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Abstract: Time and again, systems described by differential equations are so complex that purely analytical
solutions of the equations are not very easy to come by. Therefore, in this paper, we develop a collocation
method using Laguerre polynomials as basis function to approximate two-point second-order linear boundary
value problems with Dirichlet and Neumann boundary conditions in ordinary differential equations. The
collocation method developed is implemented in MAPLE 17 in conjunction with MATLAB R2014a through six
illustrative examples. Absolute errors are equally estimated. From the result, we observed that the accuracy of
the collocation method constructed increases with the use of more terms of the Laguerre polynomials as basis
function. Based on the careful observations from the numerical experiment, it may be concluded here that the
collocation method developed is more efficient, effective and applicable in terms of accuracy for approximating
boundary value problems with Dirichlet boundary condition. Therefore, this method is highly recommended as
a way of application for approximating many models in sciences and engineering that appear in form of second
order boundary value problems with Dirichlet boundary condition as well as Neumann boundary condition.
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I.  Introduction

Fundamentally, all systems that undergo change can be described by differential equations. Therefore,
[15] assert that Ordinary Differential Equations (ODES) of the Initial Value Problem (I\VP) or Boundary Value
Problems (BVPs) type can model phenomena in wide range of fields including science, engineering, economics,
social science, biology, business, healthcare among others.To be more specific, [7],[23]and [22] opine that
Boundary Value Problems (BVPs) in Ordinary Differential Equations (ODES) are used to model many physical
phenomena in engineering, sciences especially physics and other related areas such asbiology, spring problem,
buoyance problem, electrical problem, boundary layer theory, astronomy, heat transfer, Sturm-Liouville
problem, diffusion process, electromagnetism as well as deflection in cables.Moreover, Boundary Value
Problems play an important role in many fields such as physics, chemistry and engineering. The Two-point
Boundary Value Problems occur in a variety of problems, including the modelling of chemical reaction, heat
transfer, diffusion, and the solution of optimal control problems ([9]).

Time and again, systems described by differential equations are so complex that purely analytical
solutions of the equations are not very easy to come by. Consequent upon this,numerical techniques for solving
differential equations form the nucleus of concern.

There are several types of boundary value problems (BVPs) and some of them depend on the boundary
condition itself ([13]; [9]). In this work, we consider the following second order linear two-point boundary value
problems:

P()y"(x) + Q(x)y'(x) + R(x)y = G(x),  [a,b] ®
with the Dirichlet boundary condition:
y(@ =Yar y(b) = yp; 2)

and Neumann boundary condition:

y'(@ =Ye Y'(b)=yp 3)
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Some of the most prominentmethods for solving boundary value problems are given in the works
of[12],[5], [2], [24], [9], in the papers of [13], [19], [20], [11],[18], [14], as well as in the publications of [8],
[3].[16], [22] and [21].

[19] in [12] summarised the above prominent methods of solving boundary value problems into four
traditional methods, namely: finite difference method, shooting method, collocation method and finite element
method. In this paper, we developeda collocation technique using Laguerre polynomial as basis function and
applied it to second-order Dirichlet and Neumann boundary-value problems of ordinary differential equations.
In the words of [12], “Collocation method is a method which involves the determination of an approximate
solution to an equation using a suitable set of functions, sometimes called trial or basis functions. The
approximate solution is required to satisfy the governing equation and its supplementary conditions at certain
points in the range of interest called collocation points.”

Both [3] and [19] stated that monomial and polynomial functions as well as spline function among
others may be used to develop a collocation method. Nevertheless, [19] unequivocally encouraged the use of
orthogonal polynomials as basis functions since polynomial functions are vulnerable to Runge phenomenon and
monomial elements as non-orthogonal functions can make the coefficient matrix of the linear equations ill-
conditioned.Buttressing[19], [17]clearly opined that “Many scientists over the years have given special attention
to applications of orthogonal polynomials because its important role played in different fields of human
endeavour. These orthogonal polynomial include Laguerre polynomials, Legendre polynomial, Hermite
polynomial, Chebyshev polynomial among others. These polynomial series deal with various problems in
engineering and science. They are used in solving systems of ordinary differential equations with boundary
conditions to obtain very accurate approximations. The main characteristic of these applications is that they
reduce these problems to those of solving a system of algebraic equation by greatly simplifying the problem™.

Every so often, researchers have applied orthogonal polynomials as basis functions for developing
approximate methods to solve different forms of ordinary differential equations. In the light of this, [4] and [25]
used Chebyshev polynomials and Legendre polynomials respectively as basis functions to develop collocation
methods for approximating ordinary differential equations with accurate numerical solutions. [1] used Hermite
polynomials to develop continuous linear multistep methods for approximating initial value problem of ordinary
differential equations. In a related development, [12] used the Probabilist’s Hermite polynomials of degree eight
(8) as basis function to construct a collocation method for approximating second order linear boundary value
problems of ordinary differential equations with Dirichlet, Neumann and Robin boundary conditions.In another
development, [10] used Laguerre polynomials as basis function to construct a collocation method called
“Continuous Implicit Linear Multistep Methods for the Solution of Initial Value Problems of First-Order
Ordinary Differential Equations”.

From the foregoing and other available literature, we are made to understand that orthogonal
polynomials have been widely used effectively as basis functions to construct so many numerical methods for
the approximations of initial value and boundary value problems of ordinary differential equations, even partial
differential equations as seen in the work of [16]where the solution of second order partial differential equation
using the Hermite polynomials as basis functions was approximated. Therefore, in this paper, the researchers
develop a collocation technique using Laguerre polynomials which are orthogonal polynomials as
basisfunctions for approximating second-order linear Dirichlet and Neumann boundary-value problems of
ordinary differential equations.

Il.  Formulation of Method
Laguerre polynomial is used as basis function to construct a collocation technique for approximating
second-order linear Dirichlet and Neumann boundary-value problems of ordinary differential equations in this
section. The formulation of the method is partly based on the procedure in [12].

2.1 Second Order Boundary Value Problems (BVPs)
In this Section, we shall consider Equations (1) — (3) in which we assume x and y to denote the independent and
dependent variables respectively.

2.2 Laguerre Polynomials
In Mathematics, the Laguerre polynomials:

k
L (x) Z(kl()z ) n! k(4)

named after Edmond Laguerre (1834-1886) are solutions of Laguerre’s equation:
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xy"+(1—-x)y'"+ny=0 5)
which is a second-order linear differential equation. The first eleven terms of Laguerre polynomials can be
generated from Equation (4) and presented as follows:

Lo(x)=1 —_
Lix)=1-—x
1
Lz(x)=1—2x+§x2
3 1
L :1— a2 43
3 (%) 3x+2x 26x 1
L4(x)=1—4x+3x2—§x3+;x4
Ls(x)z1—5x+5x2—§x3+ix4—;10x5 (6)
15 10 5 1 1
Ls(x)=1—6x+7x2—?x3+§x4—2—0x5+mx5 —
21 35 35 7 7 1
L7(x)=1—7x+7x2—?x3+ﬁx4—4—0x5+mx5——5040x7
28 35 7 7 1 1
L =1- 1452 — 233 4 oyt 5 6 — 7 8
5(%) B+ " =+ X~ 30% T 180% " 630" T20320%

2.3Collocation Method for Approximating Boundary Value Problems

The general idea behind collocation method is to reduce a boundary value problem to a set of solvable algebraic
equations ([12]). Here, we choose@,(x), ..., @y(x) as the set of polynomial basis functions to obtain
approximate solution. Next, to solve a boundary value problem using a collocation method, we consider the
possible solution to the boundary value problem in Equations (1) — (3) to be:

y(x) = a;0:(x) + a2, (x) + az03(x) + ... +ayey(x) )
or
N
Yy =) a0, ®
=1

where N is the number of terms of a basis or trial function ([12]).

2.3.1 Collocation Method using Laguerre Polynomials as Basis Functions
Here, we wish to approximate the possible solution y(x)in Equation (8) by Laguerre polynomial of degree

nwith the formula:
n+1

MOEDIIANG ©)

j=1
where L;_, (x) are Laguerre polynomials generated by Equation (4) andn + 1 is the truncated number of terms
of the Laguerre polynomials which is equivalent to a polynomial of degree n.
The first nine (9) terms of L, (x) are given in Equation (6). Applying equation (9) to approximate a boundary
value problem in Equations (1) — (3), the first and the last terms corresponding to j=1 and j=n+
1respectively are boundary conditions; the remaining n — 1 equations are obtained from the given equation by
differentiating Equation (9) the required number of times and then evaluating x; for 2 < i < n, where x; is
defined similar to[12] as:

i—1
xi=a+T(b—a), i=1,2, e, M. (10)

2.3.2 Approximating the Solution of BVPs with Laguerre Polynomials

Approximating the solution of BVPs in Equations (1) — (3) using a collocation method with Laguerre
polynomials as basis functions comprises two stages: finding solution at the boundary mesh points; and finding
solution at the interior mesh points.

2.3.3 Solution at the Boundary Mesh Points with Dirichlet Boundary Condition
The boundary value problem in Equation (1) with its associated Dirichlet boundary condition in Equation (2) at
both ends (i.e., the first and the last mesh points) assumes the following form:
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Y@= §l1(@); and y(b) = Y 51,1 (b) (11
j=1 j=1

2.3.4 Solution at the Boundary Mesh Points with Neumann Boundary Condition
The boundary value problem in Equation (1) with its corresponding Dirichlet boundary condition in Equation
(3) at both ends (i.e., the first and the last mesh points) assumes the following form:

n+1 n+1

Y@= Y Ly (@; and ) = Y 5Ly (b) (12)

j=1 j=1

2.3.5 Solution at the Interior Mesh Points
Since the first and the last boundary mesh points has been taken care of in the preceding subsection (i.e.,
Equations (11) and (12)), the remaining n — 1 equations are obtained from the differential equation evaluated at
x;.Now, let’s consider Equation (1):

P(x)y" (x) + Q(x)y'(x) + R(x)y = G(x).
Finding the first and second derivatives of equation (9) will return:

n+1 n+1
Y =Y sl G and y'() = Y 5L (13)
j=1 j=1
respectively.The n — 1 equations on the interior mesh points are obtained from

n+1

Y P () + QO () + REL () = 6(x))  (14)
j=1
where x; is defir%ed by Equation (10).

From the discretization of the boundary points (i.e., first and last points) and interior points above, we now
obtain an (n + 1) X (n + 1) matrix of the form:

Mmia 0 Minta a, €1
: : : = HE (15)
Mp+11 " Mptin+a Ap1 Cn+1

where the coefficient matrixm;; and the column matrix c; are constants. But m;; is defined by:

( nti1 n+1
Z Li_;(a)or Z L (), i=1,
j=1 =1
n+1
m;; = Z(P(xi)l‘”j—l(xi) + Q)L (x) + R(x)Lj_4(x;)), 2<i<n, (16)
=1
n+1 n+1
L1 (b) or Z Ly (), i=n+1
\j=1 j=1
and
aq, i=1,
¢ = {G(xi), 2<i<n 17
ai=n+1

Solving Equation (15) yields the values of s;, 1 <j <n + 1. These values s;are substituted into Equation (9)
to get the required approximate series solution.

I11.  Numerical Experiments
In this Section, we consider six (6) numerical examples. From the six numerical examples, three of
them are second-order boundary value problems with the Dirichlet boundary condition and the remaining three
are boundary value problems with the Neumann boundary conditions. The approximate solutions are in form of
series solutions and are compared with the exact solutions at some selected mesh points within the given interval
and the results and absolute errors are displayed in Tables (1) — (6). The coefficients for Examples 1-6 are
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provided in the Appendices A — F.These coefficients are substituted into Equation (9) to get the various required
approximate solutions in series form. All computations are carried out usingMAPLE 17in conjunction with
MATLAB R2014asoftware. These examples are somewhat artificial in the sense that the exact solutions of the
differential equations are known in advance. That notwithstanding, such an approach is needed to examine the
accuracy, the simplicity, the effectiveness and the applicability of the newly constructed method.

3.1 Boundary Value Problems with Dirichlet Boundary Condition

Problem 1
Consider the boundary value problem:

y"' =4y, [0,1];
with Dirichlet boundary condition: y(0) = 1 and y(1) = 3; and

Exact Solution:
e—2x+4- + 3ez+2x _ 3e—2x+2 _ er

et —1

y(x) =
Problem 2
Consider the boundary value problem:
y" =y+cos(x), [0,1];
with Dirichlet boundary condition: y(0) = 0 and y(1) = 1; and
Exact Solution:
1 —e**1 cos(1) + cos(x) e? + el cos(1) + e* — 2e**! — e27% + 2e17* — cos(x)

y&) = T2 e?—1
Problem 3
Consider the boundary value problem:
y" = —y + sin?(nx) — n?sin (nx), [0, 1];

with Dirichlet boundary condition: y(0) = 0 and y(1) = 0; and

Exact Solution:
2sin (x)(cos(1) — D72 2 cos(x) m?
(4n? — Dsin (1)  4n2—1
8m* sin(mx) + 4m* + m? cos(2mx) — 2m? sin(mx) — 572 — cos(2mx) + 1
8m* — 1072 + 2

y(x) =

3.1.1 Solutions to Problems 1 — 3

Using the formulas in Equations (9) — (17), the results [exact solutions and the approximate solutions which
correspond to Laguerre polynomial of degrees 3 — 8 (LPD3, LPD4, LPD5, LPD6, LPD7 and LPD8)] together
with the absolute errors (erl, er2, er3, erd, er5 and er6)for Problems 1 — 3 are presented in Tables 1 — 3
respectively.

Table 1: Exact and Approximate Solutions for Problem 1 Using Laguerre Polynomial of Degrees 3, 4, 5,

6,7 and 8
n *n Exact Approximate Selutions (Laguerre Polynomials) Absolute Errors
Solution
vix,) LPD3 LPD4 LPDS LPD6 LPD7 LPDS erl erl erd erd ers erf

0 00 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
1 01 9.7776e-01 1.2000e+00 9.7671e-01 9.780%e-01 9.7774e-01 9.7776e-01 9.7776e-01 2.2224e-01 1.0418=-03 3.3054e-04 1.7068e-05 3.3734e-06 3.1030e-06

0.2 9.9475e-01 1.4000e+00 9.9397e-01 9.9505e-01 9.9474e-01 9.9475e-01 9.9475e-01 4.0525e-01 7.8126=-04 2.93492-04 1.0046e-05 2.7428e-06 3.1102e-06
3 03 1.0517e+00 1.6000e+00 1.0515e+00 1.0519e+00 1.0517e+00 1.0517e+00 1.0517e+00 54833e-01 2.0449:-04 2.4460e-04 4.6340e-06 2.5800e-06 3.5971e-06
4 0.4 1.1508e+00 1.8000e+00 1.1510e+00 1.1510e+00 1.1508e+00 1.1508e+00 1.1508e+00 £.4920e-01 2.1869e-04 2.4831e-04 8.2755e-07 2.5158e-06 4.1000e-08
5 0.5 1.2961e+00 2.0000e+00 1.2966e+00 1.2964e+00 1.2961e+00 1.2961e+00 1.2961e+00 7.038%e-01 4.4318:2-04 2.6386e-04 4.110%e-06 2.4770e-08 4.8424e-08
6 0.6 1.4934e+00 2.2000e+00 1.4941e+00 1.4937e+00 1.4934e+00 1.4934e+00 1.4934e+00 7.0656e-01 £.8889e-04 2.6345e-04 9.1943e-06 2.6315e-06 5.6827e-06
7 0.7 1.7507e+00 2.4000e+00 1.7519e+00 1.7510e+00 1.7507e+00 1.7507e+00 1.7507e+00 £.4930e-01 1.2088e-03 2.7604e-04 1.3370e-05 2.8116e-06 5.7105e-06
8 0.8 2.0782e+ 2.6000e+00 2.0802e+00 2.0786e+00 2.0783e+00 2.0782e+00 2.0782e+00 5.2177e-01 1.9608e-03 3.4733e-04 1.9897e-05 3.1023e-06 5.1091e-08
9 09 2.4892e+00 2.8000e+00 2.4914e+00 2.4896e+00 2.4892e+00 2.4892e+00 2.4892e+00 3.1083e-01 2.2139e-03 4.0319e-04 2.8692e-05 3.9155e-06 5.5892e-06
10 10 3.0000e+00 3.0000e+00 3.0000e+00 3.0000e+00 3.0000e+00 3.0000e+00 3.0000e+00 0.0000e+00 0.0000e+00 4.4409e-16 4.440%e-16 0.0000e+00 0.0000e+00
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Table 2: Exact and Approximate Solutions for Problem 2 Using Laguerre Polynomial of Degrees 3, 4, 5,
6,7 and 8

0 x, Exact Approximate Solutions (Laguerre Polynomials) Absolute Errors

Solution

Vg LPD3 LPD4 LPDS LPD6 LPD? LPD§ erl er2 erd erd ers er6
0 0.0 0.0000e+00 1.1102e-15 -1.7764e-15 1.98385&-13 15348e-11 -8.7311e-11 5.0670=-08 1.1102e-15 17764e-15 19895e-13 15348e-11 87311e-11 5.0670e-08
1 0.1 4.7498e-02 3.2397e-01 4.7449e-02 4.75042-02 4.7488e-02 4.7498e-02 4.7498e-02 2.7647e2-01 4.9263e-05 5.5859e-06 1.0085e-07 3.5313e-09 2.7516e-08
2 02 1.0542e-01 6.0225e-01 10538e-01 1.05432-01 10542e-01 10542e-01 10542e-01 49683e-01 4.04812-05 5.3391e-06 6.6846e-08 3.3040e-09 8.8561e-09
3 03 1.7420e-01 8.3332e-01 174182-01 1.7421e-01 1.7420e-01 17420e-01 1.7420e-01 6.5912e-01 17781e-05 4 7806e-06 39376e-08 3.443%e-09 6.2044e-09
4 04 2.54218e-01 1.0156e+00 2.5428e-01 21.5428e-01 2.5428e-01 2.5428e-01 2.5428e-01 7.6137e-01 7.0642e-07 4.9052e-06 1.9370e-08 3.6004e-09 1.7924e-08
5 05 34611e-01 1.1477e+00 3.4612e-01 3.4612e-01 34611e-01 34611e-01 34611e-01 80158e-01 £.80642-06 5.10842-06 5.8679e-08 3.7065e-09 26623e-08
6 0.6 4.5018e-01 1.2279e+00 4.5020e-01 4.5019e-01 4.5018e-01 4.5018e-01 4.5018e-01 7.77742-01 1.8457e-05 4.9828e-06 3.1144e-08 3.9358e-09 3.2589e-08
7 07 5.6701e-01 1.2548e+00 56705e-01 5.6702e-01 56701e-01 56701e-01 56701e-01 6.8779e-01 3.6383e-05 49391e-06 5.1192e-08 4.1094e-09 3.6095e-08
1 08 6.8717e-01 1.2268e+00 6.97232-01 6.9717e-01 69717e-01 69717e-01 69717e-01 5.2963e-01 6.07412-05 560192-06 79232e-08 4.3141e-09 37420e-08
9 0.8 8.4127e-01 1.1424e+00 8.4133e-01 8.4127e-01 8.4127e-01 8.4127e-01 8.4127e-01 3.0111e-01 6.8017e-05 5.9295e-06 1.1420e-07 4.9874e-09 3.6758e-08
10 1.0 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00 1.1102e-15 21.6645e-15 1.3034e-13 1.0241e-11 1.8485e-10 3.4955e-08

Table 3: Exact and Approximate Solutions for Problem 3 Using Laguerre Polynomial of Degrees 3, 4, 5,
6,7 and 8

n x, Exact Approximate Solutions (Laguerre Polynomials) Absolute Errors
Solution
V(xn) LPD3 LPD4 LPD: LPD6 LPD7 LPDS erl er2 er3 erd ers er6
0 0.0 1.1102e-16 -1.7764e-15 1.8422e-14 -14211e-14 -1.0118e-10 -5.2296e-12 -7.0315e-08 18874e-15 2.8311e-14 14322e-14 1.0118e-10 5.2297e-12 7.0315e-08
1 01 3.1606e-01 3.950%9e-01 31278e-01 3140%e-01 315932-01 3.1612e-01 3.1642e-01 7.9025e-02 3.2794e-03 197182-03 1.3301e-04 5.2578e-05 35195e-04
2 0.2 5.9980e-01 7.0238e-01 5.9620e-01 5.9800e-01 5.9985e-01 6.0010e-01 6.0035e-01 1.0258e-01 3.5927e-03 1.7954e-03 5.2423e-05 3.0209e-04 5.5273e-04
3 0.3 8.2348e-01 9.2187e-01 8.2015=-01 8.2201=-01 8.2373e-01 £.2401e-01 8.2426e-01 9.8388e-02 3.3350e-03 1.4705e-03 24753204 5.2930e-04 7.7706e-04
4 0.4 9.6623e-01 1.0536e+00 9.6312e-01 9.6491e-01 9.6668e-01 9.6698e-01 9.6723e-01 8.7341e-02 3.1082e-03 1.3164e-03 4.47972-04 7.5192e-04 1.0007e-03
5 05 1.0151e+00 1.0975e+00 10122e+00 1.0140e+00 10158e+00 1.01612+00 1.01632+00 8.2349e-02 29083e-03 1.1595e-03 6.5880e-04 97147e-04 1.215%e-03
6 06 9.6581e-01 1.0536e+00 9.6312e-01 9.6491e-01 9.6668e-01 9.6698e-01 9.6723e-01 8.7756e-02 2 26e-03 9.0072e-04 B8.6360e-04 1.1675e-03 1.4163e-03
7 0.7 8.226%9e-01 9.2187e-01 8.2015e-01 8.2201e-01 8.2373e-01 8.2401e-01 8.2426e-01 9.9184e-02 2.5390e-03 6.74472-04 1.0436e-03 1.3253e-03 1.5731e-03
8 08 5.986%9e-01 7.0238e-01 59620e-01 59800e-01 599852-01 6.0010e-01 6.0035e-01 1.0369e-01 2.4853e-03 6.68042-04 1.1597e-03 1.4094e-03 1.6601e-03
9 08 3.1474e-01 3.9509e-01 3.1278e-01 3.1409e-01 3.1593e-01 3.1612e-01 3.1642e-01 8.0344e-02 1.9604e-03 6.5278e-04 1.1860e-03 1.3716e-03 1.6710e-03
10 1.0 -1.4070e-03 0.0000e+00 -8.5265e-14 0.0000e+00 1.0162e-10 1.2548e-11 -1.9778e-08 1.4070e-03 1.4070e-03 1.4070e-03 1.4070e-03 1.4070e-03 1.406%e-03

3.2 Boundary Value Problems with Neumann Boundary Condition

Problem 4
Consider the boundary value problem:

-y =02-4x*y, [0,1];
with Neumann boundary condition: y'(0) = 0 and y'(1) = _?2; and
Exact Solution:

y(x) = e*’.

Problem 5
Consider the boundary value problem:

y'=y"+2y [0,1];

2 -1
with Neumann boundary condition: y'(0) =1 and y'(1) = Ze%; and
Exact Solution:

2x __ e—x

y(x) = T

Problem 6
Consider the boundary value problem:

y" =2y, [0, 11];
with Neumann boundary condition: y'©® = —1 and y'(1) = _T; and
Exact Solution:
1V2(—4eV2x=D — 4o=V2=1) 4 oV2x 4 o=V2x)eV2

8

y(x) =— pry -
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3.2.1 Solutions to Problems 4 — 6

Using the formulas in Equations (9) — (17), the results [exact solutions and the approximate solutions which
correspond to Laguerre polynomials of degrees 3 — 8 (LPD3, LPD4, LPD5, LPD6, LPD7 and LPD8)] together
with the absolute errors (erl, er2, er3, erd, er5 and er6) for Problems 4 — 6 are presented in Tables 4 — 6
respectively.

Table 4: Exact and ApproximateSolutions for Problem 4 Using Laguerre Polynomial of Degrees 3, 4, 5, 6,

7and 8

n x, Exact Approximate Solutions (Laguerre Polynomials) Absolute Errors
Solution
Vixg) LPD3 LPD4 LPDS LPD6 LPD? LPD§ erl er2 erd erd ers ers
a 00 1.0000e+00 15079e+01 99106e-01 9.9497e-01 1.0009e+00 1.0006e+00 9.9996e-01 1.407%e+01 89366e-03 5.0291e-03 £6532e-04 58451e-04 4.3593e-05
1 0.1 9.9005e-01 1.3657e+01 9.7937e-01 9.8514e-01 9.9106e-01 9.9064e-01 9.9000e-01 1.2667e+01 1.0682e-02 4.9051e-03 1.0077e-03 5.8530e-04 5.0045e-05
2 02 9.607%e-01 1.2213e+01 94649e-01 9.5615e-01 96202e-01 96137e-01 9.6073e-01 1.1253e+01 1.4300e-02 46377e-03 12338e-03 57857e-04 5.8449e-05
3 0.3 9.1393e-01 1.0751e+01 8.9577e-01 9.0965e-01 9.1536e-01 9.1449e-01 9.1387e-01 9.8374e+00 1.8161e-02 4.28215e-03 1.4330e-03 5.6078e-04 6.5550e-05
4 04 8.5214e-01 9.2746e+00 £.3060e-01 8.482%e-01 £.5375e-01 £.5268e-01 8.5207e-01 8.4225e+00 2.1544e-02 3.8538e-03 1.6038e-03 5.3385e-04 7.1641e-05
5 0.5 7.7880e-01 7.7869e+00 7.5441e-01 7.7543e-01 7.8056e-01 7.7930e-01 7.7872e-01 7.0081e+00 2.4390e-02 3.3730e-03 1.7568e-03 4.9981e-04 7.6750e-05
6 06 6.9768e-01 6.2919e+00 6.7068e-01 6.9481e-01 6.9957e-01 6.9514e-01 69760e-01 5.5942e+00 2.6994e-02 2.8652e-03 18926e-03 4 6061e-04 8.1100e-05
7 0.7 6.1263e-01 4.7931e+00 5.8194e-01 6.102%9e-01 6.1464e-01 6.1305e-01 6.1254e-01 4.1804e+00 2.9691e-02 2.3397e-03 2.0143e-03 4.1900e-04 8.5020e-05
8 08 5.272%9e-01 3.2942e+00 49474e-01 5.2550e-01 5.2943e-01 52767e-01 52720e-01 2.766%9e+00 3.2554e-02 1.7947e-03 2.1399e-03 37720e-04 8.8868e-05
9 0.8 4.4488e-01 1.7988e+00 4.0970e-01 4.4358e-01 4.4714e-01 4.4519e-01 4.4476e-01 1.353%9e+00 3.5155e-02 1.2733e-03 1.2817e-03 3.3660e-04 9.3403e-05
10 10 3.6788e-01 3.1055e-01 3.3149e-01 3.6688e-01 3.7025e-01 3.6819e-01 3677801 5.7332e-02 3.6392e-02 2.8504=-04 2.3732e-03 3.1183e-04 9.7127e-05

5: Exact and ApproximateSolutions for Problem 5 Using Laguerre Polynomial of Degrees 3, 4, 5, 6,

7and 8

. x, Exact Approximate Solutions (Laguerre Polynomials) Absolute Errors
Solution
vixg) LPD3 LPD4 LPDS LPD6 LPDT LPDS erl erl erd erd ers erf
o a0 0.0000e+00 2.4106e-01 -25627e-02 7.2148e-03 55680e-04  10364e-04 -60863e-06 2.4106e-01  25627e-02 7.2148e-03  5.5680e-04 1.0364e-04  6.0863e-06
1 01 1.0552e-01 3.4231e-01 £1342e-02 11248e-01 10501e-01  10562e-01 10552201 2.3679e-01  2.4180e-02 6.8715e-03  5.1543e-04 95036605  5.56602-06
2 0.2 2.2436e-01 4.51508-01 20327e-01 2.3092e-01 22392601 22446601 22436201 2.2714e-01  2108%e-02 6.5600e-03  4.4711e-04 92869605  4.84852-06
3 0.3 2.60432-01 5.7676e-01 3.4278e-01 3.66662-01 3.6005e-01  36052e-01  3.6043e-01 2.1633¢-01  1.7650e-02 6.2246e-03  3.8239-04 5.5273e-05  4.1813e-06
4 0.4 5.1841e-01 7.2623¢-01 5.0402e-01 5.2442e-01 51809201  51849e-01  5.1840e-01 20783e-01  1.4388e-02 6.0168¢-03  3.2069¢-04 8.5053e-05  3.5256e-06
5 a5 7.0382e-01 9.0805&-01 5.5258e-01 7.08832-01 70366601 7.0400e-01  7.0391e-01 20414e-01  11335e-02 5.8156e-03  2.5793e-04 £3229e-05  2.8757e-06
5 06 5.2377e-01  1.1304e-00 9.1557&-01 5.28682-01 9.2357e-01  9.2383e-01 92377201 20659e-01  6.20052-03 5.80808-03  1.8395e-04 £3036e-05  2.2203e-06
7 07 11862e+00  1.4013e+00 1.1816e+00  1.1922e+00 1.1861e+00  1.1863e+00  11862e+00 2.1509¢-01  4.6493e-03 §.0277e-03  1.2879¢-04 54515e-05  1.5400e-06
] 05 15012400  1.7290e+00 1.5006e+00  15076e+00 1501176872 1.5013e+00  15012e+00 2.2775¢-01  6.2437e-04 6.3201e-03  5.7615e-05 8.7926e-05  8.2611e-07
] 05 18810e+00  2.1216e+00  1.8843e+00  18878e:00 1.8810e+00 1.8811e+00 188102400 2.4055e-01  3.2558e-03 6.7566e-03  2.14562-05 93838205  3.18282-08
10 10 23404e+00  2.5872e+00 2.3456e+00  2.3474e+00 2.3405e+00  2.3405e+00  2.3404e+00 2.4682e-01  5.2134e-03 7.0463¢-03  7.1964e-05 9.8910e-05  5.7055e-07

Table

6: Exact and ApproximateSolutions for Problem 6 Using Laguerre Polynomial of Degrees 3, 4, 5, 6,

7and 8

n Exact Approximate Solutions (Laguerre Polynomials) Absolute Errors

Solution

Y(xg) LPD2 LPD4 LPD3 LPD§ LPDT LPDS erl er2 erd erd ers erf
0 00 7.0459e-01 7.2886e-01 7.0611e-01 7.0494e-01 7.0461e-01 7.0459e-01 7.0459e-01 1.4164e-02 1.5186e-03 3.4760e-04 1.4040e-05 2.4184e-06 7.0095e-08
1 01 6.1132e-01 6.34962-01 6.1270e-01 6.1165e-01 6.11332-01 6.1132e-01 6.1132e-01 2.3641e-02 1.38932-03 3.3296e-04 1.2336e-05 2.2907e-06 59857e-08
I 02 53029e01 55150e01  5.3141e01  53050e01 5303001 5301901  53029¢01  2.2301e02  11287¢03  3.0927e-04  08273c05  21279c05  4.5178e08
3 03 4.5988e-01 4.8074e-01 4.6073e-01 4.6017e-01 4.5989e-01 4.5988e-01 4.5988e-01 2.0860e-02 8.5382e-04 2.9081e-04 7.1616e-06 2.0144e-06 3.3799%e-08
4 04 39869e-01 41841e-01 3.9930e-01 39897e-01 3986%92-01 39869e-01 398692-01 19721e-02 6.08592-04 2.7975e-04 4 9006e-06 19411e-06 2.2007e-08
5 05 3.4548=-01 3.6458e-01 3.4587e-01 3.4576e-01 3.4548e-01 3.4548=-01 3.4548e-01 1.9102e-02 3.9129e-04 1.7437e-04 2.6932e-06 1.9055e-06 1.0682e-08
6 06 29920e-01 31826e-01 29938e-01 29947e-01 29920e-01 2.9920e-01 29920e-01 18387=-04 2.7361e-04 5.3932e-07 19085e-06 4.286%e-10
7 07 2.5891e-01 1.7843e-01 2.5887e-01 2.5918e-01 2.5890e-01 2.5891e-01 21.5891e-01 1.9521e-02 3.6188e-05 12.7840e-04 1.5609e-06 1.9506e-06 1.1574e-08
8 08 2.2380e-01 2.4408e-01 2.2353e-01 2.240%e-01 2.2380e-01 2.2380e-01 2.2380e-01 2.0278e-02 26826e-04 2.9015e-04 37471e-06 2.0307e-06 2.2866e-08
L] 0s 19318e-01 21421e-01 1.9270e-01 1.934%e-01 193182-01 19318e-01 193182-01 2.1029e-02 4 76432-04 3.0696e-04 6.0541e-06 2.1573e-06 3.4953e-08
10 10 166432-01 18781e-01 1.65686e-01 1.6675e-01 16642e-01 166432-01 166432-01 2.1380e-02 5748%2-04 3.1760e-04 7.4595e-06 2.2586e-06 4.3776e-08

Next, for Tables 1 — 6 above, different graphs each are presented as follows:
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IV.  Discussion of Results

In Tables 1 to 3, numerical solutions obtained by collocation method constructed with Laguerre
polynomials of degrees 3 to 8 for the solution of linear BVPs of ODEs for Problems 1 to 3 respectively which
have Dirichlet boundary conditions at both end-points are compared with the respective exact solutions. The
observed absolute errors between the respective exact solutions and that obtained by the collocation method
constructed with Laguerre polynomials of degrees 3 to 8 at various values of the mesh points are given. It is
equally observed from the results that the collocation method constructed with Laguerre polynomials of degrees
3 to 8 shows a progressive increase in the accuracy of the constructed method measured in terms of their
absolute errors. This is pictorially observed in Figures 1 to 3.

By the same token, in Tables 4 to 6, numerical solutions obtained by collocation method constructed
with Laguerre polynomials of degrees 3 to 8 for the solution of linear BVPs of ODEs for Problems 4 to 6
respectively which have Neumann boundary conditions at both end-points are compared with the respective
exact solutions. The observed absolute errors between the respective exact solutions and that obtained by the
collocation method constructed with Laguerre polynomials of degrees 3 to 8 at various values of mesh points are
given. It is correspondingly observed from the results that the collocation method constructed with Laguerre
polynomials of degrees 3 to 8 shows a progressive increase in the accuracy of the constructed method measured
in terms of their absolute errors. This is pictorially confirmed in Figures 4 to 6.

By the way of comparison, it is keenly observed from the results obtained by the collocation method
constructed with Laguerre polynomials of degrees 3 to 8 for the solution of linear BVPs of ODEs for Problems 1
to 3 respectively which have Dirichlet boundary conditions at both end-points are more accurate than the ones
obtained by collocation method constructed with Laguerre polynomials of degrees 3 to 8 for the solution of
linear BVPs of ODEs for Problems 4 to 6 respectively which have Neumann boundary conditions at both end-
points.

V.  Conclusion

In this work, we implemented the collocation method via Laguerre polynomials of degrees 3 to 8 for
the solution of linear BVPs of ODEs with Dirichlet boundary conditions at both end-points and Neumann
boundary conditions at both end-points. With the help of six illustrative examples, the accuracy, the simplicity,
the efficiency, the effectiveness and the applicability of the newly constructed method was demonstrated. Tables
1 to 6 together with the plots (Figures 1 to 6) meticulously presented to us the nature and the behaviour of the
newly constructed method. Based on the careful observations from the computed results, it may be concluded
here that the collocation method developed is more efficient, effective and applicable in terms of accuracy for
approximating boundary value problems with Dirichlet boundary condition. Therefore, this method is highly
recommended as a way of application for approximating many models in sciences and engineeringthat appear in
form of second order boundary value problems with Dirichlet boundary condition as well as Neumann boundary
condition.
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Appendices
Appendix A: Coefficients of the Laguerre Polynomial of Degrees 3 to 8 for Problem 1
LPD ay [ [ ay as g a7 ag ag
3 3 -2 0 ]
1 88249 11126 31568 _ 106048 072
3915 135 261 1303 145
207300478 1322911777 2460059000 2323339500 1106295000 _ 150000
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7 475506870943201 H30303095464941 34 972613139939160580)  1342075537513471576 | 1478741058112273200 §54754420281954720 | 274982686398289600 _ 4743607680
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DTIIRSAHR0IOTIS JATROR4N30I07213 T U 183 47450 § 1803
- Appendix B: Coefficients of the Laguerre Polynomial of Degrees 3 to 8 for Problem 2
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g
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Appendix C: Coefficients of the Laguerre Polynomial of Degrees 3 to 8 for Problem 3
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Appendix D: Coefficients of the Laguerre Polynomial of Degrees 3 to 8 for Problem 4

LPD ay [ a3 [ as ag a7 ag ag
3 93224 - 29092 41924 18252
16677¢ 1853 ¢ 1853 ¢ 1853 ¢
4 1065485 _ 790076 1183054 _ 193496 17536
172032 ¢ 43233¢ 43233e 14d11e lddlle
3 61116963818637 | 362344138708 3297397473451 188138551 1865 _ 533151510945 119336475000
1462511797000¢ | 1462511797 ¢ 3850047188 ¢ 2925023594 ¢ 1462511797 ¢ 1462511797 ¢
6 283282667540716] §12970792599924 | 2529407753847476 11196427488801588  16097908032678112 | 10369373689160640 2528788733533440
4104237078091 ¢| 4104237078091 ¢ | 4104237078091 ¢ 4104237076091 ¢ [ 4104237078091 ¢ 4104237078091 ¢ | 4410423078091 ¢
T | 00001 HMTIRINED | NS 28SIARRAID | 3SOOBMIATSORNN103T36ST|  GIBHTONOS4IMGSTISN]  GRIRASIOZ6RUMORKI 16T TIS2 |  AHIHATOLIOISRIORI00L441 15751 1451678050005 2802240 | 2ADTLA2LATSS469008K4000
SSTOMBRBATION e | DSOORRTIMAGN e | DGORMTIIMAOMIER e | DGRBMTIINMIAR e | D6OORRATIIONNMNGIN ¢ 20008 IANATIN e | DG09RBATIIN0MN6N e | J60URRTIONATIAN ¢
§ LN 1914785 TD526AI 8516120146287 | THATIIOIRTIRAROI4H400 | THSIONSORIONICANNDIIIN0 [ TISS00ISAM6ITSHIORATAIN | AIATETIOSIATIOIINIMGIA | 1932903201 JAATRAO0 [ BOTT13926208171 73186360
SH08 54550 48 TIITSSE91586M20 e | 163101266272130838203¢ T4IT086690401586T420e | 1141708863940 5867421 ¢ 1470836390491 58 1631012662721 30838205 1631012662721 30838203

Appendix E: Coefficients of the Laguerre Polynomial of Degrees 3 to 8 for Problem 5
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Appendix F: Coefficients of the Laguerre Polynomial of Degrees 3 to 8 for Problem 6
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3 5 203 m 13
201 134 134 134
I 148409 26669 112191 2556 144
194464 12154 24308 6077 103
5 _ 302632397 206421 _ 29999511 18489315 _ 5697045 46875
748763000 46798 2995072 1497536 748768 23399
] ST8843245 _ 3028781477 9157397169 14311382803 6424381420 _ 3108813640 349920
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