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ABSTRACT. This work is about investigating the estimates of the diameters
and amplitudes of the nodal sets of of the strongly oscillatory ( and decaying )

solutions for the quasilinear differential one-dimensional equations of the type
!

(a.(t) w|e—1 u") + c(t)|u|®~tu + b(t)|u |*~t v’ + f(t,u,v') =0 in RT

where the coefficients a and ¢ are strictly positive and continuous
functions ; 3, @ > 0 and "admissible” function f & C‘(RB) . These equations
are the one-dimensional versions the multidimensional ones

V- {A(I)OVM a—1 '\_/"u.-') } +C(2) [|-u.' 51 -u.} +B(x)- (|Vu_.‘ a—1 w;) +

F(z,w,Vw) =0, z&R". This work shows that as concerned those
. . . . c(t i
estimates for such decaying solutions ( e.g. when lim: . Ef)) =0 ; see
alt

[3, 6] ) the admissible perturbations elements ( f or F') do not interfere.
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1. INTRODUCTION

1.1. Preliminaries. .

In the sequel we define the following notations and operators:

Va >0, seR and S eR" ¢, (s):=|s]* s and D,(S) :=[S|*1S and
after easy and elaborate calculations, they have the forrlowing properties:

(1.1)

50a(s) = |,5-\'Y+1: sOL(s) = adals) and  Ga(st) = al(s)dalt);
5%a(S) =[S and  Ba(TS) = Ba(T)Pa(S).

Also for any 5. 8 > 0 and the regular functions « € C?(R) and v €

C?(R™), n > 2, we define the following operators :
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py(u) = {a(t)(bﬁ,(u’)} +c(t)oy(u) 1 t>0 and

Qp(v) =V - {fl{if)(I)‘g(Vl')} + C(x)pg(v) : xeR™
(1.2)

Ty,6(u) :

{a(t)(s")’v(“f)} +c(t)pp(u) t>0 and
Q’Y,ﬁ(”) =V {A(Jf)‘IH(VL‘)} + C'((.zr)(;bﬁ(t.‘) e R™

the coefficients being continuous and positive functions. The operators with only
one index ( like po ) are called halflinear operators and they are homogenous in
the sense that Py(ku) = k*Pa(u) Vk € R. This work will concern only one-
dimensional cases.

For a continuous function w, any bounded and close interval D := D(w) will
be called a nodal set of w if

w(x)#0 inside D(w) and w

ap =10 . (1.3)

Obviously it w is replaced by w™ | w(x) # 0 will be replaced by w(x) >0 (
and by w(x) < 0 for the D(w™) case ) in (1.3).

In the sequel the general hypotheses are:

(H)

Hi) The coefficients of the principal part a and corresponding ¢ are assumed
to be continuous, positive and bounded away from zero.

With t € RY, u defined on R, © € R™, and w defined on R™

H?2) For the perturbations terms like f(t,u,u') and F(x,w,Vw),

i) feCRRR) is positive or Vs € R, sf(t,s,u') > 0;

i) F(x,w,Vw) s positive or Vw e R wF (x,w, Vw) > 0.

HS3) If like in (1L, 5) the operator has bouble indices, the index carried by the

second order part, v here is the leading index. In that case the perturbation term,
f or F say. must satisfy

lim -
§moe dy(E)

1.2. First results related to the operators above via some Picone-type
formulas. Consider for i = 1, 2 the equations

( Pi(y) := {a@-(f)c‘)(-y;}} +ei(t)o(yi) + filt,yi,yi) =0, t€R and

Qi(u;) = V- {Ai(;x.f)(l)(v-ui}} + Ci(x)d(ui) + Fi(z,u;, Vuy) =0, =z € R"™
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Let gy and yo be respectively solutions of P;(y;), ¢ = 1,2. Then wherever s is
non zero, a version of Picone’s identity reads

!
} o ,
{ylal(t)c’)(yi) — 16 " }u-z(f}w(yé)} =

(P) § =aa(t)Calyr,ye) + [a-l(f) - U-g(l‘)] lyy|“t + [fm(t) - Q'I(f}:| lyr |

gy o [fz(t-;ym:f;’g} B fl(i,-yl._y’l)]
‘ d(y2) d(y1)

where, Vv > 0, the two-form function ¢, is defined Vu,v € CY(R, R) by

u woou

e = /" — (v + 1)-&’@5{;1") + ’}-’?*’;(,-‘)T(;-a_f')

(Z1) : Cy(u,v " w !

= o (o D () 4y
v v

is strictly positive for non null « # v and null only if v = Av for some A € R .
Similarly, if «1 and us are respectively solutions of Qu;, i = 1,2, then wherever us
is non zero, a version of Picone’s identity reads

V- {ul,ﬁll(:r')(l)(v-ul) — 'U-]_(,'f)(:Z—::)}IQ(?‘)(I)(VTLQ)} = Ao (r)Za (1, 1)

+ (Al (z) — ‘42(?‘)) Vg [*F 4 (C-'z(i") - C-'l(élf)) Jug [T

Fo(z,ug, Vus)  Fy(r,uy, Vug)
w22 —
(@) + |: d(uz) O(ur) ]

where ¥y >0, Yu,ve CHR™)
(Z22): Z,(u,v):= Vu|" — (v + 1)(1’7(:_fv'?.!) -Vu+ f}r\%v-up"“l

u u u
| = [Vu[" = (y + 1)\?—'v-urf—1 ;V-’v'V-U.Jr’}-'\_z—.VUW“.

We recall that ¥ > 0 the two-form Z,(u,v) > 0 and is null only if 3k e R: v =
kv, ( see e.g. [1], [2] ).

To set a use of Picoine-type formula, we establish the next lemma where the
hypotheses are a bit weaker than in earlier results mainly not requiring for the
coefficient a to be differentiable.

Lemma A.
For some o, m >0, let a, ¢ € C (R"‘: [ m, +00 )) Then any non-trivial

reqular solution of
!/
(7) (cz.(t)(,-“')a(u’)) +c(t)pa(u) + F(t,u,u’)=0; t>0
(ii)  where I € C(R?*, RY) or Yw, s € R wF(t,w,s) >0 and satisfies

F(s,u,w
Yw, s R, lim ({’7“”)

‘ =0
u—0 (g lu)

is strongly oscillatory .
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Proof. Let A and C' be two positive constants ( to be determined a posteriori ).
If we assume that « > 0 in some [R, oo) then the Picone formula from the
equations

(a.(t) Do (-u')) + c(t)pa(u) + F(t,u,uv') =0 and

!
(Ac-*)ﬂ(y')) + C¢a(y) =0 formally gives

{?ﬂ.-’)a(y’} — ydal i‘j”') )} = (A—a®)y """ + a(t)Za(y, u)+

|3,'|O(Jrl (c'(t) —C+ M)

Pa (1)
and the proof is completed by takind in any [R, 10R) A = maxp, 10r) a(l)
and

C' = ming, 10r) c(t) leading to the existence of zeros of u inside any such a
nodal set

D(y™) C (R, 10R).
In fact if we integrate over such a nodal set D = D(y™") , say we get

!
arch o (/Y — 756k Ef
Jo {0 ) = wiat L) } a

o+l atl F(t,u,u’)
= [y A= a1 + o) Zaly. ) + [yi"+ (ef0) - € + =205
o
This is absurd as since y|lap = 0, the left hand side is zero while the right is
strictly positive. Therefore the assumption is false anb u has a zero in any (R, 10R)

for any large I?.

OJ
For ¢ := ¢, and 1 := ¢g, consider in R" the regular solutions u and v of
/
(a(t)g-":{-u')) +c(t)p(u) =0 and
(L.4)

G@MWﬂiﬂﬂﬂMﬂ—& >0

where a,c¢ and ¢ are strictly positive functions.

The version of Picone’s formula we use here for the equations in (1.4) reads for
functions « and w

{H.a(t)r.-'ﬁ(u’) — a(t)uo( :—:) ff"')('“-")}{ (1.5)

= a(t)Zy(u, w) + |u|*T! {(:‘1(t)-u..‘|‘3_“ — ((f}]
where Yu,v € C1(R), ¥ > 0 the two-form
. u T,
Z(u,v) iz |07 — (v 4+ D)o _E—Is." )+ “;-|;z"| r+1

is non-negative and is zero only if u = uv for some it € R.
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Definition 1.1. A function f € C(RT) is said to be oscillatory if it has zeros in
any

Ir := (R, o) and strongly oscillatory if has infinitely many nodal sets inside
any Ig.

We can now establish the first result. This result had been established in
( [4], Theorem 1.3 ) and the proof here is different and much simple.

Theorem 1.2. Let two positive and continuous functions a, ¢ be given. Then
v 3, o > 0, any non-trivial and bounded solution v of

Ta,8(v) = {a.(t)g.-i':a(-z..")} +e(t)pp(v)y=0, t=>0 (1.6)

is strongly oscillatory in R*. This remains true even when any continuous and

g(t, v, v
non-negative perturbation term g(t,u,u’) satisfying M = o(|v]) for

[Pa(v)]
small |v| is added to the equation.
Moreover the perturbation term would also apply if it is a restoration function
lg(t. v, ')
|ba(v)]

Proof. Given the hypotheses on the coefficients a and ¢, any such a solution of
/
(c‘a(f)cﬂ)(u’)) +e(t)p(u) =0, ¢t =0
is strongly oscillatory ( see e.g. [4] ). Let v be a non-trivial and bounded solution

of (1.6).
Assume that v > 0 in some Ir; R >0 and let

inu ( ie Yu, ug(t,u,u)>=0)and = o(|v|) for small |v].

i (H)o(t)]P = ¢ 0.
g Sin ) @) =

Keeping in mind that 10 can be replaced by a bigger number if necessary , the
equation

(a(f)q-ﬁ(u’))r +epd(u) =0, t>0 (1.7)

has a multitude nodal sets D(u™) inside (R, 10R). We choose a nodal set

Dy := D(u™) € (R, 10R). The solution v then satisfies c(t)[v(t)]°~% > cp
in Dp. From (1.5) the Picone-type formula for (1.6) and (1.7) reads in Do ( as
v # 0 there )

{z.f.a(rﬁ,.-:a(-uf) — a(tyug( =) @»(-v’)};

v

= a(t)Za(u, v) + [u[**! [c(t)|z'|-5_c" - CR} (1.8)
where ()07 = e(t)o(t)?™ = ep.

The integration of both sides of (18) over Dy provides a contradiction as the left

hand side gives zero and the right a strictly positive value. Therefore v has to have
a zero in any Ip := (R, o).
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When g(t,v,v") is added to the equation (1.6) the Picone formula gives from
(1.5) ,the new (1.6) and (1.7)

(f-,sz_,.-)(uf))’ +e(t)o(u) =0 and

(c‘;(f)g-’)(z.'"}) +c(t)(v) + g(t,v,0") =0, t=>0

.

, (1.9)
{uq’)(u') u( Z‘z ))} a(t) Zo(u,v) + [u|*F [c(®)|[o]P~* — cr

+ |_u|cr+1 ."}'(t' v, v )

¢ (v)

g(t, v, v")
Iva( )|

=0 ) is to avoid v from being compactly supported ( ie

and the conclusion follows. The estimate condition

g(t, s, v')

|0al(s)|

to satisfy v =0 insome I,, p >0, (see [10] ).

o([v])

(ie. limg g

g

The next result is related to problems with damping terms i.e. problems whose
perturbation terms contains the group B(x) - ®,(Vu) in multidimensional cases
or by(t)pa(u') for one-dimensional case. Here , for the multidimensional case,
BeCYR™, R) and b € CYR, R) for one-dimensional. It is to be noticed that
the damping term is a function of ¢ times the group ¢ (v") which is present in the
principal part of the operator.

We then look at

{a.(t)(,-’jﬂ(z.f.')} +c(t)pg(u) + b(t)dpa(u') =0, t>o0 (1.10)

where b(t)ps(u') denotes the damping term. For multidimensional it has the form

V- {A(:t:)(I)Q.(VU)} + C(2)pp(U) + B(x) - ®5(VU) =0, z=eR"
The first result is the

Theorem 1.3. Let 3. o > 0 be given. Assume that as before and a, ¢ €
C(RT) are strictly positz'*ve

Then if there is B € CY(RT) satisfies B'(t) = b(t) the problem (1.10) is
strongly oscillatory.

Proof. Let u be a non-trivial and bounded solution for (1.10).
Assume that YT > 0, 30 = 0(T) > 0 ; c(t)|lu(t)|?~® > 0 vt € [T, 20T) :=
J(20R)

For the strongly oscillatory equation

{a-(t)f..--aa(y’)}' 0055 =0, 10

we get with (1.10) the following version of Picone-type formula
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r
) ! 1
{ayf.-'i')a(y’) — ayga %u’ ) = Byc’)a( l—i ) }

= o Za) + 1 el o) ~ B (vl 2 ))'

(1.11)

after some straight forward caculations. For R large enough, there are a mul-
titude of nodal sets D(y*) < I?"H). The integration of (1.11) over any such a
D:=D(y") gives

(as ylap=0)

0= [ {o0zas.) + i [l o] ac- [ B(t){yoa(j—j)}’fu.

(1.12)
Obviously for any k& € R (1.10) and (1.11) remain valid if B(¢) + k replaces
B(t). Thusif u > 0 in any 1'%, (1.12) holds after such any replacement i.e.

I R YAV [r(tﬂuﬂ—“H(R)H’dr
_ /D [B(t) + ;Q]{yf,sa( % )} dt

which can so hold only if each of the two integrands is null in D. Since the first
integrang is strongly positive, it cannot hold. Therefore the assumption is false and
u has zeros in any (0%,

(1.13)

O

If the perturbation ¢(t,wu,u’) ( where g fulfills the conditions expressed in (1.9)
) is added to the equation (1.10) it reads

{a.(t)(,-‘)a (-u-’)} + c(t)pp(u) + b(t)da(v') + g(t,u,u') =0, t> o. (1.14)

Corollary 1.4. If the conditions expressed on g are like those in (1.9), then the
conclusions of Theorem 1.3 hold for the problem (1.14).

Proof. If we suppose that there is a bounded and non-trivial solution u of (1.14)
which is strictly positive in any 7119 the proof goes as before as here (1.12) reads

0= [ {awzav.+ it [ctu= — o + L2

P(u)
- /D B(f}{yqﬁ& ( % ) }!dt. u

(1.15)
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2. ESTIMATES FOR SOME DECAYING OSCILLATORY SOLUTIONS

Remark 2.1. We will say that two functions ( solutions ) u and v are over-
lapping in D, say if they have two nodal sets D(ut) and D(v") such that
D(u)UD(w")C D and

3 e DN (DY) ;W€ =2 =0. (2.1)

Moreover whenever D(ut)(D(v%) # 0 there will be such a & € R such that
ether w and V or U and v are overlapping in D(u™)|JD(v") where for any
function w, W(t) = w(t+¢). In the sequel (2.1) will be supposed true whenever
overlapping will be concerned.

Consider for some m > 0 the equation

(a.(t)q-ba(s.!’)) +c(t)pg(v) + g(t,v,0") =0, t > 0;

2.2
a, c € C(R", (m, o) ); (22)
3, a >0 and g is like in Theorem 1.2.
Theorem 2.2. In addition of the hypotheses on a and ¢ assume that
, _a(t) : (F) —
with x(t) := ol tl/l}lglo x(t) =0. (2.3)
Then with Dp(vT) = [ty, t3] denoting a nodal set of v* inside It := (T, o),
as t /" oo,
(i) diam D(v+) = [ta —t1| = O( x(t)/etl) ) 2.4)

() if in addition a > 1 then also max ov(t) = O( \ () (et1) )
teD(v+)

Proof. Let v be a non-trivial and bounded solution of (2.2). v is strongly oscillatory
and vk >0 | so is that of the auxillary equation

!
(a(t)q}a(u"}) + ke(t)pa(u) =0, t=0. (2.5)
Asin (1.9) a Picone-type formula from (2.2) and (2.5) reads with ¢ := ¢,,

g(t,v.v)

r
{c:l.u.q.-i':(z.f’) — aud( ?r." )} = a(t) Zo(u, v) + |u|*! )
) (") 1

L=,
o

‘D
T

+ a0 ()P - a}

From the proof of Theorem 1,2, any nodal set D(ut) overlaps one of D(v™).
Thus for large enough 7' > 0, v™ and ©™, two solutions from (2.2) and (2.5)
overlap i.e.

3¢ € D(u")(D(v") such that /() = v'(¢) = 0. The right hand side of
(2.6) is strictly positive in  D(u™) if we assume that v > 0 in D(u™), using
k= minp,+) |v(f)[77* .

Let Dq:= (t1, &) and Do := (&, ta) where D(u™):=[t1, ta]. Thus v+ has a
zero in any of D; whence D(v"™) C D(u™).
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If =1, ¢, is monotonic increasing in the sense that
Vs, t € R, (t—s) ((.-f':a(f) — (,-ba(s)) = 0.

Assume that J:= {t € D(u*)(D(v"); v > u™} has non-zero measure. We
chose 7 >0 and [:=1I- < J such that w(t) :=u—v+7 >0Vt el and
w|gr = 0. Then from the equations, for ¢ = ¢4

/; w {a(_,.b(u’} — ug-':(-t.:")} dt

= — [t =)o) = ") 2.7)
_ /I w( ct(v) + g — ked(u) |di — /; w (c:(t)[ % k] + (.;I,)Eil.))dt.

In I, v© > u" soin the last term, |v|®|u|=% —k > |[v[°~® —k > 0 making the
term positive; but the second term , — [ a(t)(u' —v) [¢(u') = g.":(-z.-"}] dt is negative.

Therefore the assumption cannot hold.
Thus v+ < w™ and maxpg+){u™ —vT} = 0 in addition of D(v*) C D(u™)
we got earlier. The estimates for uT follow from Theorem 4.1 of [3].
3. CONCLUDING REMARKS

CR1) In earlier works we did similar investigations concerning the operators like
in Ila g ( without general perturbation terms and with constant coeflicient a ) (see

(31 ).
CR2) The use of the Picone formulas even in cases with damped terms led to
more general equations ( see e.g. [7]).
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