Slightly Gα-Continuous Functions

A.Selvakumar and K.Arunkumar

Rathinam College of Arts and Science, Coimbatore, India

Abstract

The notion of g\tilde\alpha-closed sets in a topological spaces are introduced by R.Devi et. al. [2]. In this paper, we introduced the concept of slightly g\tilde\alpha -continuous functions and study the basic properties and preservation theorems of this function.

Keywords: clopen set, gα-continuous map, slightly gα-continuous map. AMS(2000) Subject classification: 54A05, 54D05 54D10, 54D45.

Date of Submission: 20-03-2021 Date of Acceptance: 04-04-2021

I. Introduction

The notion of $\tilde{g}\alpha$ -closed sets of a topological space are discussed by R. Devi et. al. [2]. The concept of slightly continuous functions are introduced and investigated by R.C. Jain [4]. The aim of this paper is to introduce the notion of slightly $\tilde{g}\alpha$ -continuous functions. Further, the basic properties of slightly $\tilde{g}\alpha$ -continuous functions are derived.

Throughout the present paper, X and Y are always topological spaces-Let A be a subset of X. We denote the interior and the closure of a set A by int(A) and cl(A) respectively. A subset A of a space X is said to be α -open [5] if A \subseteq int(cl(int(A))). A subset A of a space X is said to be $\widetilde{g}\alpha$ -closed [2] if acl(A) $\subseteq U$ whenever $A \subseteq U$ and U is #gs-open. The complement of a $g\alpha$ -closed set is said to be $g\alpha$ -open. The intersection of all $g\alpha$ -closed sets of X containing A is called $g\alpha$ -closure of A and is denoted by $g\alpha cl(A)$. The union of all $g\alpha$ -open sets of X contained in A is called $\widetilde{g}\alpha$ -interior of A and is denoted by $\widetilde{g}\alpha int(A)$. The family of all α -open (resp. $\widetilde{g}\alpha$ -open, $\widetilde{g}\alpha$ -closed, clopen, $\widetilde{g}\alpha$ -clopen) set of X is denoted by $\alpha O(X)$ (resp. $\widetilde{g}\alpha O(X)$, $\widetilde{g}\alpha C(X)$, CO(X), $\widetilde{g}\alpha CO(X)$).

Definition 1.1. [2] A function $f: X \to Y$ is $g\alpha$ -continuous if $f^{-1}(V)$ is $g\alpha$ -open set in X for each open set V of Y.

Definition 1.2. [4] A function $f: X \to Y$ is slightly- continuous if $f^{-1}(V)$ is open set in X for each clopen set V of Y.

II. Slightly $\tilde{g}\alpha$ -Continuous Functions

Definition 2.1. A function $f: X \to Y$ is said to be slightly $g\alpha$ -continuous if for each $x \in X$ and for each $y \in CO(Y, f(x))$, there exists $U \in G\alpha O(X, x)$ such that $f(U) \subseteq V$.

Definition 2.2. Let (D, \leq) be a directed set A net $\{x_{\lambda} : \lambda \in D\}$ in X is said to be $\tilde{g}\alpha$ -convergent to a point $x \in X$ if $\{x_{\lambda}\}_{\lambda} \in D$ is eventually in each $V \in \tilde{G}\alpha O(X, x)$.

Theorem 2.3. For a function $f: X \to Y$, the following are equivalent:

- (a) f is slightly $g\alpha$ -continuous.
- (b) $f^{-1}(v) \in g\pi O(X)$ for each $V \in CO(Y)$.
- (c) $f^{-1}(v)$ is $g\alpha$ -clopen for each $V \in CO(Y)$.
- (d) for each $x \in X$ and for each set $x_{\lambda} \lambda \in D$ in X.

Proof. (a) \Rightarrow (b). Let $V \in CO(Y)$ and let $x \in f^{-1}$. Then $f(X) \in V$. Since f is slightly $g\alpha$ -continuous, there is a $U \in g\alpha O(X, x)$ such that $f(U) \subseteq V$. Thus $f^{-1}(U) = U_X\{U : x \in f^{-1}(V)\}$, that is $f^{-1}(U)$ is a union of $g\alpha$ -open sets. Hence

 $f^{-1}(U) \in \widetilde{g}\alpha O(X)$. (b) \Rightarrow (c). Let $V \in CO(Y)$. Then $(Y - V) \in CO(X)$. By hypothesis $f^{-1}(Y - V) = X - f^{-1}(V) \in \widetilde{G}\alpha O(X)$. Thus $f^{-1}(V)$ is $\widetilde{g}\alpha$ -closed.

- (c) \Rightarrow (d). Let $\{x_{\lambda}\}_{\lambda} \in D$ be a set in X $\tilde{g}\alpha$ converging to x and let $V \in CO(Y, f)$
- (x)). There is thus a $U \in \widetilde{g}\alpha O(X, x)$ such that $f(U) \subseteq V$. There is

thus a $\lambda_0 \in D$ such that $\lambda_0 \le \lambda$ implies $x_\lambda \in U$ since $\{x_\lambda\}_{\lambda \in D}$ is $g\alpha$ -convergent to x. Thus $f(x_\lambda) \in f(U) \subseteq V$ for all λ . Thus $\{f(x_\lambda)\}_{\lambda \in D}$ is $g\alpha$ -convergent to f(x).

- (d) \Rightarrow (a). Suppose that f is not slightly $g\alpha$ -continuous at a point $x \in X$, then there exists a $V \in CO(Y, f(x))$ such that f(U) does not contained in V for each
 - ~ $U \in g\alpha O(X, x)$. So $f(U) \cap (Y V) f = \varphi$ and thus $U \cap f^{-1}(Y V) f = \varphi$ for

each $U \in \widetilde{g}\alpha O(X, x)$, since $g\widetilde{\alpha}O(X, x)$ is directed by set inclusion C, there exists a selection function x_U from $\widetilde{g}\alpha O(X, x)$ into X for each $U \in \widetilde{g}\alpha O(X, x)$. Thus $\{x_U\}_U \in \widetilde{g}\alpha O(X, x)$ is a net in X $g\alpha$ -converging to X. Since $X_U \in U \cap f$ $Y = U - f^{-1}(V)$ and so $f(x_U) \notin V$, for each U, $\{f(x_U)\}_U \in g\alpha O(X, x)$ is not eventually in $V \in CO(Y, f(x))$, which is a contradiction. Hence (a) holds.

~

Theorem 2.4. If $f: X \to Y$ is slightly $\tilde{g}\alpha$ -continuous and $g: Y \to Z$ is slightly continuous, then their composition $g \circ f$ is slightly $g\alpha$ -continuous.

Proof. Let $V \in CO(Z)$, then $g^{-1}(V) \in CO(Y)$ [6]. Since f is slightly $\tilde{g}\alpha$ -continuous, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V) \ncong g\alpha O(X)$. Thus $g \circ f$ is slightly $g\alpha$ -continuous.

Theorem 2.5. The following are equivalent for a function $f: X \to Y$

- (a) f is slightly gα-continuous,
- (b) for each $x \in X$ and for each $V \in CO(Y, f(x))$, there exists $g\alpha$ -clopen set U

such that $f(U) \subseteq U$,

- (c) for each closed set F of Y, $f^{-1}(F)$ is $g\alpha$ -closed,
- (d) $f(cl(A)) \subseteq \tilde{f} \alpha cl(f(A))$ for each $A \subseteq X$ and
- (e) $cl(f^{-1}(B)) \subseteq f^{-1}(\tilde{g}acl(B))$ for each $B \subseteq Y$.

Proof. (a) \Rightarrow (b) Let $x \in X$ and $V \in CO(Y, f(x))$ by Theorem 2.3. $f^{-1}(V)$ is clopen. Put $U = f^{-1}(V)$, then $x \in U$ and $f(U) \subseteq V$.

- (b) \Rightarrow (c) It is obvious.
- (c) \Rightarrow (d) Since g = cl(f(A)) is the smallest g = closed set containing f(A), hence by
- (c), we have (d).
- (d) \Rightarrow (e) For each $B \subseteq Y$, $f(cl(f^{-1}(B))) \subseteq gacl(f(f^{-1}(B))) \subseteq gacl(B)$. Hence $f(cl(f^{-1}(B))) \subseteq gacl(B) \Rightarrow cl(f^{-1}(B)) \subseteq f^{-1}(gacl(B))$.
- (e) \Rightarrow (a) Let $V \in CO(Y)$. Then $(Y V) \in CO(X)$, by (e), we have $cl(f^{-1}(Y V)) \subseteq f^{-1}(gacl(Y V)) = f^{-1}(Y V)$, since every closed set is ga-closed, thus $f^{-1}(Y V) = X f^{-1}(V)$ is closed and thus ga-closed, thus $f^{-1}(V) \in gaO(X)$ and f is slightly ga-continuous.

Theorem 2.6. If $f: X \to Y$ is a slightly $\tilde{g}\alpha$ -continuous injection and Y is clopen T_1 , then X is $\tilde{g}\alpha - T_1$.

Proof. Suppose that Y is clopen T_1 . For any distinct points x and y in X, there exist V, $W \in CO(Y)$ such that $f(x) \in V$, $f(y) \notin V$, $f(x) \notin W$ and $f(y) \in W$. Since Y is singularly gar-continuous, f(x) faintly for plane gar-open subsets of A.

such that $x \in \mathcal{F}^1(V)$, $y \notin \mathcal{F}^1(V)$, $x \notin \mathcal{F}^1(W)$ and $y \in \mathcal{F}^1(W)$. This shows that X is $\mathfrak{F}\alpha - T_1$.

~

Theorem 2.7. If $f: X \to Y$ is a slightly $\tilde{g}\alpha$ -continuous surjection and Y is clopen T_2 , then X is $\tilde{g}\alpha - T_2$.

Proof. For any pair of distinct points x and y in X, there exist disjoint clopen sets U and V in Y such that $f(x) \in U$ and $f(y) \in V$. Since f is slightly $g\alpha$ -continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are $g\alpha$ -open in X containing x and y respectively. Therefore $f^{-1}(U) \cap f^{-1}(V) = \varphi$ because $U \cap V = \varphi$. This shows that X is $\widetilde{g}\alpha - T_2$.

Definition 2.8. A space is called $\tilde{g}\alpha$ -regular if for each $\tilde{g}\alpha$ -closed set F and each point $x \notin F$, there exist disjoint open sets U and V such that $F \subseteq U$ and $x \in V$.

Definition 2.9. A space is said to be $\tilde{g}\alpha$ -normal if for every pair of disjoint $g\alpha$ -closed subsets F_1 and F_2 of X, there exist disjoint open sets U and V such that $F_1 \subseteq U$ and $F_2 \subseteq V$.

Theorem 2.10. If f is slightly $\tilde{g}\alpha$ -continuous injective open function from a $g\alpha$ -regular space X onto a space Y, then Y is clopen regular. **Proof.** Let F be clopen set in Y and be $y \in F$. Take y = f(x). Since f is slightly $g\alpha$ -continuous, $f^{-1}(F)$ is a $g\alpha$ -closed set. Take $G = f^{-1}(F)$, we have $x \in G$.

Since X is $g\alpha$ -regular, there exist disjoint open sets U and V such that $G \subseteq U$ and $x \in U$

V. We obtain that $F = f(G) \subseteq f(U)$ and $y = f(x) \in f(V)$ such that f(U) and f(V) are

disjoint open sets. This shows that Y is clopen regular.

Theorem 2.11. If f is slightly $\tilde{g}\alpha$ -continuous injective open function from a $g\alpha$ -normal space X onto a space Y, then Y is clopen normal.

References

- [1]. M. Caldas and S. Jafari, On g-US spaces, Universitatea Din Bacau Stud II SI Cercetari Stiintifice (Mathematica), No. 14 (2004), 13-20.
- [2]. R. Devi, A. Selvakumar and S.Jafari, On gα-closed sets in Topological spaces, Asia Mathematika, Vol. 3, No. 3 (2019), 16-22.
- [3]. Erdal Ekici and Miguel Caldas, Slightly γ-continuous Functions, Bol. Soc. Oaran. Mat., (35) Vol. 22, No. 2 (2004), 63-74.
- [4]. R.C. Jain, The role of regularly open sets in general topology, *Ph.D Thesis*, *Meerut University, Institute of Advanced Studies, Meerut, India* (1980).
- [5]. O. Njastad, On some classes of nearly open sets, *Pacif. J. Math.*, 15 (1965), 961-970.
- [6]. T.Noiri, On semi-continuous mappings, Atti Accad NAz. Lincei Rend. Cl. Sci. Fis. Mat. Natur, (8) 54 (1973), 210-214.