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Abstract:In modern finance, derivatives like options are actively traded on many exchanges throughout the 

world. Since pricing option is a challenging task, it attracts the attention of many researchers nowadays. In 

many cases calculation of large number of prices is required in short time, so fast and accurate calculation of 

option price is crucial. This paper introduces some fundamental concepts on underlying option valuation theory 

including implementation of computational tools. To do this, numerical methods such as Binomial Trees, Monte 

Carlo Simulation are discussed. Both these numerical techniques are used to price the most desirable European 

options. Hence the results are compared with the standard Black-Scholes-Merton Model with the help of a 

computer algebra system MATLAB. 
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I. Introduction 
Options are extremely versatile financial contracts and the name itself indicates the implication of 

choice of the holder. The seller of an option has compulsion of anyhow meeting up the constraints under it while 

the holder owns free will to decide whether to use it or not [1]. However, to master the art of option trading, one 

requires proper investment of practice and time, as well as enough money and risk management. Moreover, 

volatility issues are to be taken under immense attention in order to exert options to the fullest [2]. 

Option pricing models are generally mathematical models that use certain parameters to calculate 

theoretical value of an option. The most favored option pricing model is the Black-Scholes-Merton or Black-

Scholes model proposed by Fisher Black, Myron Scholes and Robert Merton back in 1973 [3] which led them to 

win Nobel prize in 1997. It is still considered as the benchmark of all posterior models and is extensively 

practiced to evaluate the premium of an option as it provides a simple closed form solution in case of a 

continuous dividend paying stock price. Though most of the option pricing models are mainly modified forms of 

this model, it some- times gives inaccurate prices while tested against real data due to some rigid assumptions 

such as geometric Brownian motion with constant drift and volatility which are barely justified in real market 

[4]. Under these assumptions, the change in the asset price is normally distributed. 

On the other hand, the Binomial Tree option pricing model is an alternative option valuation method 

developed in 1979 by Cox, Ross and Rubinstein [5]. According to them the value of a European option can be 

obtained by discounting the expected maturity value of the option. This method arises form discrete random 

walk models of the underlying option and uses an iterative procedure which allows specified nodes or time 

points, during the time span between the valuation and expiration date of the option. After each time interval, 

the price can go either up or down by a given percentage [6]. The model provides no analytic solution hence the 

option price must be evaluated by numerical techniques. 

Another substitution can be done by Monte Carlo simulation which is a numerical technique. This 

technique provides a series of procedures to sample random outcomes for a particular process. In 1987, Hull and 

White applied this technique to price options with stochastic volatility [7]. As an alternative to Black-

Scholesand Binomial Tree methods, Boyle proposed Monte Carlo as an option pricing model in 1977 given the 

fact that it can be tempered to adapt with different processes under the stock returns [8].Again in 1997, with the 

association of Glasserman and Broadie, Boyle used Monte Carlo simulation for security pricing [9]. 

The purpose of this paper is to represent the performance of two different numerical schemes for option 

pricing. One is a discrete model known as Binomial Tree while the other is Monte Carlo- a simulation process. 

We consider Black-Scholes generated option price as exact value and hence compare the convergence of the 

above mentioned models with it. In section II, we discuss the models in details. The results and discussions are 

added in section III. At last in section IV, we present some concluding remarks. 
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II. Models 
In the next section, we are going to discuss three option pricing methodology, named as, Black-Scholes 

model, Binomial Tree and Monte Carlo. We also include some numerical results accompanying with MATLAB 

programming codes. 

Black-Scholes Model 

Black-Scholes is a pricing model used to determine the fair price or theoretical values for a European 

call or put option. This model provides a partial differential equation which must be satisfied by price of any 

derivative dependent on non-dividend asset. The differential equation is based on some assumptions [3], such 

as, the stock price can be characterized by the following stochastic process with constant expected return ( )  

and volatility ( ) : 

dS Sdt Sdz    (1) 

where, z is a standard Brownian motion and ( ) ~ (0, )z t N t , S is the stock price, T is time to maturity with 

[0, ]t T , r is the risk-free interest rate. Solving the partial differential equation given by this model, we get a 

closed form solution to calculate European call option price ( )C as follows: 

( )( ) ( )1 2
r T tC S N d Ke N dt

    
(2) 

Similarly, formula for European put option price ( )P  is,  

( ) ( ) ( )2 1
r T tP Ke N d S N dt

      
(3) 
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The Black-Scholes pricing formula leads to a direct calculation of the option value which could make a high 

computational effort. Also it is not possible to find the option price at any period through this model. Therefore 

we discuss other two numerical option pricing techniques. 

 

Binomial Model 

The Binomial option pricing model reduces the likelihood of price changes and remove the possibility 

for arbitrage. Under the assumption of a perfectly efficient market, it is able to provide a mathematical value of 

an option at each point in the defined time-frame. The model takes a risk-neutral approach to valuation [3] and 

assumes that underlying security prices can only either increase (by the factor u ) or decrease (factor d ) with 

time until the option expires worthless as shown in FIGURE 1. 

 
 

FIGURE 1:   Stock price movement in general Binomial Tree. 

Risk-neutrality demands: (1 ) .rdtSe pSu p Sd    Here, p  is the probability of an up movement and 

(1 )p probability of a down movement. The discounted expected return equals the current price[10].Applying 

the same argument from time period to time period, it is possible to have Binomial trees with multiple time steps 

to simulate the movement of the underlying asset more accurately. Adding more steps in the tree leads to a 

Binomial distribution with more and more possible outcomes which should ultimately approximate to the 

continuous, lognormal distribution such as continuous time pricing models like Black-Scholes. 
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The two most popular models for Binomial pricing are Cox, Ross and Rubinstein (1979, CRR for short) whose 

extra advantage is to set [11], 

1ud  ; Tu e ; Td e  ; 
rTe d

p
u d





 

The other is Rendleman and Bartter (1979) who choose, 

1
2

p  ; 
21( )

2
r T T

u e
  

 ;  
21( )

2
r T T

d e
  

  

Let us consider that, 0S is the current stock price and we have N time steps with time interval Tt
N

  . If we 

take ijS  and ijC  as the underlying stock price and European call option price respectively after time step i  and 

upstate j , then we have[12], 

0
i i j

ijS S u d   (4) 

 0max ,0j N j
NjC S u d K   (5) 

 1, 1 1,(1 )r t
ij i j i jC e pC p C 

      (6) 

 

where i N and p , u and d are selected according to any preferred model (CRR or alternative). 

 

MONTE CARLO SIMULATION 

Monte Carlo is a numerical scheme that uses the probabilistic solution and is very useful for options on 

more than one underlying asset The main idea behind the Monte Carlo technique is that we simulate paths that 

could be taken by the underlying asset (under the risk-neutral probability) to estimate an expected option price at 

expiry,which can be discounted back to today [8]. The convergence of the correct option value will be at a rate 

of
1
2N  , where N is the number of sample paths. If we have a sequence of independent, identically distributed 

random variables nY then we have that, 
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(7) 

 

 

which is the law of large numbers[12]. With the Monte Carlo technique what we are trying to do is to evaluate 

the value of  Tf Y    which is the expectation of a function of a random variable TY .Consider a derivative 

dependent on a single market variable S that provides a payoff at time T . Then we can value the derivative as 

follows [3]: 

1. Sample a random path for S in a risk-neutral world. 

 

2. Calculate the payoff from the derivative. 

 

3. Repeat steps 1 and 2 to get many sample values of the payoff from the derivative in a risk-

neutral world. 

 

4. Calculate the mean of the sample payoffs to get an estimate of the expected payoff in a risk-

neutral world. 

 

5. Discount this expected payoff at the risk-free rate to get an estimate of the value of the 

derivative 

           Since Monte Carlo method is built on the foundation of risk-neutral pricing, the price of underlying asset 

in a risk-neutral world follows Itoprocess.To simulate the path followed by S, we can divide the life of the 

derivative into 𝑁 short intervals of length t and approximate the equation (8) 

t t t t tS S rS t S t        (8

) 

 

where, is a random sample from a normal distribution with mean zero and standard deviation of 1.0. So the 

values of S at time t are to be calculated from the initial value of S , the value at time 2 t to be calculated 

from the value at time t , and so on. One simulation trial involves constructing a complete path for S using N  

random samples from a normal distribution. Since in practice it is more accurate to simulate lnS rather than S . 

Using Ito’s lemma ,we get the process followed by lnS as follows : 
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(10

) 

This equation is used to construct a path for S . For the time interval [0, ]T  and considering r and  are 

constant we get,  
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(11

) 

To estimate the expected option value at time T , then we take random draws from the𝑁 0,1 distribution which 

enables us to calculate TS and then calculate ( )TV S . To get an approximation of the expectation, we then 

average ( )TV S . Thus if the n th draw from the normal distribution gives ( )n
TV S , then by the law of large 

numbers [12], 
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The following figure shows different paths of the stock price which follows geometric Brownian motion. 

 

 
FIGURE 2: Simulating paths for one stock price. 

 

It is very simple to apply Monte Carlo method for different types of options. Here we will profile a general case 

of European options. We discount back the final payoff by factor exp −𝑟𝑡 and derive the payoff function. For 

a European call option the payoff at maturity 𝐶 𝑆𝑇  is given by, 

𝐶 𝑆𝑇 = (𝑆𝑇 − 𝐾)+
 (12

) 

 

and the underlying asset follows, 

𝑆𝑇 = 𝑆𝑡 exp   𝑟 −
𝜎2

2
 (𝑇 − 𝑡) + 𝜎ɸ𝑛 𝑇 − 𝑡  

(13) 

So to value the option we need to simulates 𝑁 possible values or paths for 𝑆𝑇by making𝑁 independent draws 

from 𝑁 0,1 then to use these possible values,denoting them ɸ𝑛 for 1 ≤ 𝑛 ≤ 𝑁, we have, 

𝑆𝑇
𝑛 =  𝑆𝑡 exp   𝑟 −
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2
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𝐶 𝑆𝑡 , 𝑡 = exp −𝑟 𝑇 − 𝑡  
1

𝑁
 𝐶(𝑆𝑇

𝑛)

𝑁

𝑛=1

 

 

(16

) 

 

 

III. Result & Discussion 
In this section, we see the calculation of option values by the two methods discussed so far and hence discuss 

the convergence of these models with the standard Black-Scholes produced option values. 

 

Binomial Model 
Let us consider an example to price an European call option using multi step Binomial tree with 

expiration time 1T  year, stock price 0S =100, strike price 100K  ,risk-free interest rate 0.06r   and 

volatility 0.2.  For three step Binomial tree we get the price 11.552 at time t = 0 produced by MATLAB 

coding. Black-Scholes model gives 10.9895 for the same data. In FIGURE 3, we see the movement of stock 

price with different time period. The corresponding call option price is obtained by backward process. The 

option prices are shown in Figure 4. 

 

 
 

 

FIGURE 3: Stock price dynamics in different time 

period. 

FIGURE 4: Option price dynamics in different time 

period. 

 

In Table 1 we observe that, as the number of steps increases Binomial tree prices converge to Black-Scholes 

price. 

 

Table 1: European call option prices using Binomial tree for different number of steps. 

Number of Steps Binomial Tree Price Black Scholes Price Absolute Error Relative Error 

5 11.3272  0.3377 0.0307 

10 10.7910  0.1985 0.0181 

15 11.1015  0.1120 0.0102 

20 10.8896  0.0999 0.0091 

25 11.0566  0.0671 0.0061 

30 10.9227  0.0668 0.0061 

35 11.0374  0.0479 0.0044 

40 10.9394  0.0501 0.0046 

45 11.0267  0.0372 0.0034 

50 10.9494 10.9895 0.0401 0.0037 

55 11.0200  0.0305 0.0028 

60 10.9561  0.0334 0.0030 

65 11.0153  0.0258 0.0023 
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70 10.9608  0.0287 0.0026 

75 11.0118  0.0223 0.0020 

80 10.9644  0.0251 0.0023 

85 11.0092  0.0197 0.0018 

90 10.9672  0.0223 0.0020 

95 11.0071  0.0176 0.0016 

100 10.9694  0.0201 0.0018 

 

In FIGURE 5, we show the convergence of Binomial tree option price with the Black-Scholes price for 

different number of time steps. We clearly notice that Binomial tree is not good for small number of steps, but 

almost converges to the right price as we increase time steps. 

 
FIGURE 5: Convergence of Binomial tree with increasing number of steps. 

 

Monte Carlo Simulation 
Now we consider the previous example to compute the price of European call option using Monte Carlo 

Simulation as well. We already mentioned that Black-Scholes formula (2) gives 10.9895 for this example. The 

results can be obtained by a simple MATLAB code. The corresponding figure of the example is showing 

below. In FIGURE 6, we observe that, simulation of paths for the European call option then finally we obtain 

the average value (shown in red line). 

 
 

FIGURE 6: Option values for 10000 number of steps. 

 

Increasing the number of iterations in the above Monte Carlo problem gives the following anticipations as 

shown in Table 2: 
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Table 2: Monte Carlo method for different number of paths. 

Trial No. of Paths Option Values Absolute Error Relative Error 

1 10 8.9900 1.9995 0.1819 

2 100 10.6598 0.3306 0.0301 

3 1000 10.6247 0.3648 0.0332 

4 10000 10.8816 0.1079 0.0098 

5 100000 10.9662 0.0233 0.0021 

6 1000000 10.9815 0.0080 0.0007 

7 10000000 10.9913 0.0018 0.0002 

 

From the Table 2, we conclude that, the option value from Monte Carlo comes closer to the value of Black 

Scholes with the increasing number of iterations. Now in the following Table 3, we observe the Monte Carlo 

price for different strike and maturity comparing with the Black-Scholes price. 

 

Table 3: European call option pricing by Monte Carlo for different strike prices and varying maturity with 

fixed 1000n  , 0 100S  , 0.06r  & 0.2.   

K T Black-Scholes Price Monte Carlo Price Absolute Error Relative Error 

 

 

90 

0.2 

0.4 

0.6 

0.8 

1.0 

11.4475 

13.0790 

14.5966 

16.0118 

17.3456 

11.3103 

12.8842 

15.4463 

15.8425 

17.6490 

0.1372 

0.1948 

0.8497 

0.1693 

0.3033 

0.0120 

0.0149 

0.0582 

0.0106 

0.0175 

 

 

100 

0.2 

0.4 

0.6 

0.8 

1.0 

4.1740 

6.2581 

7.9957 

9.5516 

10.9895 

4.1847 

6.1674 

7.9812 

10.3542 

10.6648 

0.0106 

0.0907 

0.0145 

0.8025 

0.3248 

0.0025 

0.0145 

0.0018 

0.0840 

0.0296 

 

 

110 

0.2 

0.4 

0.6 

0.8 

1.0 

0.8832 

2.3417 

3.7672 

5.1304 

6.4373 

0.9024 

2.2169 

3.9265 

4.8066 

6.2845 

0.0192 

0.1248 

0.1593 

0.3237 

0.1528 

0.0218 

0.0533 

0.0423 

0.0631 

0.0237 

 

IV. Conclusion 
           Throughout this paper, we investigated two different numerical techniques for option pricing namely, 

the Binomial model and Monte Carlo simulation. Then we compared the convergence of these methods to the 

analytic Black-Scholes price. Binomial model proved to be the fastest converging technique with increasing 

number of steps. As time interval becomes close to infinity, the binomial pricing formula converges to the 

Black-Scholes price. On the other hand, Monte Carlo works forward from the beginning to the end of the life of 

an option. It can cope with a great deal of complexities as far as the payoffs are concerned. As the number of 

simulations increase, Monte Carlo shows better convergence. But it is quite time consuming as it requires large 

amounts of random numbers. Finally, we can say that both these numerical techniques discussed throughout 

this work are satisfactorily flexible to evaluate European options. Though we computed and observed all the 

outcomes under these models for European call options, they can also be used to achieve similar results for 

European put options. The basic procedures which are reported here can be used to handle most of the option 

valuation problems encountered in real world. 
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