𝐴𝐷  in the system (1) we get nonlinear system of equations. 

Now linearizing that system around the endemic equilibrium, 𝐸1, we get 
𝑑𝐻

𝑑𝑡
=  −𝑎1 − 𝑘1 + 𝑎2 𝐻 +  −𝑎1 + 𝜂𝑎2 𝐴 − 𝑎1(𝐷 + 𝐶 + 𝑇 + 𝐷𝐻 + 𝑇𝐻 + 𝐶𝐻 + 𝐴𝐷) 

𝑑𝐴

𝑑𝑡
= 𝜔𝐻 − 𝑘2𝐴, 

𝑑𝐷

𝑑𝑡
= 𝑎3 − 𝑘3𝐷 − 𝑎1𝐷, 

𝑑𝐶

𝑑𝑡
= 𝜍𝐷 − 𝑘4𝐶 − 𝑎1𝐶, 

𝑑𝑇

𝑑𝑡
= 𝜏𝐷𝐷 + 𝜏𝐶𝐶 −  𝜇 + 𝑎1 𝑇, 

𝑑𝐷𝐻

𝑑𝑡
= 𝑎1𝐷 − 𝑘5𝐷𝐻,(6) 

𝑑𝑇𝐻

𝑑𝑡
= 𝜏𝐷𝐻𝐷𝐻 + 𝑎1𝑇 + 𝜏𝐶𝐻𝐶𝐻 − 𝑘6𝑇𝐻, 

𝑑𝐶𝐻

𝑑𝑡
= 𝑎1𝐶 + 𝜍𝐻𝐷𝐻 − 𝑘7𝐶𝐻, 

𝑑𝐴𝐷

𝑑𝑡
= 𝜍𝐷𝐷𝐻 + 𝜍𝑇𝑇𝐻 + 𝜍𝐶𝐶𝐻 − 𝑘8𝐴𝐷. 

Where,𝑎1 =
𝛽 𝐻+𝜂𝐴 

𝑁∗∗ , 𝑎2 =
𝛽 𝑁∗∗−𝐻−𝐴−𝐷−𝐶−𝑇−𝐷𝐻−𝑇𝐻−𝐶𝐻−𝐴𝐷  

𝑁∗∗ , 

𝑎3 =  𝛾[𝑁∗∗ − 𝐻 − 𝐴 − 𝐷 − 𝐶 − 𝑇 − 𝐷𝐻 − 𝑇𝐻 − 𝐶𝐻 − 𝐴𝐷] 
It follows that the Jacobian of the system (6),at 𝐸1is given by 

𝐽(𝐸1) =

 
 
 
 
 
 
 
 
 
 
−𝑎1 − 𝑘1 + 𝑎2 −𝑎1 + 𝑎2𝜂 −𝑎1 −𝑎1 −𝑎1 −𝑎1 −𝑎1 −𝑎1 −𝑎1

𝜔 −𝑘2 0 0 0 0 0 0 0
0 0 −𝑘3 − 𝑎1 0 0 0 0 0 0
0 0 𝜍 −𝑘4 − 𝑎1 0 0 0 0 0
0 0 𝜏𝐷 𝜏𝐶 −𝜇 − 𝑎1 0 0 0 0
0 0 𝑎1 0 0 −𝑘5 0 0 0
0 0 0 0 𝑎1 𝜏𝐷𝐻 −𝑘6 𝜏𝐶𝐻 0
0 0 0 𝑎1 0 𝜍𝐻 0 −𝑘7 0
0 0 0 0 0 𝜍𝐷 𝜍𝑇 𝜍𝐶 −𝑘8 

 
 
 
 
 
 
 
 
 

 

Assume that the system (6) has solution of the form 

𝑍  𝑡 = 𝑍 
0𝑒

𝜃𝑡  ,                                                                                                                                     (7) 
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With𝑍 
0 = (𝑍1, 𝑍2, 𝑍3, 𝑍4 , 𝑍5 , 𝑍6, 𝑍7, 𝑍8, 𝑍9), 𝜃𝑍𝑖 ∈  ℂ(𝑖 = 1,2,3, … . ,9). Substituting (7) into (6), we get 

𝑍1 1 + 𝐹1 𝜃  + Γ = (𝑀𝑍 )1 , 
𝑍2 1 + 𝐹2 𝜃  = (𝑀𝑍 )2  , 
𝑍3 1 + 𝐹3 𝜃  = (𝑀𝑍 )3  ,                                                                                                 (8) 

𝑍4 1 + 𝐹4 𝜃  = (𝑀𝑍 )4 ,              
𝑍5 1 + 𝐹5 𝜃  = (𝑀𝑍 )5  , 
𝑍6 1 + 𝐹6 𝜃  = (𝑀𝑍 )6  , 
𝑍7 1 + 𝐹7 𝜃  = (𝑀𝑍 )7  , 
𝑍8 1 + 𝐹8 𝜃  = (𝑀𝑍 )8  , 
𝑍9 1 + 𝐹9 𝜃  = (𝑀𝑍 )9 . 

where,𝐹1 =  
𝜃+𝑎1−𝑎2

𝑘1
+

𝑎1𝜔

𝑘1 𝜃+𝑘2 
−

𝜂𝜔 𝑎2

𝑘1(𝜃+𝑘2)
 , 𝐹2 =

𝜃

𝑘2
, 𝐹3 =

𝜃+𝑎1

𝑘3
, 𝐹4 =

𝜃+𝑎1

𝑘4
, 𝐹5 =

𝜃+𝑎1

𝜇
, 𝐹6 =

𝜃

𝑘5
, 𝐹7 =

𝜃

𝑘6
, 𝐹8 =

𝜃

𝑘7
, 𝐹9 =

𝜃

𝑘8
 

with 𝑀 =

 
 
 
 
 
 
 
 
 
 
 
 
 

0 0 0 0 0 0 0 0 0
𝜔

𝑘2
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0
𝜍

𝑘4
0 0 0 0 0 0

0 0
𝜏𝐷

𝜇

𝜏𝐶

𝜇
0 0 0 0 0

0 0
𝑎1

𝑘5
0 0 0 0 0 0

0 0 0 0
𝑎1

𝑘6

𝜏𝐷𝐻

𝑘6
0

𝜏𝐶𝐻

𝑘6
0

0 0 0
𝑎1

𝑘7
0

𝜍𝐻

𝑘7
0 0 0

0 0 0 0 0
𝜍𝐷

𝑘8

𝜍𝑇

𝑘8

𝜍𝐶

𝑘8
0 
 
 
 
 
 
 
 
 
 
 
 
 

 

Here,𝑀(𝑍 )𝑖  , (with i=1,2,3,4,5,6,7,8,9) denotes the ith co-ordinate of the vaector 𝑀(𝒁 ). Here, the matrix M is 

non-negative, and the equilibrium 𝐸1 satisfies𝐸1 = 𝑀𝐸1 and the coordinates of 𝐸1 are all positive. Therefore if 𝒁  

is a solution of equation (8), then there exists a minimal positivereal number , s, such that  𝒁  ≤ 𝑠𝐸1, where , 

 𝒁  = ( 𝑍 1,  𝑍 2,  𝑍 3 ,  𝑍 4,  𝑍 5,  𝑍 6 ,  𝑍 7,  𝑍 8 , 𝑍 9), where  .   is a norm in ℂ.we have to show that 𝑅𝑒𝜃 < 0. 

We assume 𝑅𝑒𝜃 ≥ 0. At first we consider 𝜃 = 0. The determinant of this system corresponds to that of  the 

Jacobian of system (6) at 𝐸1, which is given by 

∆=  −𝑘3 − 𝑎1  −𝑘4 − 𝑎1  −𝜇 − 𝑎1 𝑘5𝑘6𝑘7𝑘8 −𝜂𝜔𝑎2 + 𝜔𝑎1 + 𝑎1𝑘2 − 𝑎2𝑘2 + 𝑘1𝑘2  
                  = − 𝑘3 + 𝑎1  𝑘4 + 𝑎1  𝜇 + 𝑎1 𝑘5𝑘6𝑘7𝑘8[𝑎1(𝜔 + 𝑘2) + 𝑘1𝑘2(1 − 𝑅0)] 

since parameters of the model are non-negative ,then  ∆≠ 0 ,whenever 𝑎1(𝜔 + 𝑘2) ≠ 𝑘1𝑘2(1 − 𝑅0).Therefore 

the system has a trivial solution 𝒁 =0 , (corresponds to the DFE, 𝐸0). Now we consider 𝜃 ≠ 0 and and assume 

that𝑅𝑒𝜃 > 0. In  this case  1 + 𝐹𝑖(𝜃) > 1 for i=1,2,….,9 and we define 𝐹 𝜃 = min⁡{ 1 + 𝐹𝑖 𝜃  , 𝑖 =

1,2, … . ,9} then 𝐹 𝜃 > 1. Here, 
𝑠

𝐹 𝜃 
< 𝑠. Here, s is the minimal positive real number such that  𝑍  ≤ 𝑠𝐸1, so 

 𝑍  >
𝑠

𝐹(𝜃)
𝐸1 and we obtain the inequality, 𝐹(𝜃)𝑍 ≤ 𝑀𝑍 ≤ 𝑠(𝑀𝐸1) ≤ 𝑠𝐸1, which follows that 𝑍 ≤

𝑠

𝐹 𝜃 
𝐸1 , 

which is a contradiction.Therefore, 𝑅𝑒𝜃 < 0 and this provesfor ℛ0 > 1 the EE, 𝐸1, is locally asymptotically 

stable. 

 

Table 1. Description of the parameters of the model 
Parameter Description 

𝜋 Recruitment rate of humans 

𝛾 Incidence rate of Diabetes Mellitus 

𝛽 Effective contact rate 

𝜍 Transfer rate between 𝐷 𝑡   and 𝐶 𝑡  

𝜂 Modification parameter 

𝜍𝐻  Transfer rate between𝐷𝐻 𝑡   and 𝐶𝐻 𝑡  

𝜍𝐷  Transfer rate between𝐷𝐻 𝑡   and 𝐴𝐷 𝑡  

𝜍𝐶  Transfer rate between𝐶𝐻 𝑡  and 𝐴𝐷 𝑡  

𝜍𝑇  Transfer rate between𝑇𝐻 𝑡   and 𝐴𝐷 𝑡  

𝜈 Disable rate 

𝜈𝐻 Disable rate 

𝜏𝐷 Transfer rate between 𝐷 𝑡   and 𝑇 𝑡  
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𝜏𝐷𝐻  Transfer rate between 𝐷𝐻 𝑡   and𝑇𝐻 𝑡  

Table 1. Description of the parameters of the model(continued) 
𝜏𝐶 Transfer rate between 𝐶 𝑡   and 𝑇 𝑡  

𝜏𝐶𝐻  Transfer rate between 𝐶𝐻 𝑡   and𝑇𝐻 𝑡  

𝜇 Natural mortality rate 

𝜔 Transfer rate between 𝐻 𝑡   and𝐴 𝑡  

𝛿1 Disease induced mortality rate due to complication 

𝛿2 Disease induced mortality rate due to co-infection 

𝛿3 Disease induced mortality rate due to HIV 

𝛿4 Disease induced mortality rate due to co-infection 

 

VII. Numerical Simulations and Discussions: 
The model (1) is simulated, using the different parameter values. From figure (1), it is monitored that, 

if the effective contact rate (𝛽), decreases and the treatment rates (𝜏𝐷 , 𝜏𝐶 , 𝜏𝐷𝐻 , 𝜏𝐶𝐻) increases then the total 

number of infected human population decreases rapidly (𝑅0 < 1).  Figure (2) and (3)indicates that if the rate  𝛽, 

the effective contact rate  increases and the rate𝜇, the natural mortality rate decreases, then the total number of 

infected human population increases rapidly (𝑅0 > 1). Figure(4) presents a contour plot of 𝑅0 as a function of 

effective contact rate (𝛽) and modification parameter (𝜂) which depicts that if the rate 𝛽 and 𝜂 increases then 

the burden of the disease increases and if the rate 𝛽 and 𝜂 decreases then the burden of the disease decreases. 

 
Figure 1:Graph of the model (1) showing the total number of infected human population as a function of time, 

where 𝛽 = 0.19, 𝜏𝐷 = 0.7 , 𝜏𝐶 = 0.76, 𝜏𝐷𝐻 = 0.8, 𝜏𝐶𝐻 = 0.7, 𝑅0 = 0.6571. 
 

 
Figure 2 :Graph of the model (1) showing the total number of infected human population as a function of time, 

where 𝛽 = 0.21, 𝑅0 = 1.7796. 
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Figure 3:Graph of the model (1) showing the total number of infected human population as a function of time, 

where 𝛽 = 0.3, 𝜇 =
1

30
, 𝑅0 = 3.7813. 

 
Figure 4:Graph of the model (1) showing a contour plot of 𝑅0 as a function of effective contact rate (𝛽) and 

modification parameter (𝜂) 

 

 

VIII. Conclusions 
In summary the main findings of this paper are itemized below 

I. The disease-free equilibrium, 𝐸0, is locally asymptotically stable when the basic reproduction number,ℛ0, 

is less than unity. 

II. The disease-free equilibrium, 𝐸0, is globally asymptotically stable when  ℛ0 < 1 

III. The endemic equilibrium, 𝐸1, is locally asymptotically stable whenℛ0 > 1 

IV. Reduction of the effective contact rate 𝛽 of HIV can lessen the disease burden. 

V. Increase in the treatment rate (𝜏𝐷 , 𝜏𝐶 , 𝜏𝐷𝐻 , 𝜏𝐶𝐻) can lessen the disease burden of co-infection 
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