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Frame operator of K-frame in n-Hilbert space
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Abstract: In this paper we describe some properties of frame in n-inner product spaces. Characterizations
between K-frames and quotient operators in n-inner product space are given.
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. Introduction

Reconstruction of functions using a family of elementary functions were first introduced by Gabor [6]
in 1946. Later in 1952, Duffin and Schaeffer were introduced frames in Hilbert spaces in their fundamental
paper [5], they used frames as a tool in the study of non-harmonic Fourier series. After some decades, frame
theory was popularized by Daubechies, Grossman, Meyer [3]. A frame for a separable Hilbert space is a
generalization of such an orthonormal basis and this is such a tool that also allows each vector in the space to be
written as a linear combination of elements from the frame but, linear independence among the frame elements
is not required. Several generalizations of frames namely, K-frame [8], Fusion frame [2], G-frame [14], etc.
have been introduced in recent times. K-frames for a separable Hilbert space were introduced by Lara Gavruta.
K-frame is more generalization than the ordinary frame and many properties of ordinary frame may not hold for
such generalization of frame.

The concept of 2-inner product space was introduced by [4]. S. Gahler [7] introduced the notion of 2-
normed space. H. Gunawan and Mashadi [9] developed the generalization of 2-norm space for n = 2.The
generalization of 2-inner product space for n > 2 was developed by A. Misiak [13]. The notion of a frame in a
n-inner product space has been presented by P. Ghosh and T. K. Samanta [10] and they also studied frame in
tensor product of n-inner product spaces [11]. The author also presented K-frame and some its properties in n-
Hilbert space [12].

In this paper, some properties of frame in n-Hilbert space are going to be established. We give a
relationship between K-frame and quotient operators in n-Hilbert space.

Throughout this paper, X will denote a separable Hilbert space with the inner product <,.,> and
B(X)denote the space of all bounded linear operator on X. We also denote R(T) for range set of T, N(T) for
null space of T where T € B(X) and [? denote the space of square summable scalar-valued sequences.

1. Preliminaries
Definition 2.1. [1] A sequence { f; } of elements in X is said to a frame for X if there exist constants A, B >0
such that
2 2
AlfI < Zel< f.fi>? <B|f||” forall £ €X.
The constants A, B are called frame bounds. If the collection { f; } satisfies

2 < f.fi>? <B ||f||2 forall f € X, then itis called a Bessel sequence.

Definition 2.2. [1] Let { f; } be a frame for X. Then the operator defined by T: 12 - X, T({¢;}) = X2, ¢ fi
is called pre-frame operator and its adjoint operator given by T* : X — I2,T*(f) = {< f, f; >} is called the
analysis operator. The frame operator isgiven by S: X - X,Sf=TT* f= X2, <f.fi>f;-

Definition 2.3. [8] Let K : X — X be a bounded linear operator. Then a sequence { f; } in X is said to be a K-
frame for X if there exist constants A, B > 0 such that
|2

Ak < Seal< £ > <B|f||” forall £ ex.

Definition 2.4. [8] Let U,V : X — X be two bounded linear operator with N(U)cN (V). Then a linear operator
T =[Y/, ] given by
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T=[Y/,]: RV) > R),T(Vx) = Ux is called quotient operator.

Definition 2.5. [9] A real valued function ||., ...,. || : X™ - R is called an-norm on X if the following
conditions hold:

) | %1, %2 ..., x, || =0 ifand only if x;, x,, ... ..., x, are linearly dependent,

(1 |21, %2, ..., x, || is invariant under any permutations of x;, x;, ... ..., Xy,

(mn ||ax1, Xy eeney Xy || = |a| ||x1, Xy eeey Xy || Vaek,

(V) ||x+y, Xgy s X || < ||%, x2,....,xn|| + ||y, xz,....,xn”.
The pair (X, ||., ..., ||) is then called a linear n-normed space.
Definition 2.6. [13] Let n € N and X be a linear space of dimension greater than or equal to n over the field K,
where K is the real or complex numbers field. A function <., .|.,....,. >: X" — K issatisfying the
following five properties:

. <Xy, X | X oo, xy >2=0and <xq, X1 | %, ... ,x, > =0ifandonlyif x;,
Xy, - -+, Xy, are linearly dependent,
. <Y1y oo Xy >=< XY | X020, Xy > ToOr every permutation (i(2), ..., i(n)) of
2,....,n),

Il <x, y|xy .... ,x, >=complexconjugate of < x, y|x,, .... ,x, >,

V. <ax, Y|xg, oo Xy >=0<X,Y ]| Xg, e e ,x, >, forall @ € K,

V. SxX+Y, Z| Xy oo Xy SD=<X, Z] Xy, oo Xy > <Y, 2Ky, i Xy >

is called an n-inner product on X and the pair (X, <., .|.,....,. >)is called n-inner product
space.
Theorem 2.7. [13] For n-inner product space (X, <., .|.,..,. >),
|<xy |2 ooy >1 < || x5 e || |90 %20 s, || hOId FOr all x,y, x5, ..., x,, € X.
Theorem 2.8. [13] For every n-inner product space (X, <., .|.,...,. >),
%1, %2 o2 || = V<1, %1 [ x5 ... ,x, > Defines an-norm for which
<xY|xy e xy>= i ( ||x + Y, %5 e, Xy || z2— ||x =Y, Xy e, Xy || 2),and
lx+yx x| 24 |x=vxa, oxn]|2=2 (o2 || 2= |32 s e, %0 || 2) hold for

all x,y, x1, %3, .., x, €X.

Definition 2.9. [9] A sequence {x, } in a linear n-normed space X is said to be convergent to some x € X if
for every x,,....,x, €X limg_, [x—x x5 ...,x,]| =0 and it is called a Cauchy sequence if
WMy, o || — X X5 nn, x| =0 for every  x,,.....,x, € X.The space X is said to be complete if every
Cauchy sequence in this space is convergent in X. A n-inner product space is called n-Hilbert space if it is
complete with respect to its induce norm.

Note 2.10. [10] Let Ly denote the linear subspace of X spanned by the non-empty finite set
F = {a,, as,.......,a,}, where a,, as, .......,a, are fixed elements in X. Then the quotient space X/LF is a

normed linear space with respect to the norm, |[x + Lg ||, = [|x, a,,....,a, | for every x € X. Let M be the

algebraic complement of L, then X can be expressed as the direct sum of Lp and M. Define <x,y >p =
<x,y]|az, .., @y >0n X, Then <,., > is a semi-inner product on X and this semi-inner product induces

an inner product on X/LF which is given by
<x+ Lp,y+ Lg>r=<x,y>=<x,y|ay......,a, >V x,y €X. Byidentifying X/LF with M in an
obvious way, we obtain an inner product on M. Now for every € My , we define

||| , = V< x,x > and it can be easily verify that (M, | || ) is a norm space. Let X, be the completion of
the inner product space M.

For the remaining part of this paper, (X, <., .|.,....,. >) isconsider to be a n-Hilbert space and I will
denote the identity operator on  X.

Definition 2.11. [10] A sequence { f; } of elements in X is said to a frame associated to (a,, ... ... ,a,) for Xif
there exist constants 0 < A < B < oo such that
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2 2
Alf ag nan||” < 22< ffil @y enyan >1?2 <B || f ag eoa, || forall £ € X. The
constants A, B are called frame bounds. If the collection { f; } satisfies
2 -
Yel<f filag .,an >1? <B||f,az ..., a,|” forall f € X, then itis called a Bessel sequence
associated to (a, ... ... ,ay,) in X with bound B.

Theorem 2.12. [10] Let { f; } be a sequence in X. Then { f; } is a frame associated to (a,, ... ... ,a,) with
bounds A and B if and only it is a frame for the Hilbert space X, with bounds A and B.

Definition 2.13. [10] Let { f; } be a Bessel sequence associated to (a,, ... ... ,a,) for X
Then the bounded linear operator defined by Ty : 12 - Xp , T-({ ¢;}) = X2, ¢; f; is called pre-frame operator
and its adjoint operator given by Ty : X = 2, Tsf = {< f.f; | a, .....,a, >} iscalled the analysis operator.

The frame operator isgiven by Sp : Xp = X, Spf = X2 < f.fil ag, e 0, > fi .
The frame operator Sg is bounded, positive, self-adjoint and invertible.

Definition 2.14. [12] Let K be a bounded linear operator on X .Then a sequence { f; } of elements in X is said
to a K- frame associated to (a,, ... ... ,a,) for X if there exist constants 0 < A < B < oo such that

AR f a s an || < S2A< fofl grnnsay > < B ||frag, . ay || forall £ € X, .
This can be written as A || K*f |i£ Yo l< o fil ag ., an >I? sB||f||i .

1. Some properties of frame in n-Hilbert space
Theorem 3.1. Let Y be closed subspace of X¢ and Py be the orthogonal projection on Y. Then for a sequence
{f; } in Xg the following hold:
() If{f;} isa frame associated to (a,, ......... ,an) for X with frame bounds A,B then {P, f;} isa
frame for Y with the same bounds.
(i) If { f; } is a frame for Y with frame operator Sg, then P, f = X2, < £, SFlfi| ageeevyay > f;

forall f € X .
Proof: By the definition of orthogonal projection of X onto Y, we get
—¢f if fey
PYf - { 0 if fEYJ' (1)
0] Suppose { f; }i=,associated to (a; ........... ,an) for X with frame bounds A,B. Then {f; 1}z, isa

frame for X with frame bounds A,B .So,

AIfIE < X2 <t fi > |2 < BIIfll# vie Xg
So by (1), the above inequality can be write as

ANfNE < XZ0 1<t Pfi >p 2 < BIIFIIZ vfeY

(i) Let { f; } be a frame associated to (a, ... ... ,a,) for X with frame operator Si. Then it is easy to
verify that f = X2, < f,SFlfi| ay, .....,a, > f; for all f €Y. Therefore by (1), we get
P f = X2, <f.SFfi| ag, .. ay > f; for all f €Y. Now, if fbelongs to the orthogonal
complement of Y then < f,S71f; | ay,.....,a, >=0and P,f = 0 if f belongs to the orthogonal
complement of Y. Therefore, P, f = X2, < f,Sifi | az, ..., ay > f; for all f € Xp . This
completes the proof.

Note 3.2. Let {f;} be a frame associated to (a,,.. .. ,a,) for X and f € Xp. If for some
{Ci} € l2, f = Z?O:l Cl']cl', then

['s} 2 0 -1 2 0 -1 2

i=1|Ci| i=1| <f,SF ﬁlaz,...,an>| + Zi=1|ci_< f’SF ﬁ:laz,....an>| .
Theorem 3.3. Let { f; } be a frame associated to (ay, ... ... ,a,) for X with pre-frame operator T.Then the
pseudo-inverse of Ty is described by,

TR : X, - 12, TAf = {< £, SFYfi | agy ey >3,

where S is the corresponding frame operator.

Proof. By the Theorem (2.12), { f; } be a frame for X . Then for f € X has a representation f = Y72, ¢; fi,
for some { ¢; } € 12 and this can be written as Tz ({ ¢;}) = f. By note (3.2), the frame coefficient =
{<f.S7f;| ay,....., a, >} have minimal 1?2-norm among all the sequences representing f. Hence, the above
equation has a unique solution of minimal norm namely, T2f = {< f,SFf; | ay, ..., a, >}.
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Theorem 3.4. Let { f; } be a frame associated to (a,, ... ... ,a,) for X, then the optimal frame bounds A, B are
givenby A= ||z " = |72 LB = |ISe|l = T ||”, where T is the pre-frame operator, T# is the
pseudo-inverse of T, and Sg is

is the corresponding frame operator.

Proof. By the definition, the optimal upper frame bound is given by
B=sup {32,I< £, fil ag, csan >1? ||| fraz, o an || =1} =

sup {<Sef, flag ooty > | |f g oo an]| = 1} = ||Se||. Therefore, B = ||Sp|| = || T+ |, We know
that the dual frame {S7* f; } has frame operator Sz and the optimal upper bound is A~ . So by the above
similar process A™* = ||S7* || and this impliesthat A = ||s7*||”". Now, from the Theorem (3.3), we obtain

ls7| = SUP{" Tp1f||12,| 7N, = 1} = | T3|*. Thus, A = ||s7*]|"" = ||7#|| . This completes the proof.

IVV. Frame operator for K- frame

Theorem 4.1. Let { f; } be a Bessel Sequence associated to (a, ... ... ,a,) for X with frame operator S, and K
be a bounded linear operator on X . Then { f; } is a K- frame associated to (a,, ... ... ,a,) for Xifand only if
e |
the quotient operator T = | K*/ 1 |is bounded.
| 7S¢]
Proof. Let { f; } be a K- frame associated to (a,, ... ... ,a,) for X. Then there exist positive constants A, B
such that
2 2
AlKf||, < Z2aI< fofil ag ey an >12 < B| £, forall f € X, . )
Since S is the corresponding frame operator, we can write
<Sefoflag a.a,>= X< [, fil ag, e, an >[? forall f € Xg 3).
By (3), The inequality (2) can be written as
Ak f |12,S <Sef.flag, ....,a, >£B||f||i forall f € X . This implies that
E
Ak f |12r < <S8, Siflag, ....,ay > < B||f||12, for all f € X .This implies that
2 L. 2
Al fly= lIsefll, <BlfFN, forall f eXe .

Let us now define the operator T =

K*/z =R<5§f> - R(K™), by T(S,%f) =K'fVf €Xp.
SZ

F

e e e e

|i = 0. This implies

=0,s0by (4), A ||K*f

1 1 1
Now, let f € N(Sf,f).Then Stf = 6 impliesthat ||SZf

2

F
1

that K*f = 0 implies f € N(K*) and this implies that N (S;f) c N(K*). This shows that the quotient

operator T is well-defined. Also for all f € X,

r(sy)) = es
F

Conversely, suppose that the quotient operator T is bounded. Then there exists B > 0 such that

1
Va

1
27 || .- Hence, T is bounded.

=

1 2 1 2 1 2
||T(sgf> | <BlIS] v f €, Thisimpliesthat k7|’ < Bsir] .
F

i1 1
=B <S:f, Siflag ..,an >=B <S¢f,f|ay,....,a, > [since S} is also self-adjoint]
=BZ|<f,ﬁ.|a2,.....,an SE (5).
i=1
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Also, { f;} be a Bessel Sequence associated to (ay, ... ... ,a,) in X, so there exists C > 0

such that $2,1< £, fi @y, ..o an > < B | foap o..vay || forall £ € X, ).
Hence, from (5) and (6), { f; } is a K- frame associated to (a,, ... ... ,a,) for X.

Theorem 4.2. Let { f; } is a K- frame associated to (a,, ... ... ,a,) for X with the frame operator S and T be a
bounded linear operator on X, . Then the following are equivalent:
(1) Let {Tf; }isaTK- frame associated to (a, .. ... ,a,) for X.

Q) U= (TK)*/l is bounded.
s2T*

(TK)"
(T SpT*)2

() V= is bounded.

Proof. (1)= (2) Suppose {T f;};<, is a T K-frame associated to (a,, ... ... a,,) for X. Then there exists constant 4,
B> 0such that

AT K fllZ <X < fL.T fil agyeee e ,a,>2 < BIflI3,V f € Xp. (7)
Since Sy, is the corresponding frame operator, we can write

< Sef, flag, .. a4, >= YIS, fil ag e ,a,>1% VfeXq
Now,

X< fuT fil agyeen e @ >2 =X < T fL fil agy e e L0, >2 =<Se(T* ), T* f| az v e ,a,>

2

=<S2(T* ), S2(T* f) | gy wee e, @> = |[SZ (T* f)

F

Let us now consider the quotient operator,

1

[(T K)*/Sé T*] 'R (sé T*) SR((TK)*)by (5,? T*> fo>TK'f VfeXs

From (7), we can write

2

AT K)* flIZ < |[S2 (7" f) VfeXp

F

2

= (T K)* flI < |[S2 (T ) V[ EXp

F

1

This shows that the quotient operator [(T K)*/SE T*] is bounded.

1
(2) = (3) suppose that the quotient operator [(T K)*/S; T*] is bounded.

Then there exists constant B>0 such that
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2

1
IT K FIR< B[S (T* || V/feXe ®)
F
Now for such f € X , we have
1 2
SET NI =<SeT f.T" flay, ... ,a,>=<TS:T"f, flay, ... , >
F

From (8) and (9), we get

1 2
I &y flp<|@ semip ||, viex.

1
Hence, the quotient operator [(T K) /(T Sg T*)EJ is bounded.
1

(3)= (1) suppose the quotient operator [(T K) /(T Sg T*)E] is bounded.
Then there exists constant >0 such that

1 2
I K fl < 8| s T2y || vrex (10)

Itis easy to verify that T Sp T* is self-adjoint and positive and hence the square root T Sp T* of exists.
Now, for each f € X, we have

imal< T fil ag, e oo @y >2 =< T f L fil ag, oo e ,an>?
1 1
=< Sp (T ) T fl @y @y>= <SZT* £ S2T" flag, .., ay>

1 * o1
=<(S§ T*> SETf, flag, ... ,Ay>

11
=<TSZSET"f, flag .. , Q>
=<T ST f,flay, - .. , 0>
l 2
= | serEn ], (1)

From (10) and (11),

SN KY fIRSTEN< FLT fil G ay>2 VY f e Xp
On the other hand, since {f;};-,is a K- frame associated to (a,, ... ... , ),

< fOT fil agy v, > = LIS Tf L fil Qg e, an > 12 < CITIZNf NI
Hence, {T f;}3—, is a TK-frame associated to (a,, ... ... ,a,), for X.
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