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I. Introduction 
It is well-known that any real system is inherently a degrading one, since its functioning is deteriorated 

by aging and accumulated wear. This is the reason why developing an effective maintenance policy (MP) for the 

analyzed degrading system (DS) is one of the actual problems. 

The framework for the MP study has been laid in [1]. A significant contribution to this area was the 

study of MPs within the finite time horizon [2], which is one of the essential conditions for any real DS. A fairly 
comprehensive overview of approaches for developing MPs is presented in [3]. Wide use of Cyber-Physical 

Systems significantly increased the relevance of the MPs study [4, 5]. For these systems, in addition to fully 

recoverable DSs, there is an urgent need to investigate also partially recoverable as well as non-recoverable 

DSs. The latter ones have many applications in various fields, for example in the health care sector [6-8]. 

An essential component for the development of any MP is modeling the temporal variability of DS 

deterioration. As a rule, it is based on the analysis of the changes in the parameters of the analyzed DS. To 

simulate these changes various mathematical models are used, both deterministic and stochastic (see [9], for 

example). Due to the inherent limitations of deterministic models, stochastic models are known to be more 

adequate. Among the latter, the Finite Markov Chain (FMC) [10] should be especially noted for the following 

three reasons. 

 

Firstly, any FMC is a fairly simple model. 
Secondly, state transitions in the FMC can naturally be interpreted as the measurements of the system 

parameters after a fixed period of time (it is used for analysis of a sufficiently wide class of DSs). 

Thirdly, symbolic simulation makes it possible to implement probability variation at non-intersecting 

time intervals using a sequence of analyzed FMCs. 

These arguments are confirmed, for example, by the results obtained in [11-13]. Besides, any FMC is a 

convenient model for performing bounded probabilistic analysis [14, 15] of the investigated DS and for 

generation probabilistic counterexamples [16, 17], i.e. the sets of finite paths with a critical probability mass. 

Although FMC is used to analyze DS in a significant number of studies, the models considered in them 

are built for specific problems under investigation. An analytical model based on the FMC and intended to 

analyze fully recoverable and non-recoverable DS has been proposed in [18]. 

In the given paper, this model is refined and generalized to simulate not only fully recoverable and non-
recoverable DSs, but also partially recoverable ones. 

The rest of the paper is organized as follows. In Section 2 proposed analytical model is defined. In 

Section 3 exact analysis of the proposed model is considered. In Section 4 bounded analysis of the proposed 

model is considered. Section 5 is some discussion of obtained results. Section 6 contains concluding remarks. 
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II. Proposed FMC model for DS analysis 
It is well-known that any FMC 

n
C  with the set of states 

1
{ , , }

n n
S s s  ( 2 )n   can be presented by the 

stochastic matrix 

1 1 1 2 1

2 1 2 2 2

1 2
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n

n

n n n n
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p p p
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C
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i j
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1

1
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ij

j

p



  ( 1, , )j n . We remind that the element 
i j

p  ( , 1, , )i j n  is the 

probability of the transition from the state 
i

s  to the state 
j

s  in one step. The elements of the stochastic matrix 

 tim es

n n n

m

m

P P P
C C C

 ( 1, 2 , )m   are the probabilities of transitions between states in m  steps, and for any initial 

distribution of the probabilities of the states ( 0 ) ( 0 )

0 1
( , , )

n
v vv  (where ( 0 )

0 1
i

v  ( 1, , )i n  and ( 0 )

1

1

n

i

i

v



 ) 

the vector 
0

n

m

m
Pu v

C
 ( 1, 2 , )m   is the distribution of the probabilities of the states after m  steps. 

To deal with the FMC 
n

C  as the model of the analyzed DS 
n

S  with n  stages of functionality, the following 

four assumptions are accepted: 

Assumption 1. One step of state transition corresponds to two successive measurements of the parameters of the 

analyzed DS 
n

S . 

Assumption 2. The state 
1

s  represents the analyzed DS 
n

S  in the fully functional stage. 

Assumption 3. The state 
n

s  represents the analyzed DS 
n

S  in the inoperable stage. 

Assumption 4. The states 
2 1

, ,
n

s s


 represent the analyzed DS 
n

S  in all possible stages of partial functioning. 

Besides, to represent explicitly degradation as well as recovery of the analyzed DS 
n

S  in one step it is assumed 

that the following two restrictions on the structure of the FMC 
n

C  hold: 

Restriction 1. For a given positive integer k  (2 )k n   some partition 
1

{ , , }
k

B B   of the set 
n

S  is fixed 

such that 
1

1
{ }

i
B s , 

1
1

{ , , }
j j

j i i
B s s




  ( 2 , , 1)j k  , and 
1

1
{ }

k
k i

B s



 , where 

1
1i  , 

1
1

k
i n


   and 

1j j
i i


  for all 2, , 1j k  . 

Restriction 2. Elements of the stochastic matrix 
n

P
C

 satisfy to the following six conditions: 

Condition 1. For all 1, , 1i n   hold the inequalities 0 1
i i

p  , and 1
n n

p  . 

Condition 2. For all 2, , 1j k   the equality 0
rh

p   holds for all states ,
r h j

s s B  ( )r h . 

Condition 3. For any state 
r j

s B  ( 1, , 1)j k   there exists some subset ( )
d sc

n
S r  

1

( )

k

d s c

n m

m j

S r B

 

 
   

 

 

such that 

1
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s B S r

 

  


 

   
 

. 

Condition 4. For all 1, , 1j k   holds the equality 
1 1

( ( ) )

r j

d s c

n j j

s B

S r B B
 



  . 

Condition 5. For any state 
r j

s B  ( 2 , , 1)j k   there exists some subset ( )
a n c

n
S r  

1

1
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. 
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Condition 6. For all 2, , 1j k  , if 0
rn

p   for all states 
r j

s B , then 0
h n

p   for all states 
1h j

s B


 . 

Remark 1. When the investigated DS 
n

S  is a technical system, and deteriorating in the functionality is carried 

out due to the appearance of faults in it, it is usually assumed that in one step either one new fault can appear, or 

one of the existing faults can be eliminated. So, in this case, Conditions 3-5 take the following form: 

Condition 3A. For any state 
r j

s B  ( 1, , 1)j k   there exists some subset ( )
d sc

n
S r  

1
( ( ) )

d sc

n j
S r B


    such 

that 

1

0 ,  fo r  a ll ( )         

0 ,  fo r  a ll \ ( )

d s c

h n

r h d s c

h j n

s S r
p

s B S r


  

 

. 

Condition 4A. For all 1, , 1j k   holds the equality 
1

( )

r j

d s c

n j

s B

S r B




 . 

Condition 5A. For any state 
r j

s B  ( 2 , , 1)j k   there exists some subset ( )
a n c

n
S r  

1
( ( ) )

a n c

n j
S r B


  such 

that 

1

0 ,  fo r  a ll ( )         

0 ,  fo r  a ll \ ( )

a n c

h n

r h a n c

h j n

s S r
p

s B S r


  

 

. 

On the base of Assumptions 1-4 and Restrictions 1 and 2, we introduce the following two definitions. 

Definition 1. For an FMC 
n

C : 

1. The critical set of states in the weak sense w s cr

n
S

  consists of all states 
1

1

k

r j

j

s B





  such that 0
rn

p  . 

2. The critical set of states in the strong sense ss cr

n
S

  consists of all states 
1

1

k

r j

j

s B





  such that ( ) { }
d sc

n n
S r s

. 

Remark 2. Definition 1 directly implies that the relations ss cr w s cr

n n n
S S S

 
     are true: 

Definition 2. An FMC 
n

C  is a model of: 

1. A recoverable DS 
n

S , if for all 2, , 1j k   and for any state 
r j

s B  holds the disequality 

( )
a n c

n
S r   . 

2. A non-recoverable DS 
n

S , if for all 2, , 1j k   and for any state 
r j

s B  holds the equality 

( )
a n c

n
S r   . 

Example 1. 1. Let us consider a network consisting of three pairwise connected computers 
1

C , 
2

C  and 
3

C . 

Deteriorating in the functionality of this network is carried out due to the appearance of faults in the computers, 

and recovery consists of eliminating these faults. Thus, we are dealing with the DS (1 )

8
S . Due to Remark 1, we 

get that the symbolic mathematical model for this DS is the following FMC (1 )

8
C  
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8
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, 

where: 

1
0

i
p   ( 1, , 4 )i   and 

1 1 1 2 1 3 1 4
1p p p p    ; 

2
0

i
p   ( 1, 2 , 5, 6 )i   and 

2 1 2 2 2 5 2 6
1p p p p    ; 

3
0

i
p   ( 1, 3, 5, 7 )i   and 

3 1 3 3 3 5 3 7
1p p p p    ; 
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4
0

i
p   ( 1, 4 , 6 , 7 )i   and 

4 1 4 4 4 6 4 7
1p p p p    ; 

5
0

i
p   ( 2 , 3, 5, 8 )i   and 

5 2 5 3 5 5 5 8
1p p p p    ; 

6
0

i
p   ( 2 , 4 , 6 , 8)i   and 

6 2 6 4 6 6 6 8
1p p p p    ; 

7
0

i
p   ( 3, 4 , 7 , 8 )i   and 

7 3 7 4 7 7 7 8
1p p p p    . 

In the FMC (1 )

8
C : 

1. The state 
1

s  represents the analyzed DS (1 )

8
S  in the fully functional stage. 

2. The state 
2

s  represents the analyzed DS (1 )

8
S  in the stage when the computer 

1
C  is faulty and the computers 

2
C  and 

3
C  are fault-free. 

3. The state 
3

s  represents the analyzed DS (1 )

8
S  in the stage when the computer 

2
C  is faulty and the computers 

1
C  and 

3
C  are fault-free. 

4. The state 
4

s  represents the analyzed DS (1 )

8
S  in the stage when the computer 

3
C  is faulty and the computers 

1
C  and 

2
C  are fault-free. 

5. The state 
5

s  represents the analyzed DS (1 )

8
S  in the stage when the computers 

1
C  and 

2
C  are faulty and the 

computer 
3

C  is fault-free. 

6. The state 
6

s  represents the analyzed DS (1 )

8
S  in the stage when the computers 

1
C  and 

3
C  are faulty and the 

computer 
2

C  is fault-free. 

7. The state 
7

s  represents the analyzed DS (1 )

8
S  in the stage when the computers 

2
C  and 

3
C  are faulty and the 

computer 
1

C  is fault-free. 

8. The state 
8

s  represents the analyzed DS (1 )

8
S  in the inoperable stage, i.e. when all three computers

1
C , 

2
C  

and 
3

C  are faulty. 

For the FMC (1 )

8
C  we get 

1 2 3 4
{ , , , }B B B B  , where 

1 1
{ }B s , 

2 2 3 4
{ , , }B s s s , 

3 5 6 7
{ , , }B s s s , and 

4 8
{ }B s

. 

Due to Definition 1, 
8 8 3 5 6 7

{ , , }
ss cr w s cr

S S B s s s
 

   . 

Moreover, since 
8

( )
a n c

S r    for all states 
2 3r

s B B  , then due to Definition 2, FMC (1 )

8
C  is a model of the 

recoverable DS (1 )

8
S . 

2. Let us consider some chronic disease progression containing two stages for the given Patient. The 

deterioration of the Patient's health is caused by the onset of the disease, staying in the first stage of the disease, 

the transition to the second stage of the disease, and finally, death. Thus, we are dealing with the DS (1 )

4
S . The 

symbolic mathematical model for this DS is the following FMC (1 )

4
C  

( 1 )

4

1 1 1 2 1 3 1 4

2 2 2 3 2 4

3 3 3 4

0

0 0

0 0 0 1

p p p p

p p p
P

p p

 

 

 
 

 

 

C
, 

where: 

1
0

i
p   ( 1, , 4 )i   and 

1 1 1 2 1 3 1 4
1p p p p    ; 

2
0

i
p   ( 2 , 3, 4 )i   and 

2 2 2 3 2 4
1p p p   ; 

3
0

i
p   ( 2 , 3, 4 )i   and 

3 3 3 4
1p p  . 

In the FMC (1 )

8
C : 

1. The state 
1

s  represents the analyzed DS 
(1 )

4
S , when the Patient is in the healthy stage. 

2. The state 
2

s  represents the analyzed DS 
(1 )

4
S , when the Patient is staying in the first stage of the disease. 

3. The state 
3

s  represents the analyzed DS 
(1 )

4
S , when the Patient is staying in the second stage of the disease. 

4. The state 
4

s  represents the analyzed DS 
(1 )

4
S , when the Patient is dead. 

For the FMC (1 )

4
C  we get 

1 2 3 4
{ , , , }B B B B  , where 

1 1
{ }B s , 

2 2
{ }B s , 

3 3
{ }B s , and 

4 4
{ }B s . 

Due to Definition 1, 
4 1 2 3

w s cr
S B B B


   , and 

4 3

s s cr
S B


 . 
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Moreover, since 
4

( )
a n c

S r    for all states 
2 3r

s B B  , then due to Definition 2, the FMC (1 )

4
C  is a model of 

the non-recoverable DS (1 )

4
S . 

 

III. Exact analysis of the proposed model 

The occurrences of the behaviors associated with the decreasing in the functionality of the analyzed DS 
n

S  can 

be estimated via computation for the FMC 
n

C  the probability 
1

( , )
trg t

n
s SP  to reach this or the other target set 

tr g t

n
S  

1
( \ { } )

trg t

n n
S S s    of states starting in the state 

1
s  as follows (see [17], for example). 

Let 
1

,
( )tr g t

n
s S

m  ( 1, 2 , )m   be the set of all strings 
0 1 m

i i i n
w s s s S


   such that 

0
1i

s s , 
j

trg t

i n
s S  

( 1, , 1)j m  , and 
m

tr g t

i n
s S , where 

1

0
j j

i i
p



  ( 0 ,1, , 1)j m  . 

Due to [10, 14], with any string 
0 1 1

,
( )trg t

m n
i i i s S

w s s s m    ( 1, 2 , )m   can be associated the probability 

1

1

0

( )
j j

m

i i

j

w p






 P .                                                                        (1) 

Therefore, 

,1

1

1 ( )

( , )  ( )

tr g t
s S n

tr g t

n

m w m

s S w



 

  P P .                                                              (2) 

It is well-known that for real DSs the study of their behavior within the finite time horizon is of practical 

importance. It follows from (2) that the probability 
1

( , ; )
trg t

n
s S lP  to reach the set tr g t

n
S  for no more than l  of 

state transitions (where l  is a given fixed positive integer) can be computed as follows: 

,1

1

1 ( )

( , ; )  ( )

tr g t
s S n

l

tr g t

n

m w m

s S l w

 

   P P .                                                           (3) 

Example 2. 1. Let us consider the DS (1 )

8
S  (see Example 1.1). Setting 

8 8 3 5 6 7
{ , , }

trg t w s cr
S S B s s s


   , 3l  , 

and applying (1), we get the values shown in Table 1.1 (it should be noted that 
1 8

,
(1)trg t

s S
   ). 

Table 1.1 

 w  ( )wP   w  ( )wP  

 
1 2 5

s s s  
1 2 2 5

p p   2

1 2 6
s s s  1 2 2 2 2 6

p p p  

 
1 2 6

s s s  
1 2 2 6

p p   2

1 3 5
s s s  1 1 1 3 3 5

p p p  

1 8
,

( 2 )tr g t
s S

  
1 3 5

s s s  
1 3 3 5

p p   2

1 3 7
s s s  1 1 1 3 3 7

p p p  

 
1 3 7

s s s  
1 3 3 7

p p   2

1 3 5
s s s  1 3 3 3 3 5

p p p  

 
1 4 6

s s s  
1 4 4 6

p p  
1 8

,
(3 )trg t

s S
  2

1 3 7
s s s  1 3 3 3 3 7

p p p  

 
1 4 7

s s s  
1 4 4 7

p p   2

1 4 6
s s s  1 1 1 4 4 6

p p p  

 2

1 2 5
s s s  1 1 1 2 2 5

p p p   2

1 4 7
s s s  1 1 1 4 4 7

p p p  

1 8
,

(3 )trg t
s S

  2

1 2 6
s s s  1 1 1 2 2 6

p p p   2

1 4 6
s s s  1 4 4 4 4 6

p p p  

 2

1 2 5
s s s  1 2 2 2 2 5

p p p   2

1 4 7
s s s  1 4 4 4 4 7

p p p  

 

From Table 1.1 we get 

1 8 1 1 2 2 1 2 2 5 2 6 1 1 3 3 1 3 3 5 3 7 1 1 4 4 1 4 4 6 4 7
( , ; 3) (1 ) ( ) (1 ) ( ) (1 ) ( )

trg t
s S p p p p p p p p p p p p p p p            P . 

2. Let us consider the DS 
(1 )

4
S  (see Example 1.2). Setting 

4 4
{ }

trg t
S s , and 3l  , and applying (1), we get the 

values shown in Table 2.1. 
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Table 2.1 

 w  ( )wP   w  ( )wP  

1 4
,

(1)tr g t
s S

  
1 4

s s  
1 4

p   2

1 2 4
s s s  1 1 1 2 2 4

p p p  

 2

1 4
s s  1 1 1 4

p p   2

1 3 4
s s s  1 1 1 3 3 4

p p p  

1 4
,

( 2 )tr g t
s S

  
1 2 4

s s s  
1 2 2 4

p p  
1 4

,
(3 )trg t

s S
  2

1 2 4
s s s  1 2 2 2 2 4

p p p  

 
1 3 4

s s s  
1 3 3 4

p p   
1 2 3 4

s s s s  
1 2 2 3 3 4

p p p  

1 4
,

(3 )trg t
s S

  3

1 4
s s  2

1 1 1 4
p p   2

1 3 4
s s s  1 3 3 3 3 4

p p p  

 

From Table 2.1 we get 

1 4 1 1 1 1 1 4 1 1 2 2 1 2 2 4 1 3 3 3 1 1 1 2 2 3 3 4
( , ; 3) (1 (1 )) (1 ) ( (1 ) )

trg t
s S p p p p p p p p p p p p p          P . 

 

IV. Bounded analysis of the proposed model 

For any real DS 
n

S  the cardinality of the sets 
1

,
( )tr g t

n
s S

m  ( 1, 2 , , )m l  grows rather quickly with an increase 

in the integer m . By this reason, instead of constructing the entire set 
1

,

1

( )trg t

n

l

s S

m

m



  in an explicit form, 

bounded reachability properties [14-17] can be analyzed as follows. 

Let   (0 1)   be a given number, and 
1

( , ; , )
trg t

n
s S l  P  be the property that for the analyzed DS 

n
S  the 

probability to reach the set tr g t

n
S  starting in the state 

1
s  by at most l  steps is not greater then  . 

It follows from (3) that the analyzed DS 
n

S  satisfies to the property 
1

( , ; , )
trg t

n
s S l  P  if and only if the 

inequality 

,1

1 ( )

 ( )

tr g t
s S n

l

m w m

w 

 

  P

 

holds. Therefore, the property 
1

( , ; , )
trg t

n
s S l  P  fails for the analyzed DS 

n
S  if and only if for some subset 

1
,

1

( )trg t

n

l

s S

m

m



 S

 

the inequality ( ) ( )

w

w 



 
S

SP P  holds. This subset S  

is called a counterexample. 
It is evident that an attempt to construct a counterexample can reduce computations for checking the property 

1
( , ; , )

trg t

n
s S l  P . For this purpose, we can use the following Algorithm 1 proposed in [17]. 

Algorithm 1 (Checking the property 
1

( , ; , )
trg t

n
s S l  P ). 

Step 1. : 1m  , : S , ( ) : 0SP . 

Step 2. If 
1

,
( )trg t

n
s S

m   , then go to Step 3, else go to Step 6. 

Step 3. :w   The first element of the set 
1

,
( )tr g t

n
s S

m , : { }w S S , 
1 1

, ,
( ) : ( ) \ { }trg t trg t

n n
s S s S

m m w   , 

( ) : ( ) ( )w S SP P P . 

Step 4. If ( ) SP , then go to Step 5, else go to Step 2. 

Step 5. Print: “For the DS 
n

S  the property 
1

( , ; , )
trg t

n
s S l  P  is false”, print the counterexample S  in the 

explicit form, and HALT. 

Step 6. : 1m m  . 

Step 7. If m l , then go to Step 2, else go to Step 8. 

Step 8. Print: “For the DS 
n

S  the property 
1

( , ; , )
trg t

n
s S l  P  is true”, and HALT. 

Remark 3. In [15-17], when checking the property 
1

( , ; , )
trg t

n
s S l  P  it has been assumed that the elements of 

any non-empty set of strings 
1

,
( )tr g t

n
s S

m  ( 1, 2 , , )m l  are enumerated according to non-increase of their 

probabilities. It should be noted that proof of Theorem 2 in [17] on the correctness and the soundness of 

Algorithm 1 does not use this assumption. Since providing such enumeration of elements of the sets 
1

,
( )tr g t

n
s S

m  

( 1, 2 , , )m l  is a hard problem, we discard this assumption. This does not affect either the correctness or the 

soundness of the Algorithm 1, but can only lead to the fact that the constructed counterexample is not minimal 
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in cardinality. The advantage of the discard of this assumption is that there is no need to construct the entire set 

1
,

( )tr g t

n
s S

m  ( 1, 2 , , )m l  explicitly in advance. Instead, it is sufficient to generate its elements as needed (this 

can be done by presentation state transitions of the FMC 
n

C  via rooted ranked tree with the root labeled by the 

state 
1

s ). 

Example 3. 1. Let us consider the DS (1 )

8
S  (see Example 1.1) for the following numerical values of the 

transition probabilities between the states 

( 1 )

8

 0 .8 5  0 .0 6 0 .0 4 0 .0 5 0 0  0       0

  0 .3 0   0 .5 0 0 0    0 .1 2 0 .0 8  0       0

0 .3 0      0 0 .6 0 0    0 .0 5 0 0 .0 5    0

0 .4 0      0 0 0 .4 0    0   0 .1 0 0 .1 0    0

   0       0 .3 0 0 .1 0 0    0 .4 0 0      0    0

   0       0 .2 0 0 0 .2 0    0   0 .5 0

P 
C

.2 0

     0    0 .1 0

  0        0  0 .2 0 0 .2 0   0       0   0 .4 0 0 .2 0

0       0   0 0   0       0   0 1

 

 

 

 

 

 

 

 

 

 

 

  

 

Let 
8 8 3 5 6 7

{ , , }
trg t w s cr

S S B s s s


   , and 3l  .  

Substituting these numerical values into Table 1.1 (see Example 2.1), we get the following Table 1.2. 

 

Table 1.2 

 w  ( )wP   w  ( )wP  

 
1 2 5

s s s  0.00720   2

1 2 6
s s s  0.00240  

 
1 2 6

s s s  0.00480   2

1 3 5
s s s  0.00170  

1 8
,

( 2 )tr g t
s S

  
1 3 5

s s s  0.00200   2

1 3 7
s s s  0.00170  

 
1 3 7

s s s  0.00200   2

1 3 5
s s s  0.00120  

 
1 4 6

s s s  0.00500  
1 8

,
(3 )trg t

s S
  2

1 3 7
s s s  0.00010  

 
1 4 7

s s s  0.00500   2

1 4 6
s s s  0.00425  

 2

1 2 5
s s s  0.00612   2

1 4 7
s s s  0.00425  

1 8
,

(3 )trg t
s S

  2

1 2 6
s s s  0.00408   2

1 4 6
s s s  0.00240  

 2

1 2 5
s s s  0.00360   2

1 4 7
s s s  0.00200  

 

Applying Algorithm 1 to check the property 
1 8

( , ; 3, 0 .0 4 )
trg t

s S  P , we get: 

Step 1. : 1m  , : S , ( ) : 0SP . 

Step 2. Since 
1 8

,
(1)trg t

s S
   , we go to Step 6. 

Step 6. : 2m  . 

Step 7. Since 2 3 , we go to Step 2. 

Step 2. Since 
1 8

,
( 2 )trg t

s S
   , we go to Step 3. 

Step 3. 
1 2 5

:w s s s  
1 2 5

: { }s s sS , 
1 18 8

1 2 5, ,
( 2 ) : ( 2 ) \ { }trg t trg t

s S s S
s s s   , 

1 2 5
( ) : 0 ( ) 0 .0 0 7 2 0s s s  P PS . 

Step 4. Since ( ) 0 .0 0 7 2 0 0 .0 4 P S , we go to Step 2. 

Step 2. Since 
1 8

,
( 2 )trg t

s S
   , we go to Step 3. 

Step 3. 
1 2 6

:w s s s  
1 2 6

: { }s s s S S , 
1 18 8

1 2 6, ,
( 2 ) : ( 2 ) \ { }trg t trg t

s S s S
s s s   , 

1 2 6
( ) : ( ) ( ) 0 .0 1 2 0 0s s s  P P PS S . 

Step 4. Since ( ) 0 .0 1 2 0 0 0 .0 4 P S , we go to Step 2. 

Step 2. Since 
1 8

,
( 2 )trg t

s S
   , we go to Step 3. 

Step 3. 
1 3 5

:w s s s , 
1 3 5

: { }s s s S S , 
1 18 8

1 3 5, ,
( 2 ) : ( 2 ) \ { }trg t trg t

s S s S
s s s   , 

1 3 5
( ) : ( ) ( ) 0 .0 1 4 0 0s s s  P P PS S . 
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Step 4. Since ( ) 0 .0 1 4 0 0 0 .0 4 P S , we go to Step 2. 

Step 2. Since 
1 8

,
( 2 )trg t

s S
   , we go to Step 3. 

Step 3. 
1 3 7

:w s s s , 
1 3 7

: { }s s s S S , 
1 18 8

1 3 7, ,
( 2 ) : ( 2 ) \ { }trg t trg t

s S s S
s s s   , 

1 3 7
( ) : ( ) ( ) 0 .0 1 6 0 0s s s  P P PS S . 

Step 4. Since ( ) 0 .0 1 6 0 0 0 .0 4 P S , we go to Step 2. 

Step 2. Since 
1 8

,
( 2 )trg t

s S
   , we go to Step 3. 

Step 3. 
1 4 6

:w s s s , 
1 4 6

: { }s s s S S , 
1 18 8

1 4 6, ,
( 2 ) : ( 2 ) \ { }trg t trg t

s S s S
s s s   , 

1 4 6
( ) : ( ) ( ) 0 .0 2 1 0 0s s s  P P PS S . 

Step 4. Since ( ) 0 .0 2 1 0 0 0 .0 4 P S , we go to Step 2. 

Step 2. Since 
1 8

,
( 2 )trg t

s S
   , we go to Step 3. 

Step 3. 
1 4 7

:w s s s , 
1 4 7

: { }s s s S S , 
1 18 8

1 4 7, ,
( 2 ) : ( 2 ) \ { }trg t trg t

s S s S
s s s   , 

1 4 7
( ) : ( ) ( ) 0 .0 2 6 0 0s s s  P P PS S

. 

Step 4. Since ( ) 0 .0 2 1 0 0 0 .0 4 P S , we go to Step 2. 

Step 2. Since 
1 8

,
( 2 )trg t

s S
   , we go to Step 6. 

Step 6. : 3m  . 

Step 7. Since 3 3 , we go to Step 2. 

Step 2. Since 
1 8

,
(3 )trg t

s S
   , we go to Step 3. 

Step 3. 2

1 2 5
:w s s s , 2

1 2 5
: { }s s s S S , 

1 18 8

2

1 2 5, ,
( 2 ) : ( 2 ) \ { }tr g t tr g t

s S s S
s s s   , 

2

1 2 5
( ) : ( ) ( ) 0 .03212s s s  P P PS S . 

Step 4. Since ( ) 0 .0 3 2 1 2 0 .0 4 P S , we go to Step 2. 

Step 2. Since 
1 8

,
(3 )trg t

s S
   , we go to Step 3. 

Step 3. 2

1 2 6
:w s s s , 2

1 2 6
: { }s s s S S , 

1 18 8

2

1 2 6, ,
( 2 ) : ( 2 ) \ { }tr g t tr g t

s S s S
s s s   , 

2

1 2 6
( ) : ( ) ( ) 0 .03620s s s  P P PS S . 

Step 4. Since ( ) 0 .0 3 6 2 0 0 .0 4 P S , we go to Step 2. 

Step 2. Since 
1 8

,
(3 )trg t

s S
   , we go to Step 3. 

Step 3. 2

1 2 5
:w s s s , 2

1 2 5
: { }s s s S S , 

1 18 8

2

1 2 5, ,
( 2 ) : ( 2 ) \ { }tr g t tr g t

s S s S
s s s   , 

2

1 2 5
( ) : ( ) ( ) 0 .0 3 9 8 0s s s  P P PS S . 

Step 4. Since ( ) 0 .0 3 9 8 0 0 .0 4 P S , we go to Step 2. 

Step 2. Since 
1 8

,
(3 )trg t

s S
   , we go to Step 3. 

Step 3. 2

1 2 6
:w s s s , 2

1 2 6
: { }s s s S S , 

1 18 8

2

1 2 6, ,
( 2 ) : ( 2 ) \ { }tr g t tr g t

s S s S
s s s   , 

2

1 2 6
( ) : ( ) ( ) 0 .0 4 2 2 0s s s  P P PS S . 

Step 4. Since ( ) 0 .0 4 2 2 0 0 .0 4 P S , we go to Step 5. 

Step 5. Print: 

“For the DS (1 )

8
S  the property 

1 8
( , ; 3, 0 .4 )

trg t
s S  P  is false”, 

   Print: 
2 2 2 2

1 2 5 1 2 6 1 3 5 1 2 7 1 4 6 1 4 7 1 2 5 1 2 6 1 2 5 1 2 6
{ , , , , , , , , , }s s s s s s s s s s s s s s s s s s s s s s s s s s s s s sS , 

and HALT. 

It should be noted that in the process of applying Algorithm 1 to check the property 
1 8

( , ; 3, 0 .4 )
trg t

s S  P , the 

last eight rows of Table 1.2 were not used at all. This situation is typical when a counterexample exists. 

2. Let us consider the DS 
(1 )

4
S  (see Example 1.2) for the following numerical values of the transition 

probabilities between the states 
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( 1 )

4

0 .7 0 0 .2 0 0 .0 8 0 .0 2

0 0 .6 5 0 .2 5 0 .1 0

0 0 0 .6 0 0 .4 0

0 0 0 1

P

 

 

 
 

 

 

C
 

Let 
4 4

{ }
trg t

S s , and 3l  . 

Substituting these numerical values into Table 2.1 (see Example 2.1), we get the following Table 2.2. 
 

Table 2.2 

 w  ( )wP   w  ( )wP  

1 4
,

(1)tr g t
s S

  
1 4

s s  0.0200   2

1 2 4
s s s  0.0140  

 2

1 4
s s  0.0140   2

1 3 4
s s s  0.0224  

1 4
,

( 2 )tr g t
s S

  
1 2 4

s s s  0.0200  
1 4

,
(3 )trg t

s S
  2

1 2 4
s s s  0.0130  

 
1 3 4

s s s  0.0320   
1 2 3 4

s s s s  0.0200  

1 4
,

(3 )trg t
s S

  3

1 4
s s  0.0098   2

1 3 4
s s s  0.0192  

 

Applying Algorithm 1 to check the property 
1 4

( , ; 3, 0 .2 )
trg t

s S  P , we get: 

Step 1. : 1m  , : S , ( ) : 0SP . 

Step 2. Since 
1

,
(1)trg t

n
s S

   , we go to Step 3. 

Step 3. 
1 4

:w s s  
1 4

: { }s sS , 
1 18 8

1 4, ,
( 2 ) : ( 2 ) \ { }trg t tr g t

s S s S
s s   , 

1 4
( ) : 0 ( ) 0 .0 2 0 0s s  P PS . 

Step 4. Since ( ) 0 .0 2 0 0 0 .2 P S , we go to Step 2. 

Step 2. Since 
1 8

,
(1)trg t

s S
   , we go to Step 6. 

Step 6. : 2m  . 

Step 7. Since 2 3 , we go to Step 2. 

Step 2. Since 
1 8

,
( 2 )trg t

s S
   , we go to Step 3. 

Step 3. 2

1 4
:w s s  2

1 4
: { }s s S S , 

1 18 8

2

1 4, ,
( 2 ) : ( 2 ) \ { }tr g t tr g t

s S s S
s s   , 2

1 4
( ) : ( ) ( ) 0 .0 3 4 0s s  P P PS S . 

Step 4. Since ( ) 0 .0 3 4 0 0 .2 P S , we go to Step 2. 

Step 2. Since 
1 8

,
( 2 )trg t

s S
   , we go to Step 3. 

Step 3. 
1 2 4

:w s s s  
1 2 4

: { }s s s S S , 
1 18 8

1 2 4, ,
( 2 ) : ( 2 ) \ { }trg t trg t

s S s S
s s s   , 

1 2 4
( ) : ( ) ( ) 0 .0 5 4 0s s s  P P PS S . 

Step 4. Since ( ) 0 .0 5 4 0 0 .2 P S , we go to Step 2. 

Step 2. Since 
1 8

,
( 2 )trg t

s S
   , we go to Step 3. 

Step 3. 
1 3 4

:w s s s  
1 3 4

: { }s s s S S , 
1 18 8

1 3 4, ,
( 2 ) : ( 2 ) \ { }trg t trg t

s S s S
s s s   , 

1 3 4
( ) : ( ) ( ) 0 .0 8 6 0s s s  P P PS S . 

Step 4. Since ( ) 0 .0 8 6 0 0 .2 P S , we go to Step 2. 

Step 2. Since 
1 8

,
( 2 )trg t

s S
   , we go to Step 6. 

Step 6. : 3m  . 

Step 7. Since 3 3 , we go to Step 2. 

Step 2. Since 
1 8

,
(3 )trg t

s S
   , we go to Step 3. 

Step 3. 
3

1 4
:w s s  

3

1 4
: { }s s S S , 

1 18 8

3

1 4, ,
( 2 ) : ( 2 ) \ { }tr g t tr g t

s S s S
s s   , 

3

1 4
( ) : ( ) ( ) 0 .0 9 5 8s s  P P PS S . 

Step 4. Since ( ) 0 .0 9 5 8 0 .2 P S , we go to Step 2. 

Step 2. Since 
1 8

,
(3 )trg t

s S
   , we go to Step 3. 

Step 3. 
2

1 2 4
:w s s s  

2

1 2 4
: { }s s s S S , 

1 18 8

2

1 2 4, ,
( 2 ) : ( 2 ) \ { }tr g t tr g t

s S s S
s s s   , 

2

1 2 4
( ) : ( ) ( ) 0 .1 0 9 8s s s  S SP P P

. 

Step 4. Since ( ) 0 .1 0 9 8 0 .2 SP , we go to Step 2. 
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Step 2. Since 
1 8

,
(3 )trg t

s S
   , we go to Step 3. 

Step 3. 2

1 3 4
:w s s s  2

1 3 4
: { }s s s S S , 

1 18 8

2

1 3 4, ,
( 2 ) : ( 2 ) \ { }tr g t tr g t

s S s S
s s s   , 2

1 3 4
( ) : ( ) ( ) 0 .1 3 2 2s s s  S SP P P

. 

Step 4. Since ( ) 0 .1 3 2 2 0 .2 SP , we go to Step 2. 

Step 2. Since 
1 8

,
(3 )trg t

s S
   , we go to Step 3. 

Step 3. 2

1 2 4
:w s s s  2

1 2 4
: { }s s s S S , 

1 18 8

2

1 2 4, ,
( 2 ) : ( 2 ) \ { }tr g t tr g t

s S s S
s s s   , 2

1 2 4
( ) : ( ) ( ) 0 .1 4 5 2s s s  S SP P P . 

Step 4. Since ( ) 0 .1 4 5 2 0 .2 SP , we go to Step 2. 

Step 2. Since 
1 8

,
(3 )trg t

s S
   , we go to Step 3. 

Step 3. 
1 2 3 4

:w s s s s  
1 2 3 4

: { }s s s s S S , 
1 18 8

1 2 3 4, ,
(3 ) : (3 ) \ { }trg t trg t

s S s S
s s s s   , 

    
1 2 3 4

( ) : ( ) ( ) 0 .1 6 5 2s s s s  S SP P P . 

Step 4. Since ( ) 0 .1 6 5 2 0 .2 SP , we go to Step 2. 

Step 2. Since 
1 8

,
(3 )trg t

s S
   , we go to Step 3. 

Step 3. 2

1 3 4
:w s s s  2

1 3 4
: { }s s s S S , 

1 18 8

2

1 3 4, ,
(3 ) : (3 ) \ { }tr g t tr g t

s S s S
s s s   , 2

1 3 4
( ) : ( ) ( ) 0 .1 8 4 4s s s  S SP P P . 

Step 4. Since ( ) 0 .1 8 4 4 0 .2 SP , we go to Step 2. 

Step 2. Since 
1 8

,
(3 )trg t

s S
   , we go to Step 6. 

Step 6. : 4m  . 

Step 7. Since 4 3 , we go to Step 8. 

Step 8. Print: 

“For the DS (1 )

4
S  the property 

1 4
( , ; 3, 0 .2 )

trg t
s S  P  is true”, 

and HALT. 

It should be noted that in the process of applying Algorithm 1 to check the property 
1 4

( , ; 3, 0 .2 )
trg t

s SP  all 

rows of Table 2.2 were used. This situation always occurs when a counterexample does not exist. 

 

V. Discussion 
The main aim of the given paper was to develop an analytical model based on FMC and intended for 

analysis of recoverable, partially recoverable, and non-recoverable DSs within the finite time horizon, for which 

the measurements of the system parameters are carried out after a fixed period of time. The use of FMC assumes 

that the state transition probabilities are constant. Hence it follows that the finite time horizon must be divided 

into disjoint intervals, at each of which this assumption can be accepted. As a result, the analyzed DS will be 

represented by a sequence of FMCs, each of which corresponds to a certain interval. The methods of exact and 

bounded analysis of the investigated DS on an interval via FMC are considered in this paper. 
Definition 2 identifies two types of DS, namely recoverable and non-recoverable ones. These two types 

of DSs correspond to the extreme cases between which there is a whole spectrum of DSs. This spectrum of DSs 

can be defined as follows. 

Definition 3. An FMC 
n

C  is a model of a m -recoverable (2 1)m k    DS 
n

S , if for all 

, , 1j m k   and for any state 
r j

s B  holds the disequality ( )
a n c

n
S r   . 

Definition 3 implies that a 2 -recoverable DS is a recoverable DS in the sense of Definition 2. 

Obviously, the methods of exact and bounded analysis considered in this paper can be applied to any m -

recoverable (2 1)m k    DS 
n

S . 

It is noted in Remark 3 that generation of elements of the set 
1

,
( )tr g t

n
s S

m  ( 1, 2 , , )m l  can be done by 

presentation state transitions of the FMC 
n

C  via rooted ranked tree with the root labeled by the state 
1

s . 

Obviously, the following approach can be applied to compute the probability 
1

( , ; )
trg t

n
s S lP . 

Let 
1

( , ; )
trg t

n
s S mP  ( 1, , )m l  be the probability to reach the set 

tr g t

n
S  exactly for m  state 

transitions. Then 

1 1

1

( , ; ) ( , ; )

l

trg t trg t

n n

m

s S l s S m



  P P .                                                     (4) 
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Setting ( ) ( )

1 0
( , , )

n

m m m

m n
u u P u v

c
, where 

0

1  

(1, 0 , , 0 )

n tim es

v , we get 

( )

1

{ | }

( , ; )
trg t

j n

tr g t m

n i

i j s S

s S m u

 

  P .                                                        (5) 

Applying (4) and (5), we can compute any set 
1

,
( )tr g t

n
s S

m  ( 2 , , )m l  by using recurrence relation 

1
n

m m
P


u u

c
. 

 

V. Conclusion 

In the given paper an analytical model based on FMC that presents the transitions between the 

functionality stages of the analyzed DS is proposed. The advantage of this model is in the possibility to carry out 

symbolic simulation of the transitions between the functionality stages of the analyzed DS by using these or the 

other suitable software tools. Besides, the critical sets of states in the weak as well as in the strong sense can be 

defined. The problem of exact and bounded analysis for the target set of states reachability within a given finite 
time horizon is solved. The essential characteristic of the proposed model is that it can be used for the analysis 

of the effect of the variations of transition probabilities on the probability of the target set of states' reachability. 

Possible area of future research is software implementation of Algorithm 1. Another area is the development of 

methods for choosing the probabilities of the FMC states transitions to minimize the probability of the target set 

of states' reachability. 
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