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Abstract: In this paper we have explained a new theory of Weierstrass transform defined on Howell’s space. 

The definition of the Weierstrass transform on this space of test functions is discussed. Some Fundamental 

theorems are proved and some  results are developed. Weierstrass transform defined on Howell’s space is 

linear, continuous and one-one mapping from G to
c

G is also discussed. 
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I. Introduction 
 A new theory of Fourier analysis developed by Howell, presented in an elegant series of papers [2-6] 

supporting the Fourier transformation of the functions on
n

R . This theory is similar to the theory for tempered 

distributions and to some extent, can be viewed as an extension of the Fourier theory. Bhosale [1] had extended 

Fractional Fourier transform on Howell’s space.  Mahalle et. al. [7, 8] described a new theory of Mellin and 

Laplace transform defined on Howell’s space. Motivated by the above work, we are extending this theory to 

Weierstrass transform.  

             In this paper, we have introduced the concept of Weierstrass transform defined on Howell’s space. In 

section II new notation and basic spaces are discussed. We have proved one lemma and and fundamental 

theorem described in section III. Definition of Weierstrass transform on Howell’s space is given in Section IV. 

Some results are proved in section V. The Weierstrass transform defined on this space is linear, continuous and 

one-one, is proved in the form of theorems in section VI. Lastly conclusion is given.     
 

II. Notations and Conventions 
The notations, conventions and the terminologies in this work follow those of [2] and Zemanian [9]. 

Throughout this paper n will denote some arbitrary fixed positive integer and will denote the Lebesgue 

measure on
n

R . Unless otherwise indicated, all functions are to be assumed to have domain in 
n

C and the 

range in
1

C . The notations  
n

yyyy ,.....,,
21

 and  i will be considered interchangeable and all denote 

the n -dimensional complex variable with real part  
n

 ,....,,
21

  and imaginary part 

 
n

 ,.....,,
21

 . 

2.1 Here we list some notation form Howell [2], which will be used prominently in this work. 

 

(1) The translation: Let CCf
n
: . For each

n
C , f


 will denote the translation of f  by , given by                   

                                                                      


 yff
y

| . 

 

(2) Scaling operator: For each C ,  
f  will denote the function f with variable scaled by , that is    

                                                                   yff
y




 |  

 

(3) Exponential function: Let 
n

C . Where convenient, 


e will denote the function given by 

  y
eye




  
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(4) Normal Gaussian: Let 0 . Where convenient 


  will denote the function given by   

 

 

































2

2

exp

2

yn

y








  

(5) Rho seminorm: The symbol  will be reserved for the seminorm on
n

C  given by    




n

k

k
yy

1

Re  

(6) Strips in
n

C : For each 0 ,


B will denote the subset of 
n

C  given by, 

    nkyCyyyyB
k

n

n
,.....,2,1,Im|:,.....,,

21
 


 

Note that 
n

RB 
0

and that if   , then


BB  . 

 

2.2 Basic Spaces G and
c

G : Two spaces of functions will be of especial importance. They will be denoted by 

G and
c

G and are defined below: 

 

2.2.1 Definition  G : A function CC
n
: , is an element of G   if and only if both of the following holds: 

(1) is an analytic function of each complex variable. 

(2) For every 0 , 
     




 ByyeSup

y
:  

 

2.2.2 Definition  c
G : A function CCf

n
: , is an element of 

c
G if and only if both of the following 

holds: 

(1) f is an analytic function of each complex variable  

(2) For every 0  there is a Corresponding 0 such that   


}:{
)(




ByyfeSup

y
 

                

G with suitable topology, will serve as the space of test functions. The following facts will be of 

importance and should all be obvious from the above definitions  

(1) G and
c

G  both  are linear spaces closed under multiplication. 

(2) 
c

GG   

(3) G contains all functions of the form 


  , where 0 and
n

C  

(4) If G  and
n

C ,  then 
i

e  is also in G  and its restriction to 
n

R  is in  n
RL

1
  

(5)
c

G contains all polynomial and exponential functions on
n

C  

(6) Any exponential function 


e with
n

C  is an element of 
c

G . 

The topology on G  is defined by the set of norms  0:. 


, where    

    





 ByyeSup

y
 : . 

Any function , which is analytic in each variable is clearly in G if and only if 


  is finite for every

0 . It is also obvious that, if   , then 


  .  

Similarly the topology on
c

G  is defined by the set of norms  0:. 


 where      

 
    






 ByyeSup

y



: , for every 0 , there is a corresponding 0 . 

              
c

G with suitable topology will serve as the space of test functions. It is also obvious that, if , 


  . A slightly more general relation is expressed in the following lemma. 
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2.3 Lemma: Let 0 , 0k  and G .Then for any 


By  and C with   , 

     yk

k

y
eey











  

Proof: Let y be any arbitrarily fixed elements of 


B and C with   . Then  

      
k

yk

k
ByyeSup













 :  

                     
      

k

yky
ByyeeSup







 :  

     yyk

k
eye




 




 

             Therefore, 

     yk

k

y
eey











 . 

 

III. Fundamental Theorem 

Let G  and
C

Gf   then mapping  f  is continuous linear mapping from G to G . 

Proof: Let  and f are fixed elements of G and
c

G respectively. The analyticity of f is obvious and it 

suffices to produce a suitable bound for


f , where  is arbitrary. Since
c

Gf  , therefore for all 0 , 

there exists 0k such that,  

                  

    Nyfe
yk


 

           
 (Say)                               (3.1) 

Now, to show that Gf  .   

      





 ByyyfeSupf

y
 :

,
 

where


B denote the subset of 
n

C given in section II.  

But G then by lemma 2.3 with    

     yk

k

y
eey











  

Now,  

              

         yfeyfye
yk

k

y 









                

(3.2)
 

From equation (3.1), we get  
     

k

y
Nyfye







  

Thus, for any G , 
 k

Nf


  

From this it follows that f  is an element of G . Therefore the mapping  f  is continuous and linear 

from G to G . 

IV. Definition: Weierstrass transform on G  

For each f in G ,  fW  be the function on 
n

C  given by,  

      

 

y

yx

R

deyfxfW

n







4

2

4

1


 , 

where   is explained in section II. 

This transform is well defined on G , since 
c

G contains all polynomial and exponential functions on 
n

C  that 

is 

 

c

yx

Ge 




4

2

. Hence for   Gyf  ,  

 

Geyf

yx






4

2

 by fundamental theorem. Now by property (4) 

p.no.344 of [2], restriction of  

 

Geyf

yx






4

2

 to 
n

R  belongs to  n
RL

1
. Hence right hand side exists.   
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V. Elementary Weierstrass Analysis on G 
Here we have proved some results which are all analogous to well known results in the classical theory of 

Weierestrass transform for smooth integrable function on
n

R .  

 

5.1 Result: (Scaling and Weierstrass transform on G):   

Let   be any non zero real number and let f be any element of G . Then  

        xfWxfW
n

 



 1


  

 

5.2 Result: Let Gf  . Then for any   and   in
n

C ,          xfeWxfeW
n

  




1 1

 
  

 

5.3 Result: (Differentiation and Weiertrass transform on G ): 

If Gf  , then  fW  is an analytic function of each variables and for nk ,...,3,2,1  

      


ifyiWi
kkk

k
















2

1
 

      


ifyi
i

Wi
kkk

k
















2
 

 
 

)(
2

xf
yx

Wx
dx

d









 
  

 

5.4 Result: If Ggf , , then the restriction to
n

R of the products  fgW  and  gWf  are in  n
RL

1
 and 

      dgWfdfWg

n n
R R

 

 

5.5 Result: (Transform of Normal Gaussian): 

The Weierstrass transform of Normal Gaussian is       xeWxyW

yn



























 41

2

2






 , 

where 
  2

1

2

2

12









 



 .  

5.6 Result: For Gf   and any 
n

C   

    
 

   





























xyfeWexfeW
xy3

24

2







  

 

VI. Continuity of  fW and other operators: 

We prove the following theorem for continuity of  fW  in 
c

G  

6.1 Theorem:  For each Gf  , the mapping  fWf   is continuous, linear and one-one mapping from 

G to
c

G . 

Proof: Let Gf   and  fW . Let x  be any element of


 . 

    





 BxxeSup

x



:  

Now, 
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       

 

y

R

yx

xx
deyfexe

n

 




 4

2

4

1 


                                               (6.1) 

Now, Gf  and

 

c

yx

Ge 




4

2

 as 
c

G contains all polynomial and exponential function on
n

C . Therefore, 

 

 

Geyf

yx






4

2

 . 

Therefore,                                                            

 








4

2
yx

eyf  

                                   i.e.
   

 















 


4

2
yx

y
eyfeSup


,        for all 0  and 


By   

                                                                                                           K           (Say) 

Therefore, 

 

 

yn

yx

Keeyf





4

2

 

From equation (6.1), we get  

      ynxx
e

n

k
xe






 


4

 

                                                                                     for 0  

Therefore  fWf :  is continuous, linear and one-one mapping from G to
c

G . 

 

6.2 Theorem: For each non-zero real value  ,  
 is a continuous, linear and one-one mapping from G to

c
G with inverse 1


. Moreover for each Gf   and  

 

c

yx

Gey 




4

2

4

1


 , 

       



dfdf

nn
R

n

R

1


  

 

Proof: The first part proof is simple so not given here. 

Now, 

   

 

y

yx

RR

deyfdf

nn






 
4

2

4

1






 

 
v

v
x

R

devf

n

























1

4

1
4

2

 

    
v

R

n

dvvf

n

  



1


  

Therefore, 

                                         



dfdf

nn
R

n

R

1


  

              



Weierstrass Transform on Howell’s Space-A New Theory 

DOI: 10.9790/5728-1606045762                              www.iosrjournals.org                                               62 | Page 

6.3 Theorem: For each
n

C , 


  is continuous, linear and one-one mapping from G to
c

G with inverse





. Moreover for each Gf   and

 

c

yx

Ge 




4

2

4

1


 , 


  satisfies the following equality

      
dfdf

nn
RR




 

Proof: First part is so simple, so proof is not given here. 

 Now consider, 

    
 

y

R

yx

R

deyfdf

nn

 




4

2

4

1






 

                      

  

v

R

vx

devf

n

 




4

2

4

1



 

             
v

R

dvvf

n

  



 

Therefore,                              

                                                     
dfdf

nn
RR




 

 

VII. Conclusions 
In the present paper we have introduced a new theory of Weierstrass transform defined on Howell’s 

space. By using notations and terminology we found some results. Proved Fundamental theorem and also 

proved that Weierstrass transform defined on Howell’s space is linear, continuous and one-one mapping from

G to c
G . 
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